
Motivation

• Operating systems (and application programs) often need
to be able to handle multiple things happening at the
same time

– Process execution, interrupts, background tasks

• Humans are not very good at keeping track of multiple
things happening simultaneously

• Threads are an abstraction to help bridge this gap

Why Concurrency?

• Servers

– Multiple connections handled simultaneously

• Parallel programs

– To achieve better performance

• Programs with user interfaces

– To achieve user responsiveness while doing computation

• Network and disk bound programs

– To hide disk latency

Definitions

• A thread is a single execution sequence that
represents a separately schedulable task

– Single execution sequence: familiar programming model

– Separately schedulable: OS can run or suspend a thread at
any time

Multithreading

•Our process model so far: we defined a process as the Unit

resource ownership as well as the Unit of dispatching

•We want to separate these two concerns

–Resource ownership:

•Process remains unit of resource ownership

–Program Execution / Dispatching:

•A process can have multiple Threads of execution,

of

Threads (lightweight processes) become the unit of

dispatching

Multithreading

•Processes have at least one thread of control

–Is the CPU context, when process is dispatched for
execution

•Multithreading is the ability of an operating
system to support multiple threads of execution
within a single process

•Multiple threads run in the same address space,

share the same memory areas
–The creation of a thread only creates a new thread

control structure, not a separate process image

Thread Abstraction

• Infinite number of processors

• Threads execute with variable speed

– Programs must be designed to work with any schedule

Programmer vs. Processor View

Possible Executions

Multithreaded Process Model

Process

•Unit of resource ownership and protection

–Resource ownership:

•Process image, virtual address space

•Resources (I/O devices, I/O channels, files, main

memory)

–Protection

•Processors, other processes

–Operating system protects process to prevent unwanted

interference between processes

memory, files, I/O resources

Threads

•Thread is defined as the unit of

dispatching:

–Represent a single thread of execution within

a process

–Operating system can manage multiple

threads execution within a process

–The thread is provided with its own register

context and stack space

–Threads are also called “lightweight

processes”

Singlethreaded vs Multithreaded

Threads

•All threads share the same address space

–Share global variables

•All threads share the same open files, child
processes, signals, etc.

•There is no protection between threads

–As they share the same address space they may
overwrite each others data

•As a process is owned by one user, all threads
are owned by one user

Threads vs Processes: Advantages

•Advantages of Threads

–Much faster to create a thread than a process

•Spawning a new thread only involves allocating a
stack and a new thread control block

•10times faster than process creation in Unix

–Less time to terminate a thread

–Much faster to switch between threads than
switch between processes

–Threads share data easily

new

to

–Thread communication very efficient, no need
to call kernel routines, as all threads live in same
process context

Threads vs Processes: Disadvantages

•Disadvantages

–Processes are more flexible

•They don’t have to run on the same processor

–No protection between threads

•Share same memory, may interfere with each other

–If threads are implemented as user threads

instead of kernel threads

•If one thread blocks, all threads in process block

Thread Management

•Threads are described by the following:

–Thread execution state

•running, ready, blocked

–Thread Control Block

•A saved thread context when not running (each

has a separate program counter)

–An execution stack

thread

–Some per thread static storage for local variables

–Access to memory and resources of its process,

shared with all other threads of that process

Thread

•Threads have now three
states
–Running: CPU executes

thread

–Ready: thread control block
is placed in Ready queue

–Blocked: thread awaits event

•There is no suspend, as the
process is suspended

•If one thread blocks
–Is the whole process with all

other threads blocked?

–Or is only this single thread
blocked?

States

Dispatch

Ready Running

Timeout

Waitoccurred

Waitforevent

Blocked

Thread Operations

•There are four basic operation for managing

threads

–Spawn / create

•A thread is created and provided with its own register context and
stack space, it can spawn further threads

–Block:

•if a thread waits for an event, it will block

•If the kernel manages threads: the processor may switch to
another thread in the same or a different process

–Unblock:

•When the event occurs, for which the thread is waiting, it will be
queued for execution

–Finish:

•When a thread completes, its register context and stacks are de
allocated

Thread Implementation

•Two basic categories of threads

–Userlevel threads

–Kernellevel threads

•Characterised by the extent of the

kernel being involved in their

management

Thread Implementation

•Two main categories of thread implementation
–Userlevel Threads (ULTs)

–Kernellevel Threads (KLTs)

•Characterised by the extent of the
involved in their management

kernel being

Pure UserLevel

ULT

Pure KernelLevel

KLT

CombinedLevel

ULT/KLT

UserLevel Threads

•UserLevel Threads

–Kernel not aware of the existence of threads

–Process uses thread library functions to manage

threads

•Benefit

–Light thread switching in user mode

its

–No mode switch necessary (no call of kernel functions)

–We can implement our own thread scheduling

•Also called “green threads” on some systems (e.g.

Solaris)

UserLevel Threads:

•Process is still the Unit of
Dispatch, not a thread:
–Kernel doesn’t know threads

•Disadvantage:
–Blocking of one thread blocks entire

process, including all other threads in
it

–Only one thread can access the kernel

at a time, as the process is the unit of

execution known by kernel
–No Distribution in Multiprocessor

systems:
•All threads run on the same processor in

a multiprocessor system

•Threads cannot run in parallel utilising
different processors, as the process is
dispatched on one processor

Disadvantage

Kernellevel Threads

•Thread is Unit of dispatch

–Kernel is aware of the existence of threads

–Kernel manages each thread separately

•Benefit

–Finegrain scheduling by kernel on thread basis

–If a thread blocks (e.g. waiting for I/O), another one can be
scheduled by kernel without blocking the whole process

–Threads can be distributed to multiple processors and run
in parallel

•Example Systems: Windows XP/7/8, Solaris, Linux,

Mac
OSX

KernelLevel Threads: Disadvantage

•A switch between threads

of the same process

involves kernel

–2 mode switches for each

thread context switch, is as

costly as process switch

Hybrid Implementations

•Try to combine advantages of both userlevel and
kernellevel threads
–Userlevel: lightweight thread switching

–Kernellevel: allows dispatch at thread level (same or
different process), when one threads blocks

–true parallelism of threads in multiprocessor systems
possible

•Basic technique: Mapping of userlevel threads onto
limited set of kernel threads

•Different hybrid Multithreading Models:
–Manytoone

–Onetoone

–Manytomany

a

ManytoOne

•All userlevel threads of one
process mapped to a single kernel
level thread

•Thread management in user space
–Efficient

–Application can run its own
scheduler implementation

Model

•One thread can access the kernel
a time
–Limited concurrency, limited

parallelism

•Examples
–“Green threads” (e.g. Solaris)

–Gnu Portable Threads

at

OnetoOne Model

•Each userlevel thread mapped to a kernel thread

•One blocking thread does not block other threads

•Multiple threads access kernel concurrently

•Problem
–Creating a userlevel thread requires creation

kernel thread
of corresponding

–Kernel may restrict the number of threads created

•Example systems
–Windows, Linux, Solaris 9 (and later), Mac OSX

ManytoMany Model

•Many userlevel threads are multiplexed (mapped

dynamically) to a smaller or equal number of

kernel threads
–Thread pool, no fixed binding between a user and a

kernel thread

•The number of kernel threads is specific to a
particular application or computer system
–Application may be allocated more kernel threads

on a multiprocessor architecture as on a single
processor architecture

•No restriction on userlevel threads

–Applications can be designed with as many user
level threads as needed

–Threads are then mapped dynamically onto a
smaller set of currently available kernel threads for
execution

Twolevel Model

•Is a variant of the ManytoMany model, allows a fixed
relationship between a user thread and a kernel
thread

•Was used in older Unixlike systems

–IRIX, HPUX, True64 Unix, Solaris 8

Threading Issues – Thread Pools

•Threads come with some overhead

•Unlimited thread creation may exhaust memory and CPU

•Solution

–Thread pool: create a number of threads at system startup and put
them in a pool, from where they will be allocated

–When an application needs to spawn a thread, an allocated thread is
taken from the pool and adapted to the application’s needs

•Advantage

–Usually faster to service a request with already instantiated thread
then creating a new one

–Allows number of threads in applications to be bound by thread pool
size

•Number of preallocated threads in pool may depend on
–Number of CPUs, memory size

–Expected number of concurrent requests

Threading Issues – fork() and exec()

•Semantics of fork() and exec() changes in a

multithreaded program
–Remember:

•fork() creates an identical copy of the calling process

–In case of a multithreaded program

•Should the new process duplicate all threads?

•Or should the new process be created with only one thread?

–If after fork(), the new process calls exec() to start a new program
within the created process image, only one thread may be
sufficient

–Solution: some Unix systems implement two versions

of fork()

Thread Programming

•POSIX standard threads: pthreads

•Describes an API for creating and managing

threads

•There is at least one thread that is created by

executing main()

•Other threads are spawned / created from

this initial thread

POSIX Thread Programming

•Thread creation

–Returns a new thread ID with parameter
“thread”

–Executes the routine specified by “start_routine”
with argument specified by “arg”

•Thread termination

–Terminates the thread, sends “status” to any
thread waiting by calling pthread_join()

pthread_exit (status)

pthread_create (thread, attr, start_routine, arg)

POSIX Thread Programming

•Thread synchronisation

–Blocks the calling thread until the thread specified
“threadid” terminates

–The argument “status” passes on the return status
pthread_exit(), called by the thread specified by
“threadid”

•Thread yield

by

of

–Calling thread gives up the CPU and enters the Ready
queue

pthread_yield ()

pthread_join (threadid, status)

Thread Programming

Implementing threads

• Thread_fork(func, args)

– Allocate thread control block

– Allocate stack

– Build stack frame for base of stack (stub)

– Put func, args on stack

– Put thread on ready list

– Will run sometime later (maybe right away!)

Thread Context Switch

• Voluntary

– Thread_yield

– Thread_join (if child is not done yet)

• Involuntary

– Interrupt or exception

– Some other thread is higher priority

Voluntary thread context switch

• Save registers on old stack

• Switch to new stack, new thread

• Restore registers from new stack

• Return

• Exactly the same with kernel threads or user threads

MULTICORE AND MULTI-THREADING

Performance of software on Multicore

Effective exploitation of parallel resources

Amdahl's law states that:

(1-f) : Inherently serial code

f : infinitely parallelizable code with no scheduling

overhead

2

MULTICORE AND MULTI-THREADING

Amdahl’s law makes the multicore organizations

look attractive!

But even a small amount of serial code has

noticeable impact on the overall performance

Example: 10% serial, 90% parallel, 8 CPUs →~4.7x

speedup

Other overheads include communication and cache

coherence

3

MULTICORE AND MULTI-THREADING

4

MULTICORE AND MULTI-THREADING

5

