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Lagrangian and
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7.1 Introduction

Experience has shown that a particle’s motion in an inertial reference frame is
correctly described by the Newtonian equation F = p. If the particle is not re-
quired to move in some complicated manner and if rectangular coordinates are
used to describe the motion, then usually the equations of motion are relatively
simple. But if either of these restrictions is removed, the equations can become
quite complex and difficult to manipulate. For example, if a particle is con-
strained to move on the surface of a sphere, the equations of motion result from
the projection of the Newtonian vector equation onto that surface. The repre-
sentation of the acceleration vector in spherical coordinates is a formidable

expression, as the reader who has worked Problem 1-25 can readily testify.
Moreover, if a particle is constrained to move on a given surface, certain

forces must exist (called forces of constraint) that maintain the particle in con-
tact with the specified surface. For a particle moving on a smooth horizontal sur-
face, the force of constraint is simply F, = —mg. But, if the particle is, say, a bead
sliding down a curved wire, the force of constraint can be quite complicated.
Indeed, in particular situations it may be difficult or even impossible to obtain ex-
plicit expressions for the forces of constraint. But in solving a problem by using
the Newtonian procedure, we must know all the forces, because the quantity F

that appears in the fundamental equation is the total force acting on a body.
To circumvent some of the practical difficulties that arise in attempts to

apply Newton’s equations to particular problems, alternate procedures may be
developed. All such approaches are in essence a posteriori, because we know before-
hand that a result equivalent to the Newtonian equations must be obtained. Thus,
to effect a simplification we need not formulate a new theory of mechanics—the
Newtonian theory is quite correct—but only devise an alternate method of deal-
ing with complicated problems in a general manner. Such a method is con-
tained in Hamilton’s Principle, and the equations of motion resulting from the
application of this principle are called Lagrange’s equations.



It Lagrange’s equations are to constitute a proper description ot the dynam-
ics of particles, they must be equivalent to Newton’s equations. On the other
hand, Hamilton’s Principle can be applied to a wide range of physical phenom-
ena (particularly those involving fields) not usually associated with Newton's
equations. To be sure, each of the results that can be obtained from Hamilton’s
Principle was first obtained, as were Newton’s equations, by the correlation of
experimental facts. Hamilton’s Principle has not provided us with any new physical
theories, but it has allowed a satisfying unification of many individual theories by
a single basic postulate. This is not an idle exercise in hindsight, because it is the
goal of physical theory not only to give precise mathematical formulation to ob-
served phenomena but also to describe these effects with an economy of funda-

mental postulates and in the most unified manner possible. Indeed, Hamilton’s
Principle is one of the most elegant and far-reaching principles of physical theory.

In view of its wide range of applicability (even though this is an after-the-fact
discovery), it is not unreasonable to assert that Hamilton’s Principle is more
“fundamental” than Newton’s equations. Therefore, we proceed by first postulat-
ing Hamilton’s Principle; we then obtain Lagrange’s equations and show that
these are equivalent to Newton’s equations.

Because we have already discussed (in Chapters 2, 3, and 4) dissipative phe-
nomena at some length, we henceforth confine our attention to conservative
systems. Consequently, we do not discuss the more general set of Lagrange’s
equations, which take into account the effects of nonconservative forces. The
reader is referred to the literature for these details.*

7.2 Hamilton’s Principle

Minimal principles in physics have a long and interesting history. The search for
such principles is predicated on the notion that nature always minimizes certain
important quantities when a physical process takes place. The first such mini-
mum principles were developed in the field of optics. Hero of Alexandria, in the
second century B.C., found that the law governing the reflection of light could be
obtained by asserting that a light ray, traveling from one point to another by a re-
flection from a plane mirror, always takes the shortest possible path. A simple
geometric construction verifies that this minimum principle does indeed lead to

the equality of the angles of incidence and reflection for a light ray reflected
from a plane mirror. Hero’s principle of the shortest path cannot, however, yield a
correct law for refraction. In 1657, Fermat reformulated the principle by postulat-
ing that a light ray always travels from one point to another in a medium by a
path that requires the least time.* Fermat’s principle of least time leads immedi-
ately, not only to the correct law of reflection, but also to Snell’s law of refraction
(see Problem 6-7).}



Minimum principles continued to be sought, and in the latter part of the sev-
enteenth century the beginnings of the calculus of variations were developed by
Newton, Leibniz, and the Bernoullis when such problems as the brachistochrone
(see Example 6.2) and the shape of a hanging chain (a catenary) were solved.

The first application of a general minimum principle in mechanics was made
in 1747 by Maupertuis, who asserted that dynamical motion takes place with min-
imum action.! Maupertuis’s principle of least action was based on theological
grounds (action is minimized through the “wisdom of God”), and his concept of
“action” was rather vague. (Recall that action is a quantity with the dimensions of
length X momentum or energy X time.) Only later was a firm mathematic foundation
of the principle given by Lagrange (1760). Although it is a useful form from which
to make the transition from classical mechanics to optics and to quantum me-
chanics, the principle of least action is less general than Hamilton’s Principle
and, indeed, can be derived from it. We forego a detailed discussion here.?

In 1828, Gauss developed a method of treating mechanics by his principle of
least constraint; a modification was later made by Hertz and embodied in his
principle of least curvature. These principles" are closely related to Hamilton’s
Principle and add nothing to the content of Hamilton’s more general formula-
tion; their mention only emphasizes the continual concern with minimal princi-
ples in physics.

In two papers published in 1834 and 1835, Hamilton! announced the dy-
namical principle on which it is possible to base all of mechanics and, indeed,
most of classical physics. Hamilton’s Principle may be stated as follows™:

Of all the possible paths along which a dynamical system may move from one
point to another within a specified time interval (consistent with any con-
straints), the actual path followed is that which minimizes the time integral of the
difference between the kinetic and potential energies.

In terms of the calculus of variations, Hamilton’s Principle becomes
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where the symbol 8 is a shorthand notation to describe the variation discussed in
Sections 6.3 and 6.7. This variational statement of the principle requires only
that the integral of T — U be an extremum, not necessarily a minimum. But in al-
most all important applications in dynamics, the minimum condition occurs.
The kinetic energy of a particle expressed in fixed, rectangular coordinates
is a function only of the %, and if the particle moves in a conservative force field,
the potential energy is a function only of the x;:

T=T(x), U= Ux)



If we define the difference of these quantities to be
L=T- U= L(x;, %) (7.2)

then Equation 7.1 becomes
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The function L appearing in this expression may be identified with the function
JSof the variational integral (see Section 6.5),
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if we make the transformations

x—1
3i(x) —> x,()
yi(x) —> %(8)
i), i 2} = Lix,, %)

The Euler-Lagrange equations (Equation 6.57) corresponding to Equation 7.3
are therefore

P i=1,2,3 | Lagrange equations of motion  (7.4)

These are the Lagrange equations of motion for the particle, and the quantity I
is called the Lagrange function or Lagrangian for the particle.



By way of example, let us obtain the Lagrange equation of motion for the
one-dimensional harmonic oscillator. With the usual expressions for the kinetic
and potential energies, we have

1
L=T- U=—m&2—lkx2

2 2
al
— = —kx
ax
oL .
— = mx
ox

dfoLy_ .
a\oz) ™

Substituting these results into Equation 7.4 leads to
mi+ kx=0

which is identical with the equation of motion obtained using Newtonian
mechanics.

1
2

We now treat 8 as if it were a rectangular coordinate and apply the operations speci-
fied in Equation 7.4; we obtain
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which again is identical with the Newtonian result (Equation 4.21). This is a
remarkable result; it has been obtained by calculating the kinetic and potential
energies in terms of § rather than x and then applying a set of operations de-
signed for use with rectangular rather than angular coordinates. We are therefore
led to suspect that the Lagrange equations are more general and useful than the
form of Equation 7.4 would indicate. We pursue this matter in Section 7.4.

Another important characteristic of the method used in the two preceding
simple examples is that nowhere in the calculations did there enter any statement



regarding force. The equations of motion were obtained only by specifying certain
properties associated with the particle (the kinetic and potential energies), and
without the necessity of explicitly taking into account the fact that there was an
external agency acting on the particle (the force). Therefore, insofar as energy can
be defined independently of Newtonian concepts, Hamilton’s Principle allows us
to calculate the equations of motion of a body completely without recourse to
Newtonian theory. We shall return to this important point in Sections 7.5 and 7.7.



