Electrodynamics II

Lecture Delivered By Muhammad Amer Mustafa University of Sargodha,Sub Campus Bhakkar

The Biot-Savart law for the general case of a volume curren

$$\vec{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\boldsymbol{r}') \times \hat{\boldsymbol{r}}}{\boldsymbol{r}^2} d\tau'$$

This formula gives the magnetic field at a point r = (x, y, z) in terms of an integral over the current distribution $\vec{J}(x', y', z')$ (Fig) Here \vec{B} is a function of (x, y, z)

$$ec{J}$$
 is the function of (x', y', z')

 $d\tau' = dx'dy'dz'$

$$\vec{x} = (x - x')\hat{x} + (y - y')\hat{y} + (z - z)\hat{z}$$

The integration is over the primed coordinates; the divergence and the curl are to be taken with respect to the unprimed coordinates.

Applying the divergence to above equation we obtain

$$\overrightarrow{\nabla}.\overrightarrow{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \overrightarrow{\nabla}.\left(\frac{\overrightarrow{J}(\mathbf{r}') \times \widehat{r}}{r^2}\right) d\tau'$$

Using the Product rule $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$,

$$\overrightarrow{\nabla}.\left(\frac{\overrightarrow{J}(r')\times\widehat{r}}{r^2}\right) = \frac{\widehat{r}}{r}.\left(\overrightarrow{\nabla}\times\overrightarrow{J}\right) - \overrightarrow{J}.\left(\overrightarrow{\nabla}\times\frac{\widehat{r}}{r^2}\right)$$

But $\overrightarrow{\nabla}\times\overrightarrow{J} = 0$

Because \vec{J} does not depend on the unprimed variables (x,y,z)

$$\overrightarrow{\nabla}.\left(\frac{\overrightarrow{J}(\mathbf{r}')\times\widehat{\mathbf{r}}}{{\mathbf{r}'}^2}\right) = -\overrightarrow{J}.\left(\overrightarrow{\nabla}\times\frac{\widehat{\mathbf{r}'}}{{\mathbf{r}'}^2}\right)$$

Whereas

$$\vec{\nabla} \times \frac{\hat{\mathcal{V}}}{{\mathcal{V}}^2} = 0$$
 Problem:1.62

$$\overrightarrow{\nabla}.\overrightarrow{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \overrightarrow{\nabla}.\left(\frac{\overrightarrow{J}(\mathbf{r}') \times \widehat{\mathbf{r}}}{\mathbf{r}^2}\right) d\tau' = 0$$

$$\overrightarrow{\nabla}.\overrightarrow{B}(\mathbf{r})=0$$

So

Applying curl to equation 5.45

$$\vec{\nabla} \times \vec{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int \vec{\nabla} \times \left(\frac{\vec{J}(\boldsymbol{r}') \times \hat{\boldsymbol{r}}}{\boldsymbol{r}^2}\right) d\tau'$$

Using the product rule $\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}).$

$$\vec{\nabla} \times \left(\frac{\vec{J}(r') \times \hat{r}}{r^2}\right) = \left(\frac{\hat{r}}{r^2} \cdot \vec{\nabla}\right) \vec{J} - \left(\vec{J} \cdot \vec{\nabla}\right) \frac{\hat{r}}{r^2} + \vec{J} \left(\vec{\nabla} \cdot \frac{\hat{r}}{r^2}\right) - \frac{\hat{r}}{r^2} (\vec{\nabla} \cdot \vec{J})$$
$$\left(\frac{\hat{r}}{r^2} \cdot \vec{\nabla}\right) \vec{J} = 0 \quad \text{and} \quad \frac{\hat{r}}{r^2} (\vec{\nabla} \cdot \vec{J}) = 0$$

$$\vec{\nabla} \times \left(\frac{\vec{J}(\mathbf{r}') \times \hat{\mathcal{V}}}{\mathcal{V}^2}\right) = \vec{J}\left(\vec{\nabla} \cdot \frac{\hat{\mathcal{V}}}{\mathcal{V}^2}\right) - \left(\vec{J} \cdot \vec{\nabla}\right) \frac{\hat{\mathcal{V}}}{\mathcal{V}^2}$$

The first term involves the divergence

$$\vec{\nabla} \cdot \frac{\hat{r}}{r^2} = 4\pi\delta^3(\vec{r}) \quad \text{And} \quad \vec{r} = \vec{r} - \vec{r'}$$

$$\vec{\nabla} \cdot \frac{\hat{r}}{r^2} = 4\pi\delta^3(\vec{r} - \vec{r'})$$

The second term integrates to zero, as we'll see in the next slides.

$$\left(\vec{J}.\vec{\nabla}\right)\frac{\hat{\mathcal{V}}}{{\mathcal{V}}^2} = 0$$

$$\vec{\nabla} \times \vec{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \vec{\nabla} \times \left(\frac{\vec{J}(\mathbf{r}') \times \hat{r}}{r^2}\right) d\tau' = \frac{\mu_0}{4\pi} \int \vec{J}\left(\vec{\nabla} \cdot \frac{\hat{r}}{r^2}\right) d\tau'$$
$$= \frac{\mu_0}{4\pi} \int \vec{J}(\vec{r'}) 4\pi \delta^3 (\vec{r} - \vec{r'}) d\tau'$$
$$\vec{\nabla} \times \vec{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \vec{J}(\vec{r'}) 4\pi \delta^3 (\vec{r} - \vec{r'}) d\tau'$$
$$\vec{\nabla} \times \vec{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \vec{J}(\vec{r'}) 4\pi \delta^3 (\vec{r} - \vec{r'}) d\tau'$$

Which confirms that above equation is not restricted to straight line current but hold quite generally in magnetostatics.

Now we prove the 2nd term of equation 5.50 is equal to zero

$$-\left(\vec{J}.\vec{\nabla}\right)\frac{\hat{\mathscr{V}}}{\mathscr{V}^{2}} = \left(\vec{J}.\vec{\nabla}'\right)\frac{\hat{\mathscr{V}}}{\mathscr{V}^{2}} = \left(\vec{J}.\vec{\nabla}'\right)\frac{\hat{\mathscr{V}}}{\mathscr{V}^{3}} \qquad \text{Using this} \qquad \hat{\mathscr{V}} = \frac{\vec{\mathscr{V}}}{\mathscr{V}}$$

$$\left(\vec{J},\vec{\nabla}'\right)\left(\frac{x-x'}{\gamma^3}\right) = \vec{\nabla}'.\left[\frac{(x-x')}{\gamma^3}\vec{J}\right] - \left(\frac{(x-x')}{\gamma^3}\vec{J}\right)(\vec{\nabla}'.\vec{J})$$

$$\left[-\left(\vec{J}.\vec{\nabla}\right)\frac{\hat{\mathcal{V}}}{{\mathcal{V}}^2}\right]_{\mathcal{X}} = \vec{\nabla}'.\left[\frac{(x-x')}{{\mathcal{V}}^3}\vec{J}\right]$$

$$\int \left(\vec{J}.\vec{\nabla}'\right) \frac{\hat{\mathcal{V}}}{\mathcal{V}^2} d\tau' = \int \vec{\nabla}'.\left[\frac{(x-x')}{\mathcal{V}^3}\vec{J}\right] d\tau'$$

$$\int \left(\vec{J}.\vec{\nabla}'\right) \frac{\hat{\mathcal{V}}}{\mathcal{V}^2} d\tau' = \int \vec{\nabla}'.\left[\frac{(x-x')}{\mathcal{V}^3}\vec{J}\right] d\tau' = \oint \frac{(x-x')}{\mathcal{V}^3}\vec{J}.\vec{da'}$$

Here \vec{J} is the volume current density and its surface integral is equal to zero.

$$\int \left(\vec{J} \cdot \vec{\nabla}'\right) \frac{\hat{\mathcal{V}}}{{\mathcal{V}}^2} d\tau' = 0$$