
Memory Management

Memory Partitioning

 The primary purpose of memory manegement is to
bring processes into main memory so processor can
execute them

 There are a number of solutions to handle the coming in
and moving out of processes e.g. Virtual memory,
paging, segmentation.

 A very simple technique for memory management can
be partitioning.

A. Fixed Partitioning

 In most schemes for memory management, we can
assume that OS occupies some fixed portion of memory
and the rest is available for processes

 The simplest scheme for using this available memory is
to partition it into regions with fixed boundaries

 The partitions can be either equal or unequal-sized

A. Fixed Partitioning (cont..)

Equal-size partitions

Any process whose size is less than or equal
to the partition size can be loaded into an
available partition

If all partitions are full, the operating system
can swap a process out of a partition

A program may not fit in a partition. The
programmer must design the program with
overlays

A. Fixed Partitioning (cont..)

Main memory use is inefficient. Any
program, no matter how small, occupies
an entire partition. This is called internal
fragmentation.

Placement Algorithm with Partitions

Equal-size partitions

 Because all partitions are of equal size, it
does not matter which partition is used

Unequal-size partitions

 Can assign each process to the smallest
partition within which it will fit

 Processes are assigned in such a way as to
minimize wasted memory within a partition

2M

4M

6M

8M

8M

12M

16M

Advantage:

• Less Internal Fragmentation

Disadvantage:
• Some 7M processes may be waiting in 8M
Queue while 12M remains idle

4M

6M

8M

8M

12M

16M

2M

Multiple Queues

A. Fixed Partitioning (cont..)

 Whether using equal or unequal fixed
partitioning, these schemes have a lot of
disadvantages:
 The number of partitions specified at system

generation time limits the number of active processes
in the system

 Because partition sizes are fixed without knowing
the size of processes that will come, small processes

will still waste a lot of memory space.

B. Dynamic Partitioning

Partitions are of variable length and
number

Process is allocated exactly as much
memory as required

Eventually get holes in the memory. This
is called external fragmentation

Must use compaction to shift processes so
they are contiguous and all free memory
is in one block

• Eventually we get “holes “in the memory.
This is called external fragmentation

• Must use compaction to shift processes
so they are contiguous and all free
memory is in one block

Dynamic Partitioning

Placement Algorithm

Operating system must decide which free
block to allocate to a process

Best-fit algorithm
Chooses the block that is closest in size to the

request

Best performer overall

Since smallest block is found for process, the
smallest amount of fragmentation is left

Memory compaction must be done more often

Dynamic Partitioning

Placement Algorithm

First-fit algorithm
Scans memory from the beginning and chooses the first

available block that is large enough

 Fastest

 May have many process loaded in the front end of memory that
must be searched over when trying to find a free block

Problems
 It requires an expensive search of the entire free list to find

the best hole.

More importantly, it leads to the creation of lots of little holes
that are not big enough to satisfy any requests. This situation
is called fragmentation, and is a problem for all memory-
management strategies, although it is particularly bad for
best-fit.

Dynamic Partitioning

Placement Algorithm

Next-fit
Scans memory from the location of the last

placement

More often allocate a block of memory at the end of
memory where the largest block is found

The largest block of memory is broken up into
smaller blocks

Compaction is required to obtain a large block at the
end of memory

Numerical

 Consider a swapping system in
which memory consists of the
following holes. Which holes will be
taken for the following successive
requests:

 12k

 10k

 9k

For Best-Fit, Worst-Fit and First-Fit.

10k

4k

20k

18k

7k

12k

9k

15k

