# Subject: Electrodynamics II 

Lecture Delivered By Muhammad Amer Mustafa UOS Sub Campus Bhakkar

## Lecture Content

- Example 5.6, Problem 5.8 (Magnetostatics)


## Student Assignment:

-Problem 5.9, 5.10
(Magnetostatics)

## Example 5.6

Find the magnetic field a distance $z$ above the center of a circular loop of radius $R$, which carries a steady current $I$ (Fig. 5.21).

## Formula Used:

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \mathbf{l}^{\prime} \times \hat{r}}{r^{2}} .
$$



Mentally split the whole circular wire into small elements, Each element ${ }^{\prime} \mathbf{l}^{\prime}$ produces the magnetic field ${ }^{\prime} d \mathbf{B}$

$$
\left|\underline{d \mathbf{l}^{\prime}} \times \hat{\boldsymbol{n}}\right|=\left|d \mathbf{l}^{\prime}\right| \Longrightarrow|\boldsymbol{d} \boldsymbol{B}|=\frac{\mu_{0} I}{4 \pi R}|\boldsymbol{d} \hat{\imath}|
$$

$$
|\mathbf{B}(\mathbf{r})|=\frac{\mu_{0}}{4 \pi} I \int \frac{\left|d r^{\prime}\right|}{r^{2}} .
$$

And direction of magnetic field $d \mathbf{B}$ is from point P to space making an angle $\theta$ with the Z axis.

Vertical components of all elements are towards the Z direction
 and horizontal components of all elements are cancelled to each Another. So all components along axis are added i.e.

$$
B(z)=|\mathbf{B}(\mathbf{r})| \cos \theta=\frac{\mu_{0}}{4 \pi} I \int \frac{d l^{\prime}}{r^{2}} \cos \theta
$$

$$
B(z)=\frac{\mu_{0}}{4 \pi} I \int \frac{d l^{\prime}}{r^{2}} \cos \theta
$$

$r^{2}$ and $\cos \theta$ are constant can be taken out of integral.

$$
B(z)=\frac{\mu_{0}}{4 \pi} I \frac{\cos \theta}{r^{2}} \int d \mathbf{l}^{\prime}
$$

From the figure 1
$\int d \mathbf{l}^{\prime}$ is the length of circular wire $=2 \pi R$ we get value of

$$
\cos \theta=\frac{R^{2}}{\left(R^{2}+z^{2}\right)^{1 / 2}}
$$

So we get

$$
B(z)=\frac{\mu_{0} I}{4 \pi}\left(\frac{\cos \theta}{r^{2}}\right) 2 \pi R=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}}
$$

## Problem 5.8

(a) Find the magnetic field at the center of a square loop, which carries a steady current $I$. Let $R$ be the distance from center to side (Fig. 5.22).
(b) Find the field at the center of a regular $n$-sided polygon, carrying a steady current $I$. Again, let $R$ be the distance from the center to any side.
(c) Check that your formula reduces to the field at the center of a circular loop, in the limit $n \rightarrow \infty$.

Formulas Used

$$
\begin{array}{r}
B=\frac{\mu_{0} I}{4 \pi s}\left(\sin \theta_{2}-\sin \theta_{1}\right) \\
z=R, \theta_{2}=-\theta_{1}=45^{\circ}
\end{array}
$$

$$
\sin \theta_{1}=\frac{1}{\sqrt{2}} \quad, \quad \sin \theta_{1}=\frac{-1}{\sqrt{2}}
$$

$$
=\frac{\mu_{0} I}{4 \pi R}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \quad \text { For one side }
$$



For four side, Result is multiplied with 4

$$
B=\frac{\sqrt{2} \mu_{0} I}{\pi R} .
$$

(b) Find the field at the center of a regular $n$-sided polygon, carrying a steady current $I$. Again, let $R$ be the distance from the center to any side.


For Polygon

$$
\begin{array}{r}
z=R, \theta_{2}=-\theta_{1}=\frac{\pi}{n}, \\
B=\frac{\mu_{0} I}{4 \pi s} 2 \sin (\pi / n) .
\end{array}
$$

For n sides, Total magnetic field will be n times

$$
B=\frac{n \mu_{0} I}{2 \pi R} \sin (\pi / n)
$$

(c) Check that your formula reduces to the field at the center of a circular loop, in the limit $n \rightarrow \infty$.
(c) For small $\theta, \sin \theta \approx \theta$. So as $n \rightarrow \infty$,

$$
B \rightarrow \frac{n \mu_{0} I}{2 \pi R}\left(\frac{\pi}{n}\right)=\frac{\mu_{0} I}{2 R}
$$

The more the numbers of sides of Polygon, the smaller the angles $\theta_{1}$ and $\theta_{2}$ will be.

