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W Chapter 5 Problem Solutions

1. Which of the wave functionsin Fig. 5.15 cannot have physical significance in the interval
shown? Why not? v

W o
- x K:x &x
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Sol |
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Figure (b) is double valued, and is not a function at all, and
cannot have physical significance. Figure (c) has discontinuous i ’

derivative in the shown interval. Figure (d) isfinite everywhere }_/\ 1 \ ~.,
in the shown interval. Figure (f) is discontinuous in the shown | ’\/ ‘ L

interval.

Figure 5,15

3. Which of the following wave functions cannot be solutions of Schrodinger's equation for all
valuesof x? Why not? (a) y =A secx; (b)y = Atanx; () y = A exp(x?); (d) y = A exp(-x?).
Sol
The functions (a) and (b) are both infinite whencosx = 0, at x = £p/2, £3p/2, ...x(2n+1)p/2 for
any integer n, neithery = A secx or y = A tan x could be a solution of Schrédinger's equation
for all values of x. The function (c) divergesasx ® =¥, and cannot be a solution of Schrédinger's
equation for all values of x.
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5.  Thewave function of acertain particleisy = A cos’x for -p/2 < x < p /2. (a) Find the value of A.
(b) Find the probability that the particle be found between x = 0 and x = p/4.
Sol
Both parts involve the integral aos* xdx, evaluated between different limits for the two parts.
Of the many ways to find this integral, including consulting tables and using symbolic-
manipul ation programs, a direct algebraic reduction gives

cos*x = (cos2 x)2 = [%(1+ COS 2x)]2 = %[1+ 2C0S2X + COSZ(ZX)

= %[1+ 2C0S2x +3(1+ cos4x)] =32+ 1cos2x +1cos4x,

where the identity cos® g = ¥41+cos 2q) has been used twice.
(@) The needed normalization conditionis

N L _A23P72 4
Op/2Y ydx = A Qp/2COS xdx
_ 2|§, P24 41 P72 4+ 15P72 ]_
=A Op/ZdX 5 Qp /2 C0S 2xdx 80p/2cos4xdx =
Theintegrals
Jp7/2 _1 +p/2 _1 +p/2
0p,2C0S 2xdx = 3sin 2x|"P/ p/2 and  (,,Cos4xdx =gsin Ax| 7o

are seen to be vanish, and the normalization condition reduces to

1= Ags‘_)p or A:\/g.
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(b) Evaluating the same integral between the different limits,

E
32 4
The probability of the particle being found between x = 0 and x = p/4 isthe product of this

- a and A2,
T el ey g0

7. Asmentioned in Sec. 5.1, in order to give physically meaningful resultsin calculations a wave
function and its partial derivatives must be finite, continuous, and single-valued, and in addition
must be normalizable. Equation (5.9) gives the wave function of a particle moving freely (that is,
with no forces acting on it) in the +x direction as

Y = Ae-(l /#)(Et- pc)

where E isthe particle's total energy and p isits momentum. Does this wave function meet all the
above requirements? If not, could alinear superposition of such wave functions meet these
requirements? What is the significance of such a superposition of wave functions?

Sol
The given wave function satisfies the continuity condition, and is differentiable to all orders with
respect to both t and x, but is not normalizable; specifically, Y'Y = A*A is constant in both space and
time, and if the particle isto move freely, there can be no limit to its range, and so the integral of
Y ™Y over aninfinite region cannot be finiteif A1 0.

/4 . . /4
QO cos? xdx :[gx +1sin2x +3—125|n4x]§ =
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A linear superposition of such waves could give a normalizable wave function, corresponding to a
real particle. Such a superposition would necessarily have a non- zero Dp, and hence afinite Dx; at
the expense of normalizing the wave function, the wave function is composed of different
momentum states, and is localized.

9. Show that the expectation values <px> and <xp>) are related by
<px> - <xp> =0/i

Thisresult is described by saying that p and x do not commute, and it isintimately related to
the uncertainty principle.

Sol
It's crucial to realize that the expectation value <p x> is found from the combined operator PX ,
which, when operating on the wave function'Y (x, t), corresponds to "multiply by X,
differentiate with respect to x and multiply by [/i," whereas the operatorXp corresponds
to "differentiate with respect to x, multiply by /i and multiply by x." Using these operators,

NAVREPVSVNIYIL INVIN.T- VIR BVIY
(BRIY = P(RY) = 7 -(xY) igY+XﬂxYH’

where the product rule for partial differentiation has been used. Also,

P =x(pY)=xZ I yo_ne 1y

~ \'
i X g i@xﬂx H
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Thus
and < px- xp >= (‘;;Y*_Ede
i

(B - RB)Y =1 Y
h

h ¥
Y de——
0¥ i

for Y (X, t) normalized.

11. Obtain Schrodinger s steady-state equation from Eq.(3.5) with the help of de Brogli€ srelation-
ship| = h/mv by lettingy =y and finding 12y / 1x.

Sol
Using | n = v, in Equation (3.5), and usingy instead of y,
& & 00 5
y = Acos¢2pctt - L Acosa%pnt - 2p )
Vp o | o
Differentiating twice with respect to x using the chain rule for partial differentiation (similar to

Example5 1)
—_— - - i' - —(-j 2_ - ig
‘ﬂx Asmg%nt | EEC II Pl Aswzl?pnt pI .
ﬂ——— - i - _9: _p9 - _XQ: - _9
S Acos?pnt 2pI gqee II . 88é| bAcos?pnt 2pI - Egéll by

2 |
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The kinetic energy of a nonrelativistic particleis

2 2
KE:E-U:p_:ah;Qi, 0 that i:@(E-U)
2m & g 2m y 12 h?
1
Substituting the above expression relating 1111—2 and 2y
X
1y _ apo, _ &m 2m

2 > 2 (E-Uy =- ?(E -Uly, whichisEquation (5.32)
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13. One of the possible wave functions of a particle in the potential well of Fig. 5.17 is sketched
there. Explain why the wavelength and amplitude of & P vary as they do.

(=] e

W

Vv
X
L

- X
L

Figure 5.17

Sol

The wave function must vanish at x = 0, whereV ® ¥ . Asthe potential energy increases with
X, the particle's kinetic energy must decrease, and so the wavelength increases. The amplitude
increases as the wavelength increases because a larger wavelength means a smaller momentum
(indicated as well by the lower kinetic energy), and the particle is more likely to be found
where the momentum has a lower magnitude. The wave function vanishes again where the
potential V ® ¥ ; this condition would determine the allowed energies.

Inha University Department of Physics



a

=

15. Animportant property of the eigenfunctionsof a system is that they are orthogonal to one
another, which means that

(fynyde:O nim
Verify thisrelationship for the eigenfunctions of a particle in a one-dimensional box given by
Eq. (5.46).

Sol
The necessary integrals are of the form

¥ _ 2 L .. npx . mpx
O¥ynyde—E@sm 2 sin 2

dx

forintegersn, m, withn ! mandn ! -m. (A more genera orthogonality relation would

involvetheintegral of y 'y ,, but asthe eigenfunctionsin this problem arereal, the
distinction need not be made.)

To do theintegrals directly, a convenient identity to useis
sinasinb = 3[cos(a - b)- cos(a +b)],

as may be verified by expanding the cosines of the sum and difference of a and b. To show
orthogonality, the stipulationn? m meansthata! b anda ! -b and theintegrals are of the form
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(N - m)px cos (N +[n)px gjx

1.6
dx =—Q L €os
O¥y nY m L 8 L
] L
_e L Sin(n - m)pX L Sin(n +m)px3 -0,
e(n -m)p L (n +m)p L A

where sin(n - m)p =sin(n - m)p =sin 0 = 0 has been used.

17. Asshown in the text, the expectation value <x> of a particle trapped in abox L wideisL/2,
which means that its average position is the middle of the box. Find the expectation value <x?>.

Sol
Using Equation (5.46), the expectation value <x> is

2 2 L 288 pX
<X >,= Lgx sin dx

See the end of this chapter for an aternate analytic technl que for evaluating thisintegral using
Leibniz’s Rule. From either atable or repeated integration by parts, the indefinite integral is

3 .34 3 2 U
yzsinzmdx _Eei_ &’ sinudu _EeL qu - L sin2u- Ycos2u +lsin 2U(}
L énp g énpg 6 4 4 8 (

where the substitution u = (np/L)x has been made.
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This form makes evaluation of the definite integral a bit ssmpler; when x = 0 u = 0, and when x
= L u = np. Each of thetermsin the integral vanish at u = 0, and the terms with sin 2u vanish at
U =np, cos2u = cos2np =1, and so theresult is

34 > p N
2, _ 2L 04np)° npl_ 26l 1 4

Lénpog 6 45 & 2n%p2f

n® ¥
which is the expectation value of <x2 > in the classical limit, for which the
probability distribution is independent of position in the box.

19. Find the probability that a particle in abox L wide can be found betweenx = 0 and x = L/n
when it isin the nth state.
Sol
Thisisaspecial case of the probability that such a particle is between x; and x,, as found in
Example 5.4. Withx; =0and x, =L,
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21. A particleisinacubic box with infinitely hard walls whose edges are L long (Fig. 5 18). The

wave functions of the particle are given by

X
n, =12,3,...
— A cin IxPX . NZPY . NZPZ _
= Asin—*—sin—4%~~sin £ n, =123,...
4 L L L y =1 .
n, =12,3,...
Find the value of the normalization constant A. L i
- >
Sol
The normalization constant, assuming A to bereal, isgiven by
d *y dV =1= ¢y *ydxdydz Figure 5.18 A cubic box.

_Azge smzx—pdxg sin? ypy %smzz—pdz—.
&0 P @

Each integral aboveisequal to L/2 (from calculations identical to Equation (5.43)).

Theresultis
.3 .3/2
p220 -1 o A=
20 &L o
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23. (a) Find the possible energies of the particle in the box of Exercise 21 by substituting its wave
functiony in Schrodinger's equation and solving for E. (Hint: inside the box U = 0.)
(b) Compare the ground-state energy of a particle in aone-dimensional box of length L with that of

aparticle in the three-dimensional box.

Sol
(a) For the wave function of Problem 5-21, Equation (5.33) must be used to find the energy. Before

substitution into Equation (5.33), it is convenient and useful to note that for this wave function

2 2
Ty _ me® 1y mpt 1Y npt
Then, substitution into Equation (5.33) gives
2
2m
-%(nf+n§+2n2§y + T Ey =0,
i _pht o 2 2
and so the energies are Enx,ny,nz _W(nx +ng +n2).

(b) The lowest energy occurs when n, = n, = n, = 1. None of the integers n,, n,, or n, can be zero,
as that would meany = O identically. The minimum energy isthen
E_. = ﬁ
min ZTILZ J
which is three times the ground-state energy of a particle in a one-dimensional box of length L.
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25. A beam of electronsisincident on abarrier 6.00 eV high and 0.200 nm wide. Use Eg. (5.60)
to find the energy they should haveif 1.00 percent of them are to get through the barrier.

Sol
Solving equation (5.60) for ks,
K, - 1ntc ! s—In(100) =1.15" 10 m™
2L T 20.200° 10" " m)
Equation (5.86), from the appendix, may be solved for the energy E, but a more direct expressionis
2 2
P (7Ky)

E=U-KE=U-"~—=U->—=
2m 2m

fan- 34 s anl0, -1
.00V - ((1.05 10 31J><s)(1.15 1019m ))2 .95 ey
2(9.1" 10" 3kg)(1.6~ 10" ¥JeV)

27. What bearing would you think the uncertainty principle has on the existence of the zero-point
energy of aharmonic oscillator?

Sol
If aparticle in aharmonic-oscillator potential had zero energy, the particle would have to be at rest

at the position of the potential minimum. The uncertainty principle dictates that such a particle
would have an infinite uncertainty in momentum, and hence an infinite uncertainty in energy. This

contradiction implies that the zero-point energy of a harmonic oscillator cannot be zero.

Department of Physics

Inha University




a

=

29. Show that for then = 0 state of a harmonic oscillator whose classical amplitude of motionisA,
y = 1latx = A, wherey isthe quantity defined by Eq. (5.67).

Sol
When the classical amplitude of motion is A, the energy of the oscillator is

1kAZ:Ehn, so A= /h_n
2 2 k

Using thisfor x in Equation (5.67) gives

2panhn mn 2
= =20.—— =
Y \/ kP 7!

where Equation (5.64) has been used to relaten, m and k.

31. Find the expectation values <x> and <x?> for the first two states of a harmonic oscillator.

Sol
The expectation values will be of the forms

ixy *ydx and ixzy *y dx

It isfar more convenient to use the dimensionless variable y as defined in Equation (5.67). The
necessary integrals will be proportional to

¥ 2 ¥ 2 ¥ 2 ¥ 2
o ve Ydy, o vy Ydy, g,y Ydy, @,y'eYdy,
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Thefirst and third integrals are seen to be zero (see Example 5.7). The other two integrals may
be found from tables, from symbolic-manipulation programs, or by any of the methods
outlined at the end of this chapter or in Special Integrals for Harmonic Oscillators, preceding
the solutions for Section 5.8 problemsin this manual. Theintegrals are

¥ . ¥ -y? 3

Oy Ye Y dy =4, O Ye Y dy =>p.
Animmediate result isthat <x> = 0 for the first two states of any harmonic oscillator, and in fact
<x> = 0 for any state of a harmonic oscillator (if x = 0 isthe minimum of potential energy). A
generalization of the above to any case where the potential energy is a symmetric function of x,

which givesrise to wave functions that are either symmetric or antisymmetric, leadsto <x> = 0.

To find <x2> for the first two states, the necessary integrals are
1/2 .3/2

¥ &EMNG & h 6 ¥ 2 _\2
X *V dX = c0———= = e Yd
0y XY o™y o €7 p &pmng O« Y Y
_ h Vp _ (/2hn _Eq.
2p3/2mn 2 4p2mn2 k
1/2 3/2
¥ &MNo e hh 0 ¥ 4 -y?
XYV vy dx =¢c————= = 2vie Y d
Oy XY *Y 1 5 Samng v y

h 3p _(3/2hn _E,

= 2 = = .
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In both of the above integrals,

has been used, aswell as Table 5.2 and Equation (5.64).

33. A pendulum with a 1.00-g bob has a massless string 250 mm long. The period of the pendulum
1S1.00 s. (@) What isits zero-point energy? Would you expect the zero-point oscillations to be
detectable? (b) The pendulum swings with avery small amplitude such that its bob rises a
maximum of 1.00 mm above its equilibrium position. What is the corresponding quantum number?

Sol
(a) The zero-point energy would be
h 414" 10 eV xs
2T 2(1.009)

E, = %hn = =2.07" 10 P eV,
which is not detectable.
(b) Thetotal energy is E = mgH (here, H is the maximum pendulum height, given as an uppercase
letter to distinguish from Planck's constant), and solving Equation (5.70) for n,
E 1_mgH _(1.00" 10" °kg)(9.80m/s*)(1.00s) 1

n=_—-_.2= = = = =1.48" 10%®
hn 2 h/T 6.63° 10 % Ixs 2
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37. Consider a beam of particles of kinetic energy E incident on a potential stepat x = Othat is
U high, where E > U (Fig. 5.19). (a) Explain why the solution De ¥ (in the notation of
appendix) has no physical meaning in this situation, so that D = 0. (b) Show that the
transmission probability hereis T = CC* v /AA*v, = 4k,%/(k; + k)% (c) A 1.00-mA beam of
electrons moving at 2.00x10° m/s enters a region with a sharply defined boundary in which the
electron speeds are reduced to 1.00x108 m/s by a difference in potential. Find the transmitted
and reflected currents.

Sol
(a) In the notation of the Appendix, the wave function in the two regions has the form
v, = Ae'X 4 Be-ikix Vi = Ce k% 4 pe-ik&
where

k1: ’%’ k¢= \/M(E;z-u)
The terms corresponding to exp(ik;x) and exp(ik’x) represent particles traveling to the left;
thisis possiblein region |, due to reflection at the step at x = 0, but not in region |1 (the
reasoning is the same as that which lead to setting G = 0 in Equation (5.82)). Therefore, the
exp(-ik>x) term is not physically meaningful, and D = 0.
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(b) The boundary condition at x= 0 are then

¢
A+B =C, ikjA- ikB =ik€ or A-B:I;—C.
. 1
Adding to eliminate B, 2A:§[+k—¢2€, S0
Kig ,
C_ 2 | and CC*_ 4k N
A k;+k¢ AA*  (k;+k(

(c) The particle speeds are different in the two regions, so Equation (5.83) becomes
_bulve_ccrke_ 4kke _ 4ki/k9
Chve AATKL (g kG (kKD
For the given situation, k,/K' =v;/V =2.00, s0 T = (4x2)/(2+1)2 = 8/9. The transmitted current
IS (T)(1.00 mA) = 0.889 mA, and the reflected current is0.111mA.

As acheck on the last result, note that the ratio of the reflected current to the incident current
IS, in the notation of the Appendix,

_Wi- | vi _BB*
Vv AAT
Eliminating C from the equations obtained in part (b) from the continuity condition as x = 0,
ﬁ-_ _Bg[ k— 0 :wg:&: -
ks E kg Ska/k9+15
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