
Producer – Consumer Problem
Many Producers – One Consumer

• Producer and consumer processes exchange data items

via a buffer

• One or moreproducers put data into the buffer
• One consumer takes informationout of the buffer
• Objective: prevent any overlap of buffer operations !

Producer

Producer

Producer

Consumer

out in

Producer Consumer

• Managing a shared buffer with a semaphore

• Many Producers:

–Writes data into buffer
–Can only write if there is space

• One Consumer:

–Read data from buffer
–Can only read if there is something in buffer

Producer – Consumer

Infinite Buffer

• Assumption: infinite Buffer
• Producer can append elements to buffer any

time (because no buffer restrictions)

• Consumer has to wait for data

• Two buffer pointers

–“in” : points to next free place in buffer
–“out”: points to next data element in buffer that

can be read

Infinite Buffer

fullempty full full fullempty empty empty empty empty

Consumer
v = take()

out in

Producer
append(v)

out < in

Producer – Consumer

Implementation
• Combine mutual exclusion and condition

synchronisation
• Uses two semaphores

– Mutex semaphore:
• mutual exclusion between producer and consumer

– Counting semaphore:
• Number of slots available in buffer

• Mutual exclusion
– Only one process may access buffer at a time

• Condition synchronisation
– Consumer may only read, if there is at least one data item

stored in the buffer

Producer – Consumer

Semaphores

• Mutual exclusion

–Only one process may access buffer at any time

–Saveguarded with semaphore:

• We use a semaphore “mutex” to control mutual exclusion

• Condition for consumer:

–Consumer can only read/remove elements from

buffer, if there is at least one unread data element

stored in buffer
–Semaphore

• We use a counting semaphore “N” that counts the number

of data elements stored in the buffer

Producer – Consumer

Unlimited Buffer

• Two semaphores
– Saveguard update on buffer (mutex)
– Count elements currently stored in buffer (N)

while(TRUE)

{

x = produce();

append(x);

}

signal(mutex);

init(mutex,1); init(N,0); in = 0; out = 0; b[] = empty_list;

wait(mutex);

signal(N);

while(TRUE)

{

y = take();

consume(y);

}

signal(mutex);

wait(N);

wait(mutex);

append(x)

{

b[in] = x;

in ++;

}

take()

{

y = b[out];

out ++;

return y;

}

Infinite Buffer

• If we assume an infinite buffer, a “window of full

places” appears to move across the buffer
– Producer always takes a new empty place
– Places that become free again, are never reused

• Infinite buffer can be implemented with a bounded

buffer or “ring buffer”

fullempty full full fullempty empty empty empty empty

Consumer
v = take()

out in

Producer
append(v)

Bounded Buffer

• Implemented as a Ring Buffer

– If “in” pointer reaches last location

in buffer, it is reset to first location

– If “out” pointer reaches last
location in buffer, it is reset to first

location
– out and in move clockwise

8 Buffers

in

Producer

out
Consumer

full full full fullempty empty empty empty

out in out follows in
ProducerConsumer

Bounded Buffer

• Implemented as a Ring Buffer

– If “in” pointer reaches last location

in buffer, it is reset to first location

– If “out” pointer reaches last
location in buffer, it is reset to first

location
– out and in move clockwise

full empty full full fullempty empty empty

outin
ConsumerProducer

8 Buffers

in

Producer

out
Consumer

out follows in

Producer – Consumer

Ringbuffer

• A ring buffer is a finite array of elements

• Consequence:
– Producers can only write, if there is at least one empty slot

• Uses three semaphores

– Mutex semaphore:
• mutual exclusion between producer and consumer

– Counting semaphore – control consumer:

• Number of data items in buffer: consumer can only read, if there is

at least one new data item in buffer

– Counting semaphore – control producer:

• Number of data items in buffer: producer can only write, if there is

at least one empty slot

Producer – Consumer

Ring Buffer

• Bounded buffer:
– Bufferlimited to N places, is managed as a circular buffer

while(TRUE)

{

x = produce();

append(x);

}

signal(mutex);

init(mutex,1); init(full,0); init(empty, N);

in = 0; out = 0; buffer[N] ;

wait(empty);

signal(full);

while(TRUE)

{

y = take();

consume(y);

}

signal(mutex);

wait(full);

wait(mutex);

append(x)

{

b[in] = x;

in = (in+1) mod N;

}

take()

{

y = b[out];

out = (out+1) mod N;

return y;

}

wait(mutex);

signal(empty);

Producer Consumer

Sequence of wait() and signal()

• The sequence of signal() call can be arbitrary

• The sequence of wait() calls is essential

• Calling first “wait(mutex)” allows consumer to
enter critical section without testing whether

bufferis empty
• Leads to Deadlock: consumer never leaves critical

section, because it is blocked by “wait(full)”

Producer:

v = produce();

wait(empty);

wait(mutex);

append(v);

Consumer:

wait(mutex);

wait(full);

v = take() ;

WRONG

Deadlock Situation

• The sequence of signal() call can be arbitrary

• The sequence of wait() calls is essential

while(TRUE)

{

x = new_data();

append(x);

}

signal(mutex);

wait(empty);

signal(full);

while(TRUE)

{

y = take();

consume(y);

}

signal(mutex);

wait(mutex);

wait(full);

wait(mutex);

signal(empty);

WRONG !!

ReaderWriterProblem

Shared Read Access
• Onewriter (producer), many readers

(consumers)

• Write access must be exclusive

–When writer writes, no reader is allowed to access

shared resource

• Read access isshared

–All readers are allowed to read at the same time
–Read access is noncritical, as long as there is no

writer involved

ReaderWriterProblem

Shared Read Access
• Processes that share a resource, e.g. a database, may

perform read and write operations

• Write operations are critical
– As it is a change to the shared data object, only one writer

at a time may access the data object

– All other processes, readers and writers, must be excluded

from access

• Read operations are not critical
– Many readers at the same time may read a shared data

object
• Writers must have exclusive access to shared data

• Readers can access shared data simultaneously

ReaderWriterProblem

Readers have Priority
• Reader processes share the following controlling data

structures
– Mutex Semaphores: mutex,W

– rCount: counts readers
• Readers share mutex semaphore W with writers

– Acts as amutual exclusion semaphore for readers and

writers
– Manipulated by the first or last reader when they enter /

exit critical section
• Blocking by first Reader, unblocking by last Reader, all other

readers are not manipulating semaphore W

• Readers share semaphore mutex to allow exclusive

manipulation of rCount

ReaderWriterProblem
Shared Read Access, ReaderPriority

• Semaphore W checks whether the

writer is in critical section

• Semaphore ‘mutex’ protects
increment / decrement of rCount

• Readershave priority, writer has to

wait until there is no reader

while(TRUE)

{

rCount ++;

if(rCount == 1)

read();

rCount --;

if(rCount == 0)

}

wait(W);

init(mutex,1); init(W,1);

wait(mutex);

while(TRUE)

{

write();

}

signal(W);

wait(W);

signal(mutex);

signal(W);

Reader Writer

Global Variables
rCount = 0; // counts the readers

wait(mutex);

signal(mutex);

Dining Philosophers Problem

• Five philosophers sit arounda table for dinner
• There are only 5 forks on the table, two neighbouring

philosophers share one fork

• Each philosopher needs two forks to eat

– How many of them can eat at the same time?

Philosopher:

while(TRUE) {

Think();

Grab first fork;

Grab second fork;
Eat();

Put down first fork;

Put down second fork;

}

Dining Philosophers Problem

• First attempt
–One process per

philosopher
–One semaphore per

fork
–Each semaphore

initialised to 1

• Leads to deadlock,if

all philosophers grab

their left fork
–Will wait forever for a

right fork to become

available!

while(TRUE)

{

think();

eat();

}

wait(fork[i]);

wait(fork[(i+1) mod 5]);

signal(fork[(i+1) mod 5]);

signal(fork[i]);

Process i

Semaphore fork[5] = {1,1,1,1,1};

Wait for left fork

Wait for right
fork

Dining Philosophers Problem

• Problemoccurs if all philosophers want to eat

at the same time

• We can introducetimeout:

–All philosophers pick up their left fork

simultaneously

–They see that right fork is not available and put

left fork down again

–They wait for a set time,pick up left fork again

simultaneously

–Etc.

• Situation of starvation: they will never eat

Dining Philosophers Problem

• Practical Solution

–Each philosopher waits arandom time, before

trying again to acquire forks

–E.g.: Ethernet protocol: if two computers want to

send a packet at the same time – collision, both

computers wait a random time to try again,

hopefully no collision next time

–Problem: although random time delay, we cannot

guarantee that there is no collision next time

Dining Philosophers Problem, Solution

• Allow only 4 philosophers to pick up left fork

at a time (only 4 are “seated” at the table)

• One philosopher has to wait

• One fork left free
• Of the 4 seated philosophers, at least one will

have access to two forks
–Philosophers with two forks can eat

–All others have to wait

Dining Philosophers Problem

• 5 philosophers try to

eat, allow only 4
philosophers at the

table
• at least one philosopher

hasaccess to two forks

at a time,
• extra semaphore

“seated” set to 4

• No deadlock, no

starvation

Philosopher i:

void philosopher(int i) {

while(TRUE) {

think() ;
wait(seated);

wait(fork[i]);

wait(fork[i+1] mod 5);

eat();

signal(fork[i+1] mod 5);

signal(fork[i]);

signal(seated);
}

}

Initialisation:

init(seated,4);

init(fork[1..5],1);

Dining Philosophers Problem

• Other possible remedies

–Goal: avoid deadlock / starvation, at least one

philosopher should be able to eat

–Allow a philosopherto pick up the two forks only if

both are available at the same time
• We need extra critical section for this

–Use an asymmetric solution

• Odd philosophers pickfirst theleft andthen the right fork
• Even philosophers pick first the right and then the left fork

