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5.4.2 Magnetostatics Boundary Conditions

We shall see boundary conditions for two components of Magnetic
fields

* For Perpendicular components of magnetic field
* For Tangential/parallel components of magnetic field



-or perpendicular components of Magnetic
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Perpendicular Field Boundary Conditions

deC_l) = JBaboveda—ijelowda +JBdC_l)

Top bottom de walls

Integral of magnetic field due to side walls is zero because f da — 0

So last term vanishes and we get
L 1 1
dea = ]Baboveda —fBbelowda

Top bottom
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fB- da = Bgpope f da — Bpeiow f da = A(Babove — Bbelow) =0



-or perpendicular components of Magnetic
Cield

- 1 1 1L 1
B.da = Bgpope | da — Bpeion | da = A(Babove — Bbelow) =0

Area cannot be equal to zero so

1L 1
Babove — Bpetow = 0

L 1L
Babove = Bpelow

It is proved that perpendicular components of magnetic fields are
continuous.



Boundary conditions for parallel components
components of Magnetic Field

Figure 5.50



Boundary conditions for parallel components
components of Magnetic Field
Using the Ampere’s Law
B.dl=|B.di+ | B.dl+ | B.dl = pyl,,,
% B!Iow jl'op HJeight

Lo | | = o
dea = JBabovedl_Jébelowdl +del :,U()Ienc

- - . Height
Last term [ B.dl goes to zero because height of amperian loop approaches to
zero

I \ I
Babove j dl — ébelow j dl = l(Babove T Bbelow) — .uolenc

Where I,,, = KL and L is length of Amperian loop



Boundary conditions for parallel components
components of Magnetic Field

I I
[(Bapove — Bpetow) = HoKl

I I
Babove — Bbelow — .UOK
I I
(Babove — Bbelow) = UoK

Babove — Bpelow = HUo (K X ﬁ)

Where 71 is the unit vector perpendicular to the surface pointing upward.



Multipole Expansion of the vector potential

* We want to find out the approximate

formula for magnetic vector potential

at very large distances 7 due to this —
current distribution.(fig.5.51) |
* Inverse of Separation vector can be written

in terms of Legendre Polynomials.

(see section 3.4.1)
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Figure 5.51




Legendre Polynomial terms

F(cosB) =1

P (cosB) =cosb

P,(cos0) = 3(1+3cos 20)

P.(cosB) =¢(3cosO +5cos 30)

P, (cos0)=37(9+20cos 20 + 35c0s 40)

P.(cos0) = 135 (30cos0 + 35¢c0s 30 + 63cos 50)
P (cos0) = z35(50+105¢c0s 20 +126cos 40 + 231 cos 60)

P.(cos0) = 5557 (175c0s 0 + 189 cos 30 + 231 cos 50 + 429 cos 70)



Multipole Expansion of the vector potential

Accordingly, the vector potential of a current loop can be written

mol ;uuf .
Alr) = = Zﬂ s j#(r )' P, (cos 8"y dl', (5.78)

or, more explicitly:
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(5.79)



Multipole Expansion of the vector potential

pol 1 [,
Ar) = AT dl > Magnetic Mono Pole Term
ﬂﬂf l ! f !
A(r) = s f" cos® dl > Magnetic Dipole Pole Term

Asn the multipole expansion of V., we call the first term (which goes like 1 /) the monopole
term, the second (which goes like 1/r°) dipole, the third quadrupole. and so on.



Mono Pole Term

Now, it happens that the magnetic monopole term is always zero, for the integral is just
the total vector displacement around a closed loop:

fdl’ =1 (5.80)

This reflects the fact that there are (apparently) no magnetic monopoles in nature (an as-
sumption contained in Maxwell’s equation V - B = 0, on which the entire theory of vector
potential is predicated).



Magnetic Moment and Magnetic Vector
Potential

In the absence of any monopole contribution, the dominant term is the dipole (except
in the rare case where it, (00, vanishes):

/ / r.r' =r'cos@’
MO ' ) v MO A
Adin(r) = rrcosf dl' = r-r)dl. 5.81)
dip(r) 47[er = %( ) (
This integral can be rewritten in a more illuminating way if we invoke Eq. 1.108, with¢ = r: %(c r)dl = a x c,
%(f' r)dl' = —r x fda'. (5.82) Yo
Then . i
- E] da
Mom xXr S

L\dip(r):M | (5.83) :

where m is the magnetic dipole moment:

| Where a is vector
m=1Ifda=1/a.| areaofloop. (584)




