Electrodynamics-II

Lecturer Muhammad Amer Mustafa
UOS, Sub Campus Bhakkar

5.4.2 Magnetostatics Boundary Conditions

We shall see boundary conditions for two components of Magnetic fields

- For Perpendicular components of magnetic field
- For Tangential/parallel components of magnetic field

For perpendicular components of Magnetic

 Field$$
\oint \vec{B} \cdot d \vec{a}=\int \vec{\nabla} \cdot \vec{B} d \tau^{\prime}
$$

We have proved that $\vec{\nabla} \cdot \vec{B}=0$
So

$$
\begin{gathered}
\oint \vec{B} \cdot d \vec{a}=0 \\
\oint \vec{B} \cdot d \vec{a}=\int_{\text {Top }} \vec{B} \cdot d \vec{a}+\int_{\text {bottom }} \vec{B} \cdot d \vec{a}+\int_{\text {side walls }} \vec{B} \cdot d \vec{a}
\end{gathered}
$$

Perpendicular Field Boundary Conditions

$$
\oint \vec{B} \cdot d \vec{a}=\int_{\text {Top }} \stackrel{\perp}{B_{\text {above }}} d a-\int_{\text {bottom }} \stackrel{\perp}{B_{\text {below }}} d a+\int_{\text {side walls }} \vec{B} \cdot d \vec{a}
$$

Integral of magnetic field due to side walls is zero because $\int d a \rightarrow 0$
So last term vanishes and we get

$$
\begin{gathered}
\oint \vec{B} \cdot d \vec{a}=\int_{\text {Top }}^{B_{\text {above }}^{\perp}} d a-\iint_{\text {bottom }}^{\perp} \stackrel{\perp}{B_{\text {below }}} d a \\
\oint \vec{B} \cdot d \vec{a}=\stackrel{\perp}{B_{\text {above }}^{\perp} \int d a-B_{\text {below }}^{\perp} \int d a=A\left(B_{\text {above }}^{\perp}-\stackrel{\perp}{B_{\text {below }}}\right)=0}
\end{gathered}
$$

For perpendicular components of Magnetic

 Field$$
\oint \vec{B} \cdot d \vec{a}=B_{\text {above }}^{\perp} \int d a-B_{\text {below }}^{\perp} \int d a=A\left(B_{\text {above }}^{\perp}-B_{\text {below }}^{\perp}\right)=0
$$

Area cannot be equal to zero so

$$
\begin{gathered}
B_{\text {above }}^{\perp}-B_{\text {below }}^{\perp}=0 \\
B_{\text {above }}^{\perp}=B_{\text {below }}^{\perp}
\end{gathered}
$$

It is proved that perpendicular components of magnetic fields are continuous.

Boundary conditions for parallel components components of Magnetic Field

Figure 5.50

Boundary conditions for parallel components components of Magnetic Field

Using the Ampere's Law

$$
\begin{gathered}
\oint \vec{B} \cdot d \vec{l}=\int_{\text {Below }} \vec{B} \cdot d \vec{l}+\int_{\text {Top }} \vec{B} \cdot d \vec{l}+\int_{\text {Height }} \vec{B} \cdot d \vec{l}=\mu_{0} I_{e n c} \\
\oint \vec{B} \cdot d \vec{a}=\int B_{\text {above }}^{\|} d l-\int B_{\text {below }} d l+\int \vec{B} \cdot d \vec{l}=\mu_{0} I_{e n c}
\end{gathered}
$$

Last term $\int \vec{B} . d \vec{l}$ goes to zero because height of amperian loop approaches to zero

$$
B_{\text {above }} \int d l-B_{\text {below }} \int d l=l\left(B_{\text {above }}^{\|}-B_{\text {below }}^{\|}\right)=\mu_{0} I_{\text {enc }}
$$

Where $I_{e n}=K L$ and L is length of Amperian loop

Boundary conditions for parallel components components of Magnetic Field

$$
\begin{aligned}
l\left(B_{\text {above }}^{\|}-B_{\text {below }}^{\|}\right)= & \mu_{0} K l \\
& B_{\text {above }}^{\|}-B_{\text {below }}^{\|}=\mu_{0} K
\end{aligned} \quad \begin{aligned}
\left(B_{\text {above }}-B_{\text {below }}^{\|}\right)= & \mu_{0} K \\
& B_{\text {above }}-B_{\text {below }}=\mu_{0}(\vec{K} \times \hat{n})
\end{aligned}
$$

Where \hat{n} is the unit vector perpendicular to the surface pointing upward.

Multipole Expansion of the vector potential

- We want to find out the approximate formula for magnetic vector potential at very large distances \vec{r} due to this current distribution.(fig.5.51)
- Inverse of Separation vector can be written in terms of Legendre Polynomials.
(see section 3.4.1)

$$
\begin{aligned}
\frac{1}{r} & =\frac{1}{\sqrt{r^{2}+\left(r^{\prime}\right)^{2}-2 r r^{\prime} \cos \theta^{\prime}}} \\
& =\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{n} P_{n} \cos \theta^{\prime}
\end{aligned}
$$

Figure 5.51

Legendre Polynomial terms

$$
\begin{aligned}
& P_{0}(\cos \theta)=1 \\
& P_{1}(\cos \theta)=\cos \theta \\
& P_{2}(\cos \theta)=\frac{1}{4}(1+3 \cos 2 \theta) \\
& P_{3}(\cos \theta)=\frac{1}{8}(3 \cos \theta+5 \cos 3 \theta) \\
& P_{4}(\cos \theta)=\frac{1}{64}(9+20 \cos 2 \theta+35 \cos 4 \theta) \\
& P_{5}(\cos \theta)=\frac{1}{128}(30 \cos \theta+35 \cos 3 \theta+63 \cos 5 \theta) \\
& P_{6}(\cos \theta)=\frac{1}{512}(50+105 \cos 2 \theta+126 \cos 4 \theta+231 \cos 6 \theta) \\
& P_{7}(\cos \theta)=\frac{1}{1024}(175 \cos \theta+189 \cos 3 \theta+231 \cos 5 \theta+429 \cos 7 \theta)
\end{aligned}
$$

Multipole Expansion of the vector potential

Accordingly, the vector potential of a current loop can be written

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \oint \frac{1}{r} d \mathbf{l}^{\prime}=\frac{\mu_{0} I}{4 \pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint\left(r^{\prime}\right)^{n} P_{n}\left(\cos \theta^{\prime}\right) d \mathbf{l}^{\prime}, \tag{5.78}
\end{equation*}
$$

or, more explicitly:

$$
\begin{align*}
\mathbf{A}(\mathbf{r})= & \frac{\mu_{0} I}{4 \pi}\left[\frac{1}{r} \oint d \mathbf{l}^{\prime}+\frac{1}{r^{2}} \oint r^{\prime} \cos \theta^{\prime} d \mathbf{l}^{\prime}\right. \\
& \left.+\frac{1}{r^{3}} \oint\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos ^{2} \theta^{\prime}-\frac{1}{2}\right) d \mathbf{l}^{\prime}+\cdots\right] . \tag{5.79}
\end{align*}
$$

Multipole Expansion of the vector potential

$$
\begin{gathered}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \frac{1}{r} \oint d \mathbf{l}^{\prime} \longrightarrow \text { Magnetic Mono Pole Term } \\
\mathbf{A}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \oint r^{\prime} \cos \theta^{\prime} d \mathbf{l}^{\prime} \longrightarrow \text { Magnetic Dipole Pole Term }
\end{gathered}
$$

As in the multipole expansion of V, we call the first term (which goes like $1 / r$) the monopole term, the second (which goes like $1 / r^{2}$) dipole, the third quadrupole, and so on.

Mono Pole Term

Now, it happens that the magnetic monopole term is always zero, for the integral is just the total vector displacement around a closed loop:

$$
\begin{equation*}
\oint d \mathbf{l}^{\prime}=0 \tag{5.80}
\end{equation*}
$$

This reflects the fact that there are (apparently) no magnetic monopoles in nature (an assumption contained in Maxwell's equation $\nabla \cdot \mathbf{B}=0$, on which the entire theory of vector potential is predicated).

Magnetic Moment and Magnetic Vector Potential

In the absence of any monopole contribution, the dominant term is the dipole (except in the rare case where it, too, vanishes):

$$
\begin{equation*}
\mathbf{A}_{\mathrm{dip}}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi r^{2}} \oint r^{\prime} \cos \theta^{\prime} d \mathbf{l}^{\prime}=\frac{\mu_{0} I}{4 \pi r^{2}} \oint\left(\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime}\right) d \mathbf{l}^{\prime} \tag{5.81}
\end{equation*}
$$

$$
\hat{r} \cdot \overrightarrow{r^{\prime}}=r^{\prime} \cos \theta^{\prime}
$$

This integral can be rewritten in a more illuminating way if we invoke Eq. 1.108, with $\mathbf{c}=\hat{\mathbf{r}}$:

$$
\begin{equation*}
\oint\left(\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime}\right) d \mathbf{l}^{\prime}=-\hat{\mathbf{r}} \times \int d \mathbf{a}^{\prime} \tag{5.82}
\end{equation*}
$$

$$
\oint(\mathbf{c} \cdot \mathbf{r}) d \mathbf{l}=\mathbf{a} \times \mathbf{c}
$$

Where
Then

$$
\begin{equation*}
\mathbf{A}_{\mathrm{dip}}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\overline{\mathbf{m} \times \hat{\mathbf{r}}}}{r^{2}} \tag{5.83}
\end{equation*}
$$

$$
\mathbf{a} \equiv \int_{\mathcal{S}} d \mathbf{a}
$$

Where a is vector

$$
\begin{equation*}
\mathbf{m} \equiv I \int d \mathbf{a}=I \mathbf{a} . \quad \text { area of loop. } \tag{5.84}
\end{equation*}
$$

