
Synchronisation of Processes

•Mutual Exclusion

–Avoid simultaneous access to resources

•Ensure that only one process at a time may execute a
“critical” course of actions (read and write of shared
resource)

•Condition synchronisation

–Enforce a strict sequence of actions across
processes

•Processes wait for particular conditions to hold, before

they proceed with execution



Example

X = 10

•We expect

–When process1 finishes, shared variable x is

reduced by 5

–When process2 finishes, shared variable x is
increased by 2

process2() { 

read ( x ) 

local_z = x + 2 

write (local_z )

}

process1(){ 

read ( x ) 

local_y = x - 5 

write (local_y )

}



Example

process1 process2 process2 in

Ready queueRead x = 10

Read x = 10

process1 in

Ready queue

X = 10

Write x = 12

Write x = 5

•Context

•Process

•Process

switches may occur at any time

2 has its result overwritten by process

1 operates with outdated  information

1

write (local_y )

local_y = x - 5

write (local_z )

local_z = x + 2

read ( x )

read ( x )



Race Condition

•Occurs when multiple processes / threads
read and write shared data items

•The processes “race” to perform their read
write actions

•The final result depends on the order of
execution
–The “loser” of the race is the process that 

performs the last update and determines the 
value of a shared data item

/

final



Race Condition

•Why do race conditions occur

–“whenever the state of a shared resource depends on 
the precise execution order of the processes”

–Scheduling: Context switches at arbitrary times during

execution

–Outdated Information: Processes / Threads operate

with “stale” copies of memory values in registers /

local variables

•Other processes may already have changed the original 
value in the shared memory location

•How can we avoid race conditions?



Critical Section

•Critical Section

–Part of the

resource

program code that accesses a shared

X = 10

process2() {

...

...

...

read ( x ) 

local_z = x + 2 

write (local_z )

...

...

...

}

process1(){

...

...

read ( x ) 

local_y = x - 5 

write (local_y )

...

...

...

...

}



Critical Section

•Critical Section

–Part of the program code that accesses shared 
resource

•A program will consist of critical and non
critical sections

•In order to avoid race conditions, we have 

to control the concurrent execution of 

critical sections

–Strict serialisation – mutual exclusion



Critical Section

•Entry protocol:
–Process requests entry to critical section

–Process has to communicate that it entered
section

•Exit protocol:

critical

–process communicates to other processes that it 
leaves critical section

process ()

{

entry_protocol()

critical_section()

exit_protocol()

}



The Critical Section Problem

•Avoid race conditions by enforcing mutual exclusion
between  processes

•Control entry to and exit from critical section
–We need a Critical Section Protocol:

•Entry section: Each process must request permission for entering a 
critical section

–Requires Interprocess communication

–has to wait / is suspended  until entry is granted

•Exit section:
–Requires interprocess communication

–process communicates that it leaves critical section

•Avoid deadlock and starvation:

–Enforcing mutual exclusion may result in deadlocks and
starvation – has to be solved



Achieve Mutual Exclusion

•Arrange the execution of processes such 

that

Mutual Exclusion: only one of them is executing its
critical section.

Handle scheduler preemption: This one process
can finish the execution of its critical section, even
if it is preempted or interrupted

 Any other process sharing the resource has to wait
or is blocked, in the meantime, from accessing it 



Mutual Exclusion

•Mutual Exclusion during critical sections



Deadlock and Starvation

•Enforcing mutual exclusion creates two new

problems

–Deadlocks

•Processes

–Starvation

•A process

wait forever for each other to free resources

waits forever to be allowed to enter its

critical section

•Implementing mutual exclusion has to 

account for these problems



Solutions

•Software

–Use shared lock variables to control 
section

–Busy waiting

•Hardware

–Disable interrupts

access to critical

–Processor provides special instructions

•Higher operating system constructs

–Semaphores, Monitor, message passing

–Involvement of scheduler, processes are suspended



Software Solutions for Mutual

Exclusion

Solving the Critical Section Problem



Requirements
for Solutions to the Critical Section Problem, Mutual Exclusion

•Serialisation of access:
–Only one process at a time is allowed in the critical section for a 

resource

•Progress (Liveness, no deadlock):

–A process that halts in its noncritical section must do so without 
interfering with other processes currently waiting to enter their critical 

section
–Only processes currently waiting to enter their critical section are

involved in the selection of the one process that may enter

–A process remains inside its critical section for a finite time only

•Bounded waiting (no starvation):

–A process waiting to enter a critical section, must be guaranteed entry
(with some defined limited waiting time)

•Scheduling algorithm has to guarantee that process is eventually 
scheduled and can progress



Solution to Critical Section Problem

•Critical sections must be process ()

protected  by some form
“lock”

•Lock
–A shared data item

of a {

critical_section() ;

–Processes have to “acquire”

such a lock before entering

critical section

remainder_section() ;

}a

–Processes have to “release” a

lock when exiting critical 

section

release lock

acquire lock



Lock Variables

•Use of shared memory for interprocess communication

•Shared variable “lock”, also called a “mutex”

•Used to indicate whether one of the competing processes 
has entered  critical section
–If lock == 0 (FALSE), then lock is not set

–If lock == 1 (TRUE), then lock is set

•All processes that compete for a shared resource, also share
this lock variable
–A process checks the lock

•If lock is not set, process sets lock and enters critical section

•If lock is set, process waits

•Problem
–As lock variable is itself a shared resource, race conditions can 

occur



Shared Lock / Mutex
•A shared lock (shared variable) is used

•Two states: TRUE ... Critical section is locked, FALSE ... Critical section is 
unlocked

Initialisation:

Lock

Shared

Resoure

process1()

{

while(lock == TRUE){

// wait

}

lock = TRUE;

critical_actions();

lock = FALSE;

}

process1()

{

while(lock == TRUE){

// wait

}

lock = TRUE;

critical_actions();

lock = FALSE;

}

lock = FALSE;



Shared Locks, Problem
•Context switch, no mutual exclusion

Initialisation:
process1()

{

{

();

Both processes  are now in 
their critical sections !

TRUE){

while(lock == TRUE){

// wait

}

Lock == FALSE

process1()

while(lock ==

// wait

}

lock = TRUE;

critical_actions();

lock = TRUE;

critical_actions

lock = FALSE;



Implementing Mutual Exclusion

•Busy waiting
–Also called “polling” or “spinning”

•A process continuously evaluates whether a lock has become 
available

•Lock is represented by a data item held in a shared memory (IPC
via shared memory)

•Process consumes CPU cycles without any progress

–May impact on performance on singleprocessor systems
•A process busywaiting may prevent another process holding the

lock from executing and completing its critical section and from
releasing the lock

–Can be implemented at application level, established 

algorithms exist that guarantee mutual exclusion, 

independence from operating system

–Spin locks are used at kernel level (special HW instructions)



Software Solutions



Strict Alternation

•Busywaiting Strategy
–Process waits for its turn

•Strict alternation between two processes
–Use a “token” as shared variable:

•value is process ID

•indicates which process is the next to enter critical section, set by 
previous process

•For two processes P0 and P1 (can be extended to n
processes)

•Entry to critical section
–Process P  busywaits until token == i (its own process ID)

i

•Exit from critical Section
–Process P  sets token to next process IDi



Strict Alternation
Global VariableProcess 0 Process 1

•Mutual exclusion guaranteed

•Lifeness / Progression problem:
–Both process depend on a change of the “turn” variable

–If one of the processes is held up in its noncritical section, 
it cannot do that and will block the other process

while(TRUE){

while(turn != 1){

// wait

}

Critical_Section 

turn = 0;

Non_Critical_Section

...

}

int turn ;while(TRUE){

while(turn != 0){

// wait

}

Critical_Section 

turn = 1;

Non_Critical_Section

...

}



Problem of Strict Alternation

•Violates the progress requirement:

–Shared variable “turn” is only altered in critical
section

–One process may be held up in its noncritical
section

–This eventually blocks the other process, as the

shared variable “turn” is not altered any more

•Alternative approach:

–Processes announce that they want to enter 
critical section with flags, one flag per process



Use an Array of Flags

•Busywaiting Strategy

–Process waits for entering critical section

•Processes announce that they want to 

enter critical section

–Use of

•Flag

•Flag

flags, one flag per process

== TRUE: process i wants to enter critical section

== FALSE: process i is outside critical section

i

i



Use an Arrayof Flags
Global Variables

Process 0 Process 1

•Mutual exclusion guaranteed

•Problem: Deadlock may occur due to context
switch

while(TRUE){

flag[1] = TRUE;

while(flag[0]==TRUE){

// wait

}

Critical_Section 

flag[1] = FALSE;

Non_Critical_Section

...

}

while(TRUE){

flag[0] = TRUE;

while(flag[1]==TRUE){

// wait

}

Critical_Section 

flag[0] = FALSE;

Non_Critical_Section

...

}

flag[0]=FALSE

flag[1]=FALSE

boolean flag[2];



Critical_Section

Non_Critical_Section

Use an Array of

Deadlock

Flags

Process 0 Process 1

while(TRUE){

]==TRUE){

flag[0] = TRUE;

while(TRUE){

flag[1] = TRUE;

while(flag[1]==TRUE){

// wait

while(flag[0

// wait



Dekker’s Algorithm

•Busywaiting Strategy
–Process waits for entering critical section

•Use of shared memory variables for communication 
between  processes

•Works for two processes

•Combines strict alternation with using flags for 
announcing entry into CS

•Avoids progression, deadlock and starvation issues
–Use of flags to indicate intention to enter CS

–Use of “turn” variable for specifying which process is
supposed to enter the CS



Dekker’s Algorithm
Global Variables

Process 0 Process 1

P0:

flag[0] = TRUE;

while(flag[1] == TRUE){

if(turn == 1){ 

flag[0]=FALSE 

while(turn == 1){

// wait

}

flag[0]=TRUE;

}

}

Critical_Section 

turn = 1;

flag[0] = FALSE;

Non_Critical_Section

...

P1:

flag[1] = TRUE;

while(flag[0] == TRUE){

if(turn == 0){ 

flag[1]=FALSE 

while(turn == 0){

// wait

}

flag[1]=TRUE;

}

}

Critical_Section 

turn = 0;

flag[1] = FALSE;

Non_Critical_Section

...

turn = 0; // or 1flag[0]=FALSE

flag[1]=FALSE

boolean flag[2];

int turn;



Dekker’s Algorithm

•Enter critical section

–If two processes attempt to enter critical 

section, one process will be allowed to enter, 

based on “turn” variable

–If one process is already in critical section, the

other will busywait, based on flags

•Waiting process is also temporarily setting its own flag 

to FALSE to let other process proceed



Dekker’s Algorithm

•Scenario1:
–Process 0 wants to enter critical section, process 1 has not entered,  flag[1] == FALSE

•Sets flag[0]=TRUE

•Checks process 1 flag: flag[1]==TRUE or FALSE?
–Flag[1] == FALSE, process 1 has not entered : process 0 enters critical section

•Scenario 2:
–Process 0 wants to enter critical section, context switch to process 1

•Sets flag[0]=TRUE

•Context switch: process 1 has entered, flag[1] == TRUE

•Process 1 checks process 0 flag: flag[0]==TRUE
–Turn == 0: it is process 0’s turn, process 1 waits, process 0 enters critical section

–Turn == 1: it is process 1’s turn, process 0 busywaits, also resets its flag[0] so that process 1 can enter critical 
section

•Scenario 3:
–Process 0 wants to enter critical section, process 1 has entered,  flag[1] == TRUE

•Context switch to process 0

•Sets flag[0]=TRUE

•Checks process 1 flag: flag[1]==TRUE or FALSE?
–Flag[1] == TRUE: process 1 also tries to enter critical section

–Turn == 0: it is process 0’s turn, process 0 will loop until flag[1] == FALSE, process 1 enters critical section

–Turn == 1: it is process 1’s turn, process 0 busywaits, also resets its flag[0] so that process 1 can enter critical 
section



Peterson’s Algorithm

•Is equivalent to Dekker’s algorithm
–Combines strict alteration with flags for indicating 

interest in entering critical section

–Simpler than Dekker’s algorithm



Peterson’s Algorithm
process ( i )

{

•Peterson’s Solution
–NonAtomic Locking: works even if 

there is a race condition

–Is limited to two processes 

coordinating their access to critical 

sections
–Uses two shared data items for 

coordinating access to critical section 
(changes seen by both processes)

critical_section() ;

remainder_section() ;

the two
}

Indicates, which of

processes is allowed to 
enter

Indicates, which of the two

processes is ready to enter 

(both can be ready at the same 

time)

boolean flag[2] ;

int turn ;

flag[i] = FALSE ;

j = 1 –i ; 

flag[i] = TRUE ; 

turn = j ;

while (flag[j] &&

turn == j ) ;



Peterson’s Algorithm

Global Variables

Process 0 Process 1

while(TRUE) { 

flag[0] = TRUE; 

turn = 1

while(flag[1] == TRUE &&

turn == 1){

// wait

}

Critical_Section 

flag[0] = FALSE;

Non_Critical_Section

...

}

while(TRUE) { 

flag[1] = TRUE; 

turn = 0

while(flag[0] == TRUE &&

turn == 0){

// wait

}

Critical_Section 

flag[1] = FALSE;

Non_Critical_Section

...

}

turn = 0; // or 1flag[0]=FALSE

flag[1]=FALSE

boolean flag[2];

int turn;



Peterson’s Algorithm

•Initially:
–No process in critical region

•turn = 0, flag[0] = FALSE, flag[1] = FALSE

•Process 0 tries to enter critical section
–Sets turn = 1 (other process), sets interested[0]  =TRUE

–As flag[1] == FALSE, process enters critical section

•Process 1 tries to enter critical section
–Sets turn = 0 (other process), flag[1] = TRUE,

–As flag[0]  == TRUE && turn == 0, process waits, 
finishes

•Process 0 exit
–Sets flag[0] = FALSE

•Process 1 enters critical section ...

until process 0



Peterson’s Algorithm

Does it work if both processes enter almost simultaneously?●

Both will

Both try

This is a

set flag[processID] = TRUE

to write the variable turn

race condition: if Process 0 is the last to write, it loses the

●

●

●

race and will not enter its CS as turn = 1 (Process 0 is really a loser!:)

Example: Process 1 wins the race, turn = 1 (set by Process 0)

Both processes arrive at the while loop

●

●

Process 1 immediately continues (as turn = 1)

Process 0 is waiting in the while loop ( as turn = 1 and flag[1] = TRUE)

●

●

The race condition is not a problem●

If there is a race condition in terms of updating the shared variable
“turn”, one of the two processes will win and be the one to enter the 
critical section

●



Peterson’s Algorithm

Race Condition

Global Variables

Process 0 Process 1

while(TRUE) {

flag[0] = TRUE;

while(TRUE) {

flag[1] = TRUE;

turn = 0

turn = 1

while(flag[1] == TRUE &&

turn == 1){

// wait

} 

Critical_Section 

flag[0] = FALSE;

Non_Critical_Section

...

}

while(flag[0] == TRUE &&

turn == 0){

// wait

} 

Critical_Section

flag[1] = FALSE; 

Non_Critical_Section

...

}

turn = 0; // or 1flag[0]=FALSE

flag[1]=FALSE

boolean flag[2];

int turn;



Critical_Section

Peterson’s Algorithm

Race Condition

Global Variables

Process 0 Process 1

while(TRUE) {

flag[0] = TRUE;

while(TRUE) {

flag[1] = TRUE;

turn = 1

while(flag[1] == TRUE &&

turn == 1){

// wait

}

...

}

turn = 0

while(flag[0] == TRUE &&

turn == 0){

// wait

}

...

}

turn = 0; // or 1flag[0]=FALSE

flag[1]=FALSE

boolean flag[2];

int turn;



Peterson’s Algorithm
•Peterson’s Algorithm

–Is a nonatomic locking algorithm

–Mutual Exclusion is preserved

•Even if flag[i] == flag[j] == TRUE(both processes are ready), the
variable turn can only be either i or j (only one of them can enter
critical section)

–Progress and Bounded Waiting

•Progress is guaranteed:  If a process indicates interest to enter
critical section, it will gain access after the other process is finished

•Problems

–Solution for only two processes, can be extended to n 
processes, does not work for unknown number of 
processes


