
Monitor

•A monitor is a software construct that serves
two purposes:

–enforces mutual exclusion of concurrent access
shared data objects

•Processes have to acquire a lock to access such a shared
resource

–Support conditional synchronisation between
processes accessing shared data

•Multiple processes may use monitorspecific
wait()/signal() mechanisms to wait for particular

conditions to hold

to

Monitor

•Monitors are typically supported by a

programming language

–Languagespecific software construct

–Prominent implementation by Java classes

•Programs using monitors are supposed to

allow easier implementation of mutual

exclusion and synchronisation

Monitor Characteristics

•A monitor is a software construct consisting of
–One or more procedures

–Some local data that can only be accessed via these procedures

•Objectoriented concepts

–Local variables accessible only by the monitor’s procedures
(methods)

•Processes “enter” monitor when they invoke one of the
monitor’s procedures

•Mutual exclusion:

–Only one process at a time may call one of these procedures
and “enter” the monitor

–All other processes have to wait

Monitor:

•A monitor has an

entry queue

•Processes calling

monitor

Entry

procedures may be

added to waiting

queue and

suspended

Mutual Exclusion

•When a process calls one of
these procedures, it “enters”
the monitor
–The process has to acquire a

monitor lock first

•The monitor guarantees that

–Only one process at a time

may call one of these

procedures and “enter” the

monitor

–All other processes have to
wait

monitor SharedBuffer

buffer b[N] ;

int in, out ;

procedure append()

. . .

end;

procedure take()

. . .

end;

end monitor;

Process Synchronisation

•A monitor also supports process

synchronisation with condition variables

–Only accessible within the monitor with the

functions wait(condition) and

signal(condition)

•A monitor may maintain a set of these

condition variables

•For each condition variable, the monitor

maintains a waiting queue

Condition Variables

Process Synchronisation

with Condition

•Signalling mechanism:

–Process may call

wait(condition variable)

•made to wait for a

condition in a condition

queue

–Process may call

signal(condition variable)

•This resumes one of the

processes waiting for this

conditional signal

Variables

Process Synchronisation

•For each condition variable, the monitor
maintains a waiting queue

•wait(condition variable) :

–a process calling this functions is suspended

–releases monitor lock

–waits until a signal based on condition c is
received, re acquires lock

•signal(condition variable) :

–resume one of the processes waiting

Producer – Consumer Ring

Semaphores

Buffer

Producer Consumer

in = (in+1) mod N;

y = b[out];

return y;

•Bounded buffer:
–Buffer limited to N places, is managed as a circular buffer

take()

{

out = (out+1) mod N;

}

append(x)

{

b[in] = x;

}

while(TRUE)

{

wait(full);

wait(mutex);

y = take();

signal(mutex);

signal(empty);

consume(y);

}

while(TRUE)

{

x = produce();

wait(empty);

wait(mutex);

append(x);

signal(mutex);

signal(full);

}

init(mutex,1); init(full,0); init(empty, N);

in = 0; out = 0; buffer[N] ;

Producer – Consumer

Monitor
RingBuffer

Ringbuffer

out = 0;

Producer

{

append(x);

Consumer

while(TRUE)

{

y = take();
consume(y);

}

while(TRUE)

x = produce();

}

void append(char item) {
in = 0;

count = 0; if (count == N) wait(notfull);
buffer[N]; b[in] = item;

notfull; in = (in+1) mod N;

notempty; count++;

signal(notempty);
}

char take() {

if (count == 0) wait(notempty);

item = b[out];

out = (out+1) mod N;

count--;

signal(notfull);

return item;

}

Producer Consumer
monitor boundedBuffer

{

char b[N]; int count, in, out ;

condition notfull, notempty;

void append(char item) {

if (count == N) wait(notfull)

b[in] = item;

in = (in+1) mod N;

count++;

signal(notempty);

;

Mutual

Exclusive

Execution

}

char take() {

if (count == 0) wait(notempty)

item = b[out];

out = (out+1) mod N;

count--;

signal(notfull);

;

}

}

Release Lock

Acquire Lock

Release Lock

Acquire Lock

Behaviour of signal()
Resuming Processes waiting in Monitor

•Monitor ensures that only one process is active

when within the monitor
–All other processes will wait

•How will the monitor behave if a process calls

signal(condition variable)?

–Invoking signal(condition variable) will wake up and

resume exactly one process waiting in the queue of

the condition variable

•The issuing of “signal()” and the rescheduling of a

process waiting for this signal has to be atomic

Behaviour of signal()
Resuming Processes waiting in Monitor

•E.g. signal(notempty) indicates
“buffer is not empty any more”
–A consumer waiting in the

“notempty” queue should wake
up and consume it

•Producer releases the monitor
lock, a new consumer could
enter before the waiting
consumer
–The new consumer will then

acquire the monitor lock before
the waiting consumer , pass the
wait(notempty) and consume the
buffer content

•Waiting consumer is rescheduled,
comes out of wait(notempty) , but
will find an empty buffer

char take() {

if (count == 0) wait(notempty);

item = b[out];

out = (out+1) mod N;

count--;

signal(notfull);

return item;

}

void append(char item) {

if (count == N) wait(notfull);

b[in] = item;

in = (in+1) mod N;

count++;

signal(notempty);

}

Behaviour of signal()
Resuming Processes waiting in Monitor

Buffer

Condition

Waiting Queue

Monitor

Waiting Queue

Monitor

•Nonatomicity of signal() and process resumption

–Producer signals consumer 1

–Before consumer 1 is scheduled, consumer 2 enters monitor and
consumes buffer content

–When consumer 1 is finally scheduled, it will leave wait() and find that
buffer is already empty

notempty

Consumer_1

Producer
Consumer_2

Behaviour of signal()

Hoare’s Definition of Monitors

•Monitor as originally defined by Hoare

•If a process issues a signal(condition variable)

–it is immediately suspended to free monitor

•If there is another process waiting in the

queue of the condition variable

–it has to be rescheduled immediately

Behaviour of signal()

Hoare’s Definition of Monitors

•Drawbacks

–The process performing the signal() may not be

finished, it must be rescheduled and gain access

monitor again
•Multiple process switches become necessary

–When a signal() is issued, a process waiting in the

to

corresponding condition queue must be activated
immediately
•No other arbitrary process is allowed to enter the monitor

•Why: because such a process could change the condition
that led to the activation of the waiting process

Monitors with Notify and Broadcast

•The signal(c) is replaced by a notify(c)
–When a signalling process issues the notify(c) for

condition queue c, it continues to execute
•It notifies the queue because a particular condition currently

holds, e.g. “buffer is not empty any more”

–The next process to be executed from the condition
queue c will be rescheduled when the monitor
becomes available

–Rescheduled process has to recheck condition
•E.g. “is buffer still not empty?”

•This is necessary, because another process could be
scheduled before and interfere

Monitors with notify() and Broadcast

•Note the
“while” loop:

–Rechecking the

condition after

wakeup

•Allows for non
atomicity
between
notify() and
wakeup()

monitor boundedBuffer

{

char b[N]; int count, in, out ;

condition notfull, notempty;

void append(char item) {

while (count == N) wait(notfull);

b[in] = item;

in = (in+1) % N;

count++;

notify(notempty);

}

char take() {

while (count == 0) wait(notempty);

item = b[out];

out = (out+1) % N;

count--;

notify(notfull);
}

}

Monitor vs Semaphores

•Monitor

–The monitor construct itself enforces mutual exclusion

–Programmer not dealing with mutual exclusion issues

–However, programmer has to place condition checks in

program code to enforce condition synchronisation
Manage the bounded buffer read and writes)

•Semaphore

–Programmer has to do both mutual exclusion and
condition synchronisation programming

•Benefit of monitor

(e.g.

–All synchronisation functionality confined to the monitor

21

Message Passing

• Enforce mutual exclusion

• Exchange information

send (destination, message)

receive (source, message)

22

Synchronization

• Sender and receiver may or may not be blocking
(waiting for message)

• Blocking send, blocking receive

– Both sender and receiver are blocked until message is
delivered

– Called a rendezvous

23

Synchronization

• Nonblocking send, blocking receive

– Sender continues on

– Receiver is blocked until the requested message arrives

• Nonblocking send, nonblocking receive

– Neither party is required to wait

24

Addressing

• Direct addressing

– Send primitive includes a specific identifier of the
destination process

– Receive primitive could know ahead of time which process
a message is expected

– Receive primitive could use source parameter to return a
value when the receive operation has been performed

25

Addressing

• Indirect addressing

– Messages are sent to a shared data structure consisting of
queues

– Queues are called mailboxes

– One process sends a message to the mailbox and the other
process picks up the message from the mailbox

26

27

Message Format

28

29

