Newton-Cotes Formulas

- Idea: Approximate function with low order polynomials and then integrate approximation

- Step function approximation:
- Compute constant function equalling $f(x)$ at midpoint of $[a, b]$
- Integral approximation is $a U Q V b$ box
- Linear function approximation:
- Compute linear function interpolating $f(x)$ at a and b
- Integral approximation is trapezoid $a P R b$
- Parabolic function approximation:
- Compute parabola interpolating $f(x)$ at a, b, and $(a+b) / 2$
- Integral approximation is area of $a P Q R b$
- Midpoint Rule: piecewise step function approximation

$$
\int_{a}^{b} f(x) d x=(b-a) f\left(\frac{a+b}{2}\right)+\frac{(b-a)^{3}}{24} f^{\prime \prime}(\xi)
$$

- Simple rule: for some $\xi \in[a, b]$

$$
\int_{a}^{b} f(x) d x=(b-a) f\left(\frac{a+b}{2}\right)+\frac{(b-a)^{3}}{24} f^{\prime \prime}(\xi)
$$

- Composite midpoint rule:
* nodes: $x_{j}=a+\left(j-\frac{1}{2}\right) h, j=1,2, \ldots, n, h=(b-a) / n$
$*$ for some $\xi \in[a, b]$

$$
\int_{a}^{b} f(x) d x=h \sum_{j=1}^{n} f\left(a+\left(j-\frac{1}{2}\right) h\right)+\frac{h^{2}(b-a)}{24} f^{\prime \prime}(\xi)
$$

- Trapezoid Rule: piecewise linear approximation
- Simple rule: for some $\xi \in[a, b]$

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)]-\frac{(b-a)^{3}}{12} f^{\prime \prime}(\xi)
$$

- Composite trapezoid rule:

$$
\text { * nodes: } x_{j}=a+\left(j-\frac{1}{2}\right) h, j=1,2, \ldots, n, h=(b-a) / n
$$

* for some $\xi \in[a, b]$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \frac{h}{2}\left[f_{0}+2 f_{1}+\cdots+2 f_{n-1}+f_{n}\right] \\
& -\frac{h^{2}(b-a)}{12} f^{\prime \prime}(\xi)
\end{aligned}
$$

- Simpson's Rule: piecewise quadratic approximation
- for some $\xi \in[a, b]$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \left(\frac{b-a}{6}\right)\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
& -\frac{(b-a)^{5}}{2880} f^{(4)}(\xi)
\end{aligned}
$$

- Composite Simpson's rule: for some $\xi \in[a, b]$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \frac{h}{3}\left[f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+\cdots+4 f_{n-1}+f_{n}\right] \\
& -\frac{h^{4}(b-a)}{180} f^{(4)}(\xi)
\end{aligned}
$$

- Obscure rules for degree 3, 4, etc. approximations.

Gaussian Formulas

- All integration formulas are of form

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \doteq \sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right) \tag{7.2.1}
\end{equation*}
$$

for some quadrature nodes $x_{i} \in[a, b]$ and quadrature weights ω_{i}.

- Newton-Cotes use arbitrary x_{i}
- Gaussian quadrature uses good choices of x_{i} nodes and ω_{i} weights.
- Exact quadrature formulas:
- Let \mathcal{F}_{k} be the space of degree k polynomials
- A quadrature formula is exact of degree k if it correctly integrates each function in \mathcal{F}_{k}
- Gaussian quadrature formulas use n points and are exact of degree $2 n-1$

Theorem 1 Suppose that $\left\{\varphi_{k}(x)\right\}_{k=0}^{\infty}$ is an orthonormal family of polynomials with respect to $w(x)$ on $[a, b]$.

1. Define q_{k} so that $\varphi_{k}(x)=q_{k} x^{k}+\cdots$.
2. Let $x_{i}, i=1, \ldots, n$ be the n zeros of $\varphi_{n}(x)$
3. Let $\omega_{i}=-\frac{q_{n+1} / q_{n}}{\varphi_{n}^{\prime}\left(x_{i}\right) \varphi_{n+1}\left(x_{i}\right)}>0$

Then

1. $a<x_{1}<x_{2}<\cdots<x_{n}<b$;
2. if $f \in C^{(2 n)}[a, b]$, then for some $\xi \in[a, b]$,

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)+\frac{f^{(2 n)}(\xi)}{q_{n}^{2}(2 n)!}
$$

3. and $\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)$ is the unique formula on n nodes that exactly integrates $\int_{a}^{b} f(x) w(x) d x$ for all polynomials in $\mathcal{F}_{2 n-1}$.

Gauss-Chebyshev Quadrature

- Domain: $[-1,1]$
- Weight: $\left(1-x^{2}\right)^{-1 / 2}$
- Formula:

$$
\begin{equation*}
\int_{-1}^{1} f(x)\left(1-x^{2}\right)^{-1 / 2} d x=\frac{\pi}{n} \sum_{i=1}^{n} f\left(x_{i}\right)+\frac{\pi}{2^{2 n-1}} \frac{f^{(2 n)}(\xi)}{(2 n)!} \tag{7.2.4}
\end{equation*}
$$

for some $\xi \in[-1,1]$, with quadrature nodes

$$
\begin{equation*}
x_{i}=\cos \left(\frac{2 i-1}{2 n} \pi\right), \quad i=1, \ldots, n \tag{7.2.5}
\end{equation*}
$$

Arbitrary Domains

- Want to approximate $\int_{a}^{b} f(x) d x$
- Different range, no weight function
- Linear change of variables $x=-1+2(y-a)(b-a)$
- Multiply the integrand by $\left(1-x^{2}\right)^{1 / 2} /\left(1-x^{2}\right)^{1 / 2}$.
- C.O.V. formula

$$
\int_{a}^{b} f(y) d y=\frac{b-a}{2} \int_{-1}^{1} f\left(\frac{(x+1)(b-a)}{2}+a\right) \frac{\left(1-x^{2}\right)^{1 / 2}}{\left(1-x^{2}\right)^{1 / 2}} d x
$$

- Gauss-Chebyshev quadrature produces

$$
\int_{a}^{b} f(y) d y \doteq \frac{\pi(b-a)}{2 n} \sum_{i=1}^{n} f\left(\frac{\left(x_{i}+1\right)(b-a)}{2}+a\right)\left(1-x_{i}^{2}\right)^{1 / 2}
$$

where the x_{i} are Gauss-Chebyshev nodes over $[-1,1]$.

Gauss-Legendre Quadrature

- Domain: $[-1,1]$
- Weight: 1
- Formula:

$$
\int_{-1}^{1} f(x) d x=\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)+\frac{2^{2 n+1}(n!)^{4}}{(2 n+1)!(2 n)!} \cdot \frac{f^{(2 n)}(\xi)}{(2 n)!}
$$

for some $-1 \leq \xi \leq 1$.

- Convergence:
- use $n!\doteq e^{-n-1} n^{n+1 / 2} \sqrt{2 \pi n}$
- error bounded above by $\pi 4^{-n} M$

$$
M=\sup _{m}\left[\max _{-1 \leq x \leq 1} \frac{f^{(m)}(x)}{m!}\right]
$$

- Exponential convergence for analytic functions
- In general,

$$
\int_{a}^{b} f(x) d x \doteq \frac{b-a}{2} \sum_{i=1}^{n} \omega_{i} f\left(\frac{\left(x_{i}+1\right)(b-a)}{2}+a\right)
$$

- Use values for Gaussian nodes and weights from tables instead of programs; tables will have 16 digit accuracy

Table 7.2: Gauss - Legendre Quadrature

N	x_{i}	ω_{i}
2	± 0.5773502691	$0.1000000000(1)$
3	± 0.7745966692	0.5555555555
	0	0.8888888888
5	± 0.9061798459	0.2369268850
	± 0.5384693101	0.4786286704
	0	0.5688888888
10	± 0.9739065285	$0.6667134430(-1)$
	± 0.8650633666	0.1494513491
	± 0.6794095682	0.2190863625
	± 0.4333953941	0.2692667193
	± 0.1488743389	0.2955242247

Life-cycle example:

- $c(t)=1+t / 5-7(t / 50)^{2}$, where $0 \leq t \leq 50$.
- Discounted utility is $\int_{0}^{50} e^{-\rho t} u(c(t)) d t$
- $\rho=0.05, u(c)=c^{1+\gamma} /(1+\gamma)$.
- Errors in computing $\int_{0}^{50} e^{-.05 t}\left(1+\frac{t}{5}-7\left(\frac{t}{50}\right)^{2}\right)^{1-\gamma} d t$

	$\gamma=$.5	1.1	3	10
Truth		1.24431	.664537	.149431	.0246177
Rule:	GLeg 3	$5(-3)$	$2(-3)$	$3(-2)$	$2(-2)$
	GLeg 5	$1(-4)$	$8(-5)$	$5(-3)$	$2(-2)$
	GLeg 10	$1(-7)$	$1(-7)$	$2(-5)$	$2(-3)$
	GLeg 15	$1(-10)$	$2(-10)$	$9(-8)$	$4(-5)$
	GLeg 20	$7(-13)$	$9(-13)$	$3(-10)$	$6(-7)$

Gauss-Hermite Quadrature

- Domain: $[-\infty, \infty]$]
- Weight: $e^{-x^{2}}$
- Formula:

$$
\int_{-\infty}^{\infty} f(x) e^{-x^{2}} d x=\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)+\frac{n!\sqrt{\pi}}{2^{n}} \cdot \frac{f^{(2 n)}(\xi)}{(2 n)!}
$$

for some $\xi \in(-\infty, \infty)$.

Table 7.4: Gauss - Hermite Quadrature

N	x_{i}	ω_{i}
2	± 0.7071067811	0.8862269254
3	$\pm 0.1224744871(1)$	0.2954089751
	0	$0.1181635900(1)$
4	$\pm 0.1650680123(1)$	$0.8131283544(-1)$
	± 0.5246476232	0.8049140900
7	$\pm 0.2651961356(1)$	$0.9717812450(-3)$
$\pm 0.1673551628(1)$	$0.5451558281(-1)$	
	± 0.8162878828	0.4256072526
	0	0.8102646175
10	$\pm 0.3436159118(1)$	$0.7640432855(-5)$
$\pm 0.2532731674(1)$	$0.1343645746(-2)$	
$\pm 0.1756683649(1)$	$0.3387439445(-1)$	
$\pm 0.1036610829(1)$	0.2401386110	
± 0.3429013272	0.6108626337	

- Normal Random Variables
$-Y$ is distributed $N\left(\mu, \sigma^{2}\right)$
- Expectation is integration:

$$
E\{f(Y)\}=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} f(y) e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y
$$

- Use Gauss-Hermite quadrature
* linear $\operatorname{COV} x=(y-\mu) / \sqrt{2} \sigma$
* COV formula:

$$
\int_{-\infty}^{\infty} f(y) e^{-(y-\mu)^{2} /\left(2 \sigma^{2}\right)} d y=\int_{-\infty}^{\infty} f(\sqrt{2} \sigma x+\mu) e^{-x^{2}} \sqrt{2} \sigma d x
$$

* COV quadrature formula:

$$
E\{f(Y)\} \doteq \pi^{-\frac{1}{2}} \sum_{i=1}^{n} \omega_{i} f\left(\sqrt{2} \sigma x_{i}+\mu\right)
$$

where the ω_{i} and x_{i} are the Gauss-Hermite quadrature weights and nodes over $[-\infty, \infty]$.

- Portfolio example
- An investor holds one bond which will be worth 1 in the future and equity whose value is Z, where $\ln Z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
- Expected utility is

$$
\begin{align*}
U & =\left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} u\left(1+e^{z}\right) e^{-(z-\mu)^{2} / 2 \sigma^{2}} d z \tag{7.2.12}\\
u(c) & =\frac{c^{1+\gamma}}{1+\gamma}
\end{align*}
$$

and the certainty equivalent of $(7.2 .12)$ is $u^{-1}(U)$.

- Errors in certainty equivalents: Table 7.5

Rule $\gamma:$	-.5	-1.1	-2.0	-5.0	-10.0
GH2	$1(-4)$	$2(-4)$	$3(-4)$	$6(-3)$	$3(-2)$
GH3	$1(-6)$	$3(-6)$	$9(-7)$	$7(-5)$	$9(-5)$
GH4	$2(-8)$	$7(-8)$	$4(-7)$	$7(-6)$	$1(-4)$
GH7	$3(-10)$	$2(-10)$	$3(-11)$	$3(-9)$	$1(-9)$
GH13	$3(-10)$	$2(-10)$	$3(-11)$	$5(-14)$	$2(-13)$

- The certainty equivalent of (7.2.12) with $\mu=0.15$ and $\sigma=0.25$ is 2.34 . So, relative errors are roughly the same.

Gauss-Laguerre Quadrature

- Domain: $[0, \infty]$]
- Weight: e^{-x}
- Formula:

$$
\int_{0}^{\infty} f(x) e^{-x} d x=\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)+(n!)^{2} \frac{f^{(2 n)}(\xi)}{(2 n)!}
$$

for some $\xi \in[0, \infty)$.

- General integral
- Linear COV $x=r(y-a)$
- COV formula

$$
\int_{a}^{\infty} e^{-r y} f(y) d y \doteq \frac{e^{-r a}}{r} \sum_{i=1}^{n} \omega_{i} f\left(\frac{x_{i}}{r}+a\right)
$$

where the ω_{i} and x_{i} are the Gauss-Laguerre quadrature weights and nodes over $[0, \infty]$.

Table 7.6: Gauss - Laguerre Quadrature

N	x_{i}	ω_{i}
2	0.5857864376	0.8535533905
	$0.3414213562(1)$	0.1464466094
3	0.4157745567	0.7110930099
	$0.2294280360(1)$	0.2785177335
	$0.6289945082(1)$	$0.1038925650(-1)$
4	0.3225476896	0.6031541043
	$0.1745761101(1)$	0.3574186924
	$0.4536620296(1)$	$0.3888790851(-1)$
	$0.9395070912(1)$	$0.5392947055(-3)$
7	0.1930436765	0.4093189517
	$0.1026664895(1)$	0.4218312778
	$0.2567876744(1)$	0.1471263486
	$0.4900353084(1)$	$0.2063351446(-1)$
	$0.8182153444(1)$	$0.1074010143(-2)$
	$0.1273418029(2)$	$0.1586546434(-4)$
	$0.1939572786(2)$	$0.3170315478(-7)$

- Present Value Example
- Use Gauss-Laguerre quadrature to compute present values.
- Suppose discounted profits equal

$$
\eta\left(\frac{\eta-1}{\eta}\right)^{\eta-1} \int_{0}^{\infty} e^{-r t} m(t)^{1-\eta} d t
$$

- Errors: Table 7.7

		$r=.05$	$r=.10$	$r=.05$
		$\lambda=.05$	$\lambda=.05$	$\lambda=.20$
Truth:		49.7472	20.3923	74.4005
Errors:	GLag 4	$3(-1)$	$4(-2)$	$6(0)$
	GLag 5	$7(-3)$	$7(-4)$	$3(0)$
GLag 10	$3(-3)$	$6(-5)$	$2(-1)$	
GLag 15	$6(-5)$	$3(-7)$	$6(-2)$	
GLag 20	$3(-6)$	$8(-9)$	$1(-2)$	

- Gauss-Laguerre integration implicitly assumes that $m(t)^{1-\eta}$ is a polynomial.
* When $\lambda=0.05, m(t)$ is nearly constant
* When $\lambda=0.20, m(t)^{1-\eta}$ is less polynomial-like.

Do-It-Yourself Gaussian Formulas

- Question: What should you do if your problem does not fit one of the conventional integral problems?
- Answer: Create your own Gaussian formula!
- Theorem: Let $w(x)$ be a weight function on $[a, b]$, and suppose that all moments exist; i.e.,

$$
\int_{a}^{b} x^{i} w(x) d x<\infty, \quad i=1,2, \ldots
$$

Then for all n there exists quadrature nodes $x_{i} \in[a, b]$ and quadrature weights ω_{i} such that the approximation

$$
\int_{a}^{b} f(x) w(x) d x=\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)
$$

is exact for all degree $2 n-1$ polynomials.

- Algorithm to find formula:
- Construct the polynomial

$$
p(x)=x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2} \ldots+a_{0}
$$

and pick the coefficients a_{j} to minimize the integral

$$
\int_{a}^{b} p(x)^{2} w(x) d x
$$

- The x_{i} nodes are the zeros of $p(x)$.
- The weights ω_{i} are chosen to satisfy the linear equations

$$
\int_{a}^{b} x^{k} w(x) d x=\sum_{i=1}^{n} \omega_{i} x_{i}^{k}, k=0,1, . ., 2 n-1
$$

which is overdetermined but has a unique solution.

General Applicability of Gaussian Quadrature
Theorem 2 (Gaussian quadrature convergence) If f is Riemann Integrable on $[a, b]$, the error in the n-point Gauss-Legendre rule applied to $\int_{a}^{b} f(x) d x$ goes to 0 as $n \rightarrow \infty$.

Comparisons with Newton-Cotes formulas: Table 7.1

Rule	n	$\int_{0}^{1} x^{1 / 4} d x$	$\int_{1}^{10} x^{-2} d x$	$\int_{0}^{1} e^{x} d x$	$\int_{1}^{-1}(x+.05)^{+} d x$
Trapezoid	4	0.7212	1.7637	1.7342	0.6056
	7	0.7664	1.1922	1.7223	0.5583
	10	0.7797	1.0448	1.7200	0.5562
	13	0.7858	0.9857	1.7193	0.5542
Simpson	3	0.6496	1.3008	1.4662	0.4037
	7	0.7816	1.0017	1.7183	0.5426
	11	0.7524	0.9338	1.6232	0.4844
	15	0.7922	0.9169	1.7183	0.5528
G-Legendre	4	0.8023	0.8563	1.7183	0.5713
	7	0.8006	0.8985	1.7183	0.5457
	10	0.8003	0.9000	1.7183	0.5538
	13	0.8001	0.9000	1.7183	0.5513
Truth		.80000	.90000	1.7183	0.55125

Multidimensional Integration

- Most economic problems have several dimensions
- Multiple assets
- Multiple error terms
- Multidimensional integrals are much more difficult
- Simple methods suffer from curse of dimensionality
- There are methods which avoid curse of dimensionality

Product Rules

- Build product rules from one-dimension rules
- Let $x_{i}^{\ell}, \omega_{i}^{\ell}, \quad i=1, \cdots, m$, be one-dimensional quadrature points and weights in dimension ℓ from a Newton-Cotes rule or the Gauss-Legendre rule.
- The product rule

$$
\int_{[-1,1]^{d}} f(x) d x \doteq \sum_{i_{1}=1}^{m} \cdots \sum_{i_{d}=1}^{m} \omega_{i_{1}}^{1} \omega_{i_{2}}^{2} \cdots \omega_{i_{d}}^{d} f\left(x_{i_{1}}^{1}, x_{i_{2}}^{2}, \cdots, x_{i_{d}}^{d}\right)
$$

- Gaussian structure prevails
- Suppose $w^{\ell}(x)$ is weighting function in dimension ℓ
- Define the d-dimensional weighting function.

$$
W(x) \equiv W\left(x_{1}, \cdots, x_{d}\right)=\prod_{\ell=1}^{d} w^{\ell}\left(x_{\ell}\right)
$$

- Product Gaussian rules are based on product orthogonal polynomials.
- Curse of dimensionality:
- m^{d} functional evaluations is m^{d} for a d-dimensional problem with m points in each direction.
- Problem worse for Newton-Cotes rules which are less accurate in \mathbb{R}^{1}.

Monomial Formulas: A Nonproduct Approach

- Method
- Choose $x^{i} \in D \subset \mathbb{R}^{d}, i=1, \ldots, N$
- Choose $\omega_{i} \in \mathbb{R}, i=1, \ldots, N$
- Quadrature formula

$$
\begin{equation*}
\int_{D} f(x) d x \doteq \sum_{i=1}^{N} \omega_{i} f\left(x^{i}\right) \tag{7.5.3}
\end{equation*}
$$

- A monomial formula is complete for degree ℓ if

$$
\begin{equation*}
\sum_{i=1}^{N} \omega_{i} p\left(x^{i}\right)=\int_{D} p(x) d x \tag{7.5.3}
\end{equation*}
$$

for all polynomials $p(x)$ of total degree ℓ; recall that \mathcal{P}_{ℓ} was defined in chapter 6 to be the set of such polynomials.

- For the case $\ell=2$, this implies the equations

$$
\begin{align*}
\sum_{i=1}^{N} \omega_{i} & =\int_{D} 1 \cdot d x \tag{7.5.4}\\
\sum_{i=1}^{N} \omega_{i} x_{j}^{i} & =\int_{D} x_{j} d x, j=1, \cdots, d \\
\sum_{i=1}^{N} \omega_{i} x_{j}^{x} x_{k}^{i} & =\int_{D} x_{j} x_{k} d x, j, k=1, \cdots, d
\end{align*}
$$

$-1+d+\frac{1}{2} d(d+1)$ equations

- N weights ω_{i} and the N nodes x^{i} each with d components, yielding a total of $(d+1) N$ unknowns.

Quadrature Node Sets

- Natural types of nodes:
- The center
- The circles: centers of faces
- The stars: centers of edges
- The squares: vertices
- Simple examples
- Let $e^{j} \equiv(0, \ldots, 1, \ldots, 0)$ where the ' 1 ' appears in column j.
$-2 d$ points and exactly integrates all elements of \mathcal{P}_{3} over $[-1,1]^{d}$

$$
\begin{aligned}
& \int_{[-1,1]^{d}} f \doteq \omega \sum_{i=1}^{d}\left(f\left(u e^{i}\right)+f\left(-u e^{i}\right)\right) \\
& u=\left(\frac{d}{3}\right)^{1 / 2}, \omega=\frac{2^{d-1}}{d}
\end{aligned}
$$

- For \mathcal{P}_{5} the following scheme works:

$$
\begin{aligned}
\int_{[-1,1]^{d}} f \doteq & \omega_{1} f(0)+\omega_{2} \sum_{i=1}^{d}\left(f\left(u e^{i}\right)+f\left(-u e^{i}\right)\right) \\
& +\omega_{3} \sum_{\substack{1 \leq i<d d \\
i<j \leq d}}\left(f\left(u\left(e^{i} \pm e^{j}\right)\right)+f\left(-u\left(e^{i} \pm e^{j}\right)\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \omega_{1}=2^{d}\left(25 d^{2}-115 d+162\right), \quad \omega_{2}=2^{d}(70-25 d) \\
& \omega_{3}=\frac{25}{324} 2^{d}, \quad u=\left(\frac{3}{5}\right)^{1 / 2}
\end{aligned}
$$

