Electrodynamics-II

Lecturer Muhammad Amer Mustafa
UOS, Sub Campus Bhakkar

7.2.3 Inductance

Suppose you have two loops of wire, at rest (Fig. 7.29). If you run a steady current I_{1} around loop 1, it produces a magnetic field \mathbf{B}_{1}. Some of the field lines pass through loop 2 ; let Φ_{2} be the flux of \mathbf{B}_{1} through 2. You might have a tough time actually calculating \mathbf{B}_{1}. but a glance at the Biot-Savart law,

$$
\mathbf{B}_{1}=\frac{\mu_{0}}{4 \pi} I_{1} \oint \frac{d \mathbf{l}_{1} \times \hat{\boldsymbol{r}}}{r^{2}},
$$

reveals one significant fact about this field: It is proportional to the current I_{1}. Therefore. so too is the flux through loop 2:

$$
\Phi_{2}=\int \mathbf{B}_{1} \cdot d \mathbf{a}_{2}
$$

Thus flux passing through loop 2 is directly proportional to I_{1}

$$
\emptyset_{2} \propto I_{1}
$$

Figure 7.29

Figure 7.30

Thus

$$
\begin{equation*}
\Phi_{2}=M_{21} I_{1}, \tag{7.21}
\end{equation*}
$$

where M_{21} is the constant of proportionality; it is known as the mutual inductance of the two loops.

There is a cute formula for the mutual inductance, which you can derive by expressing the flux in terms of the vector potential and invoking Stokes' theorem:

$$
\Phi_{2}=\int \mathbf{B}_{1} \cdot d \mathbf{a}_{2}=\int\left(\nabla \times \mathbf{A}_{1}\right) \cdot d \mathbf{a}_{2}=\oint \mathbf{A}_{1} \cdot d \mathbf{l}_{2}
$$

Now, according to Eq. 5.63,

$$
\mathbf{A}_{1}=\frac{\mu_{0} I_{1}}{4 \pi} \oint \frac{d \mathbf{I}_{1}}{r}
$$

and hence

$$
\Phi_{2}=\frac{\mu_{0} I_{1}}{4 \pi} \oint\left(\oint \frac{d \mathbf{l}_{1}}{r}\right) \cdot d \mathbf{l}_{2} .
$$

Evidently

$$
\begin{equation*}
M_{21}=\frac{\mu_{0}}{4 \pi} \oint \oint \frac{d \mathbf{l}_{1} \cdot d \mathbf{l}_{2}}{r} . \tag{7.22}
\end{equation*}
$$

This is the Neumann formula; it involves a double line integral-one integration around loop 1, the other around loop 2 (Fig. 7.30). It's not very useful for practical calculations, but it does reveal two important things about mutual inductance:

1. M_{21} is a purely geometrical quantity, having to do with the sizes, shapes, and relative positions of the two loops.
2. The integral in Eq. 7.22 is unchanged if we switch the roles of loops 1 and 2 ; it follows that

$$
\begin{equation*}
M_{21}=M_{12} \tag{7.23}
\end{equation*}
$$

