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Chapter 5  Problem Solutions

1.  Which of the wave functions in Fig. 5.15 cannot have physical significance in the interval 
shown? Why not?

3. Which of the following wave functions cannot be solutions of Schrödinger's equation for all 
values of x?  Why not? (a) ψ =A sec x; (b) ψ = A tan x; (c) ψ = A exp(x2); (d) ψ = A exp(-x2).

【Sol】
Figure (b) is double valued, and is not a function at all, and 
cannot have physical significance. Figure (c) has discontinuous 
derivative in the shown interval. Figure (d) is finite everywhere 
in the shown interval. Figure (f) is discontinuous in the shown 
interval.

【Sol】
The functions (a) and (b) are both infinite when cos x = 0, at x = ±π/2, ±3π/2, … ±(2n+1)π/2 for
any integer n, neither ψ = A sec x or ψ = A tan x could be a solution of Schrödinger's equation
for all values of x. The function (c) diverges as x → ±∞, and cannot be a solution of Schrödinger's
equation for all values of x.
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5. The wave function of a certain particle is ψ = A cos2x for -π/2 < x < π /2. (a) Find the value of A.  
(b) Find the probability that the particle be found between x = 0 and x = π/4.
【Sol】
Both parts involve the integral ∫cos4 xdx, evaluated between different limits for the two parts. 
Of the many ways to find this integral, including consulting tables and using symbolic-
manipulation programs, a direct algebraic reduction gives
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where the identity cos2 θ = ½(1+cos 2θ) has been used twice.

(a) The needed normalization condition is
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(b) Evaluating the same integral between the different limits,
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The probability of the particle being found between x = 0 and x = π/4 is the product of this 
integral and A2, or
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7.   As mentioned in Sec. 5.1, in order to give physically meaningful results in calculations a wave 
function and its partial derivatives must be finite, continuous, and single-valued, and in addition 
must be normalizable. Equation (5.9) gives the wave function of a particle moving freely (that is, 
with no forces acting on it) in the +x direction as

))(/( pcEtiAe −−=Ψ h

where E is the particle's total energy and p is its momentum. Does this wave function meet all the 
above requirements? If not, could a linear superposition of such wave functions meet these 
requirements? What is the significance of such a superposition of wave functions?
【Sol】
The given wave function satisfies the continuity condition, and is differentiable to all orders with 
respect to both t and x, but is not normalizable; specifically, Ψ∗Ψ = A*A is constant in both space and 
time, and if the particle is to move freely, there can be no limit to its range, and so the integral of 
Ψ∗Ψ over an infinite region cannot be finite if A ≠ 0.
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A linear superposition of such waves could give a normalizable wave function, corresponding to a 
real particle. Such a superposition would necessarily have a non- zero ∆p, and hence a finite ∆x; at 
the expense of normalizing the wave function, the wave function is composed of different 
momentum states, and is localized.

9. Show that the expectation values <px> and <xp>) are related by
<px> - <xp> = �/i

This result is described by saying that p and x do not commute, and it is intimately related to 
the uncertainty principle.
【Sol】
It's crucial to realize that the expectation value <px> is found from the combined operator , 
which, when operating on the wave function Ψ(x, t), corresponds to "multiply by x, 
differentiate with respect to x and multiply by �/i," whereas the operator      corresponds 
to "differentiate with respect to x, multiply by �/i and multiply by x." Using these operators,
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for Ψ(x, t) normalized.

11. Obtain Schrödinger’s steady-state equation from Eq.(3.5) with the help of de Broglie’s relation-
ship λ = h/mv by letting y = ψ and finding ∂2ψ/∂x2.

【Sol】
Using λν = vp in Equation (3.5), and using ψ instead of y,
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Differentiating twice with respect to x using the chain rule for partial differentiation (similar to 
Example 5.1),
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The kinetic energy of a nonrelativistic particle is
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13.  One of the possible wave functions of a particle in the potential well of Fig. 5.17 is sketched 
there. Explain why the wavelength and amplitude of &P vary as they do.

【Sol】
The wave function must vanish at x = 0, where V →∞. As the potential energy increases with 
x, the particle's kinetic energy must decrease, and so the wavelength increases. The amplitude 
increases as the wavelength increases because a larger wavelength means a smaller momentum 
(indicated as well by the lower kinetic energy), and the particle is more likely to be found 
where the momentum has a lower magnitude. The wave function vanishes again where the 
potential V →∞; this condition would determine the allowed energies.
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15.  An important property of the eigenfunctions of a system is that they are orthogonal to one 
another, which means that

mndVmn ≠=∫
∞+
∞− 0ψψ

Verify this relationship for the eigenfunctions of a particle in a one-dimensional box given by
Eq. (5.46).

【Sol】
The necessary integrals are of the form

dx
L
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for integers n, m, with n ≠ m and n ≠ -m. (A more general orthogonality relation would 
involve the integral of ψn

*ψm, but as the eigenfunctions in this problem are real, the 
distinction need not be made.)
To do the integrals directly, a convenient identity to use is
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1

as may be verified by expanding the cosines of the sum and difference of α and β. To show 
orthogonality, the stipulation n ≠ m means that α ≠ β and α ≠ -β and the integrals are of the form



Inha University                      Department of Physics

,
)(

sin
)(

)(
sin

)(

)(
cos

)(
cos

0

1
0

=




 +
+

−−
−

=





 +−−= ∫∫

∞+
∞−

L

o

L
mn

L

xmn

mn

L

L

xmn

mn

L

dx
L

xmn

L

xmn

L
dx

π
π

π
π

ππ
ψψ

where sin(n - m)π = sin(n - m)π = sin 0 = 0 has been used.

17.  As shown in the text, the expectation value <x> of a particle trapped in a box L wide is L/2, 
which means that its average position is the middle of the box. Find the expectation value <x2>.

【Sol】
Using Equation (5.46), the expectation value <x2> is
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See the end of this chapter for an alternate analytic technique for evaluating this integral using 
Leibniz’s Rule. From either a table or repeated integration by parts, the indefinite integral is
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where the substitution u =  (nπ/L)x has been made.
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This form makes evaluation of the definite integral a bit simpler; when x = 0 u = 0, and when x
= L u = nπ. Each of the terms in the integral vanish at u = 0, and the terms with sin 2u vanish at 
u = nπ, cos 2u = cos 2nπ = 1, and so the result is

As a check, note that

which is the expectation value of <x2 > in the classical limit, for which the 
probability distribution is independent of position in the box.
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19.   Find the probability that a particle in a box L wide can be found between x = 0 and x = L/n
when it is in the nth state.

【Sol】
This is a special case of the probability that such a particle is between x1 and x2, as found in 
Example 5.4. With x1 = 0 and x2 = L,
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21.   A particle is in a cubic box with infinitely hard walls whose edges are L long (Fig. 5. 18). The 
wave functions of the particle are given by
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Find the value of the normalization constant A.

【Sol】
The normalization constant, assuming A to be real, is given by
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Each integral above is equal to L/2 (from calculations identical to Equation (5.43)). 
The result is
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23.   (a) Find the possible energies of the particle in the box of Exercise 21 by substituting its wave 
function ψ in Schrödinger's equation and solving for E. (Hint: inside the box U = 0.)
(b) Compare the ground-state energy of a particle in a one-dimensional box of length L with that of 
a particle in the three-dimensional box.

【Sol】
(a) For the wave function of Problem 5-21, Equation (5.33) must be used to find the energy. Before 
substitution into Equation (5.33), it is convenient and useful to note that for this wave function
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(b) The lowest energy occurs when nx = ny = nz = 1. None of the integers  nx, ny, or nz can be zero, 
as that would mean ψ = 0 identically. The minimum energy is then
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which is three times the ground-state energy of a particle in a one-dimensional box of length L.
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25.   A beam of electrons is incident on a barrier 6.00 eV high and 0.200 nm wide. Use Eq. (5.60) 
to find the energy they should have if 1.00 percent of them are to get through the barrier.

【Sol】
Solving equation (5.60) for k2,
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Equation (5.86), from the appendix, may be solved for the energy E, but a more direct expression is
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27.   What bearing would you think the uncertainty principle has on the existence of the zero-point 
energy of a harmonic oscillator?

【Sol】
If a particle in a harmonic-oscillator potential had zero energy, the particle would have to be at rest 
at the position of the potential minimum. The uncertainty principle dictates that such a particle 
would have an infinite uncertainty in momentum, and hence an infinite uncertainty in energy. This 
contradiction implies that the zero-point energy of a harmonic oscillator cannot be zero.
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29.   Show that for the n = 0 state of a harmonic oscillator whose classical amplitude of motion is A, 
y = 1 at x = A, where y is the quantity defined by Eq. (5.67).

【Sol】
When the classical amplitude of motion is A, the energy of the oscillator is
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Using this for x in Equation (5.67) gives
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where Equation (5.64) has been used to relate ν,  m and k.

31.   Find the expectation values <x> and <x2> for the first two states of a harmonic oscillator.

【Sol】
The expectation values will be of the forms

dxxdxx ∫∫
∞
∞−

∞
∞−

ψψψψ ** 2and

It is far more convenient to use the dimensionless variable y as defined in Equation (5.67). The 
necessary integrals will be proportional to

,,,, dyeydyeydyeydyye yyyy ∫∫∫∫
∞
∞−

−∞
∞−

−∞
∞−

−∞
∞−

− 2222 432



Inha University                      Department of Physics

The first and third integrals are seen to be zero (see Example 5.7). The other two integrals may 
be found from tables, from symbolic-manipulation programs, or by any of the methods 
outlined at the end of this chapter or in Special Integrals for Harmonic Oscillators, preceding 
the solutions for Section 5.8 problems in this manual. The integrals are
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An immediate result is that <x> = 0 for the first two states of any harmonic oscillator, and in fact 
<x> = 0 for any state of a harmonic oscillator (if x = 0 is the minimum of potential energy). A 
generalization of the above to any case where the potential energy is a symmetric function of x, 
which gives rise to wave functions that are either symmetric or antisymmetric, leads to <x> = 0.
To find <x2> for the first two states, the necessary integrals are
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33.   A pendulum with a 1.00-g bob has a massless string 250 mm long. The period of the pendulum 
is 1.00 s. (a) What is its zero-point energy? Would you expect the zero-point oscillations to be 
detectable? (b) The pendulum swings with a very small amplitude such that its bob rises a 
maximum of 1.00 mm above its equilibrium position. What is the corresponding quantum number?

【Sol】
(a) The zero-point energy would be
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has been used, as well as Table 5.2 and Equation (5.64).
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which is not detectable.
(b) The total energy is E = mgH (here, H is the maximum pendulum height, given as an uppercase 
letter to distinguish from Planck's constant), and solving Equation (5.70) for n,
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37.  Consider a beam of particles of kinetic energy E incident on a potential step at x = 0 that is 
U high, where E > U (Fig. 5.19). (a) Explain why the solution De-ik’x (in the notation of 
appendix) has no physical meaning in this situation, so that D = 0. (b) Show that the 
transmission probability here is T = CC*v‘/AA*v1 = 4k1

2/(k1 + k’)2. (c) A 1.00-mA beam of 
electrons moving at 2.00x106 m/s enters a region with a sharply defined boundary in which the 
electron speeds are reduced to 1.00x106 m/s by a difference in potential. Find the transmitted 
and reflected currents.

【Sol】
(a) In the notation of the Appendix, the wave function in the two regions has the form
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The terms corresponding to exp(ik1x) and exp(ik’x) represent particles traveling to the left; 
this is possible in region I, due to reflection at the step at x = 0, but not in region II (the 
reasoning is the same as that which lead to setting G = 0 in Equation (5.82)). Therefore, the 
exp(-ik’x) term is not physically meaningful, and D = 0.
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(b) The boundary condition at x= 0 are then
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(c) The particle speeds are different in the two regions, so Equation (5.83) becomes
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For the given situation, k1/k’ = v1/v’ = 2.00, so T = (4x2)/(2+1)2 = 8/9. The transmitted current 
is (T)(1.00 mA) = 0.889 mA, and the reflected current is 0.111mA.

As a check on the last result, note that the ratio of the reflected current to the incident current 
is, in the notation of the Appendix,
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Eliminating C from the equations obtained in part (b) from the continuity condition as x = 0,
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