Electrodynamics II

Lecture Delivered By Muhammad Amer Mustafa University of Sargodha,Sub Campus Bhakkar

Contents 7.2.2 The Induced Electric Field Example 7.7

Your Assignment

Example 7.8, Example 7.9

Induced Electric Field

• Electrostatic rule

 $\vec{\nabla} \times \vec{E} = 0$ (Electrostatics)

• Generalization of this rule to Faraday's Law is

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

• Divergence of \vec{E} is still given by Gauss's Law

$$\vec{7} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

• If \vec{E} is purely Faraday Field, then

$$\vec{\nabla} \cdot \vec{E} = 0$$

Think! What is Faraday Field?

Comparison

Amper's Law

- $\vec{\nabla} \cdot \vec{B} = 0$
- $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$
- $\vec{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\boldsymbol{r}') \times \hat{\boldsymbol{r}}}{\boldsymbol{r}^2} d\tau'$

Faraday's Law

• $\vec{\nabla} \cdot \vec{E} = 0$

•
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

• By using the same token, we can write \vec{E}

$$\vec{E}(\boldsymbol{r}) = \frac{1}{4\pi} \int \frac{\left(-\frac{\partial \vec{B}}{\partial t}\right) \times \hat{\boldsymbol{r}}}{\boldsymbol{r}^2} d\tau'$$

Comparison

Amper's Law

• Ampere's law in integral form
$$\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{enc}$$

Faraday's Law

•
$$\vec{E}(\mathbf{r}) = \frac{-1}{4\pi} \int \frac{\left(\frac{\partial \vec{B}}{\partial t}\right) \times \hat{r}}{r^2} d\tau'$$

• $\vec{E}(\mathbf{r}) = \frac{-1}{4\pi} \frac{\partial}{\partial t} \int \frac{\vec{B} \times \hat{r}}{r^2} d\tau'$

• Faraday's Law in integral form $\int \vec{\nabla} \times \vec{E} \cdot \vec{da} = -\int \frac{\partial \vec{B}}{\partial t} \cdot \vec{da}$ $\oint \vec{E} \cdot \vec{dl} = -\frac{d\emptyset}{dt}$

The rate of change of magnetic flux plays the same role as the $\mu_0 I_{enc}$ in Ampere's Law

Example 7.7. A uniform magnetic field $\mathbf{B}(t)$, pointing straight up, fills the shaded circular region of Fig. 7.25. If **B** is changing with time, what is the induced electric field?

$$\oint \vec{E} \cdot \vec{dl} = -\frac{d\emptyset}{dt}$$

The induced electric field be in such a direction that it will opposes the magnetic field.

FIGURE 7.25

At any time t flux passig through Amperian Loop is $\emptyset = B A(area of Amperian loop)$ $\phi = B(t)\pi s^2$ $\frac{d\emptyset}{dt} = \frac{d \left(B(t)\pi s^2\right)}{dt} = \pi s^2 \frac{dB(t)}{dt}$ \vec{E} and \vec{dl} are in same direction so $\oint \vec{E} \cdot \vec{dl} = E \oint dl = E(2\pi s)$ Using the Faraday's Law $\oint \vec{E} \cdot \vec{dl} = -\frac{d\phi}{dt}$ $E(2\pi s) = -\pi s^2 \frac{dB(t)}{dt}$ $E = -\frac{s}{2} \frac{dB(t)}{dt}$ $\vec{E} = -\frac{s}{2} \frac{dB(t)}{dt} \hat{\phi}$