
ADV. OPERATING SYSTEMS

OPERATING SYSTEM OVERVIEW

Operating systems are those programs that interface the machine

with the applications programs. The main function of these systems is

to dynamically allocate the shared system resources to the

executing programs. As such, research in this area is clearly

concerned with the management and scheduling of memory,

processes, and other devices.

—WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND

ENGINEERING RESEARCH STUDY,

MIT Press, 1980

What is an Operating System?

An Operating System is a program or collection of

programs that makes it easier for us to use a computer.

An Operating System provides simpler abstraction of the

underlying hardware.

An Operating System is resource manager.

Examples:

• DOS, OS/2, Windows XP, Windows 2000

• Ubuntu, FreeBSD, Fedora, Solaris, Mac OS

• iOS, Android, Symbian OS, Lynx OS

What is an Operating System?

A program that controls the execution of

application programs

An interface between applications and

hardware

Main objectives of an OS:

• Convenience

• Efficiency

• Ability to evolve

Objectives of an Operating System

COMPUTER HARDWARE AND

SOFTWARE INFRASTRUCTURE

OPERATING SYSTEM SERVICES

Program development

Program execution

Access I/O devices

Controlled access to files

System access

Error detection and response

Accounting

KEY INTERFACES

1. Instruction Set Architecture (ISA)

2. Application Binary Interface (ABI)

3. Application Programming Interface

(API)

API VS ABI

An API is a contract between pieces of source code: It

defines the parameters to a function, the function's

return value, and attributes such as whether

inheritance is allowed.

An API is enforced by the compiler: An API is

instructions to the compiler about what source code

can and cannot do. We also often speak about the

API in terms of the prerequisites, behavior, and error

conditions of functions. In that sense, an API is also

consumed by humans: An API is instructions to a

programmer about what functions expect and do.

API VS ABI

An ABI is a contract between pieces of binary code: It defines the

mechanisms by which functions are invoked, how parameters

are passed between caller and callee, how return values are

provided to callers, how libraries are implemented, and how

programs are loaded into memory.

An ABI is enforced by the linker: An ABI is the rules about how

unrelated code must work together. An ABI is also rules about

how processes coexist on the same system. For example, on a

Unix system, an ABI might define how signals are executed, how

a process invokes system calls, what endianness is used, and

how stacks grow. In that sense, an ABI is a set of rules enforced

by the operating system on a specific architecture.

https://www.quora.com/What-exactly-is-an-Application-Binary-Interface-ABI

http://stackoverflow.com/questions/2171177/what-is-application-binary-

interface-abi

THE ROLE OF AN OS

A computer is a set of resources for the

movement, storage, and processing of data

and for the control of these functions.

The OS is responsible for managing these

resources

Normally, we think of a control mechanism as

something external to that which is controlled.

Example: Heating System and Thermostat

OPERATING SYSTEM AS SOFTWARE

Functions in the same way as ordinary

computer software i.e. Program, or suite of

programs, executed by the processor

EVOLUTION OF OPERATING SYSTEMS

A major OS will evolve over time for a

number of reasons:

Hardware Upgrades

New Types of Hardware

New Services

Bug Fixes

EVOLUTION OF OPERATING SYSTEMS

 Stages include:

Serial

Processing

Simple Batch

Systems

Multiprogrammed

Batch Systems

Time Sharing

Systems

SERIAL PROCESSING

EARLIEST COMPUTERS:

No operating system

Programmers

interacted directly with

the computer hardware

Computers ran from a

console with display lights,

toggle switches, some form

of input device, and a

printer

Users have access to the
computer in ―series‖

PROBLEMS:

Scheduling

 Most installations used a

hardcopy sign-up sheet to

reserve computer time

 Time allocations could run

short or long, resulting in

wasted computer time

Setup time

 A considerable amount of time

was spent just on setting up

the program to run

IntroductionSlide 15

Lecture Notes: IntroductionSlide 16

Lecture Notes: IntroductionSlide 17

Lecture Notes: IntroductionSlide 18

IBM 7094 (Early 1960's)

Lecture Notes: IntroductionSlide 19

IBM 701 Console

SIMPLE BATCH SYSTEMS

Early computers were very expensive

Important to maximize processor utilization

Monitor

User no longer has direct access to processor

Job is submitted to computer operator who batches

them together and places them on an input device

Program branches back to the monitor when finished

MONITOR POINT OF VIEW

Monitor controls the

sequence of events

Resident Monitor is software

that always resides in

memory

Monitor reads in job and

gives control

Job returns control to

monitor

PROCESSOR POINT OF VIEW

Processor executes instruction from the memory

containing the monitor

Executes the instructions in the user program until

it encounters an ending or error condition

“control is passed to a job” means processor is

fetching and executing instructions in a user

program

“control is returned to the monitor” means that the

processor is fetching and executing instructions

from the monitor program

JOB CONTROL LANGUAGE (JCL)

Special type of programming

language used to provide instructions

to the monitor

what compiler to use

what data to use

DESIRABLE HARDWARE

FEATURES

• while the user program is executing, it must not alter the

memory area containing the monitor

Memory protection for monitor

• prevents a job from monopolizing the system

Timer

• can only be executed by the monitor

Privileged instructions

• gives OS more flexibility in controlling user programs

Interrupts

MODES OF OPERATION

User Mode

• user program executes in

user mode
• certain areas of memory

are protected from user

access
• certain instructions may not

be executed

Kernel Mode

• monitor executes in kernel

mode
• privileged instructions may

be executed
• protected areas of memory

may be accessed

SIMPLE BATCH SYSTEM OVERHEAD

Processor time alternates between execution of user

programs and execution of the monitor

Sacrifices:

 Some main memory is now given over to the monitor

 Some processor time is consumed by the monitor

Despite overhead, the simple batch system improves

utilization of the computer

MULTIPROGRAMMED BATCH

SYSTEMS

Processor is

often idle

Even with

automatic job

sequencing

I/O devices are

slow compared

to processor

UNIPROGRAMMING

The processor spends a certain amount of time

executing, until it reaches an I/O instruction; it must

then wait until that I/O instruction concludes before

proceeding

MULTIPROGRAMMING

There must be enough memory to hold the OS (resident monitor) and

one user program

When one job needs to wait for I/O, the processor can switch to the

other job, which is likely not waiting for I/O

Multiprogramming

also known as multitasking

memory is expanded to hold three, four, or more

programs and switch among all of them

MULTIPROGRAMMING

MULTIPROGRAMMING EXAMPLE

EFFECTS ON RESOURCE

UTILIZATION

Table 2.2 Effects of Multiprogramming on Resource Utilization

UTILIZATION HISTOGRAMS

TIME-SHARING SYSTEMS

Can be used to handle multiple interactive jobs

Processor time is shared among multiple users

Multiple users simultaneously access the

system through terminals, with the OS

interleaving the execution of each user program

in a short burst or quantum of computation

BATCH MULTIPROGRAMMING

VS. TIME SHARING

Table 2.3 Batch Multiprogramming versus Time Sharing

COMPATIBLE TIME-SHARING

SYSTEMS

CTSS

One of the first time-sharing

operating systems

Developed at MIT by a group

known as Project MAC

Ran on a computer with

32,000 36-bit words of main

memory, with the resident

monitor consuming 5000

words of that memory!

To simplify both the monitor

and memory management a

program was always loaded to

start at the location of the

5000 word
th

TIME SLICING

System clock generates interrupts

at a rate of approximately one

every 0.2 seconds

At each interrupt OS regained

control and could assign

processor to another user

At regular time intervals the

current user would be preempted

and another user loaded in

Old user programs and data were
written out to disk

Old user program code and data

were restored in main memory

when that program was next given

a turn

CTSS OPERATION

DIFFERENT ARCHITECTURAL

APPROACHES

Demands on operating systems require new

ways of organizing the OS

• Microkernel Architecture

• Multithreading

• Symmetric Multiprocessing

• Distributed Operating Systems

• Object-Oriented Design

Different Approaches and Design Elements

MICROKERNEL ARCHITECTURE

Assigns only a few essential functions to the

kernel:

• The approach:

address

spaces

interprocess

communication

(IPC)

basic

scheduling

simplifies

implementation

provides

flexibility

is well suited to

a distributed

environment

MULTITHREADING

Technique in which a process, executing an application,

is divided into threads that can run concurrently

Thread

• dispatchable unit of work

• includes a processor context and its own data area to

enable subroutine branching
• executes sequentially and is interruptible

Process

• a collection of one or more threads and associated

system resources
• programmer has greater control over the modularity of

the application and the timing of application related

events

SYMMETRIC

MULTIPROCESSING (SMP)

Term that refers to a computer hardware architecture

and also to the OS behavior that exploits that

architecture

Several processes can run in parallel

Multiple processors are transparent to the user

• these processors share same main memory and I/O facilities

• all processors can perform the same functions

The OS takes care of scheduling of threads or processes

on individual processors and of synchronization among

processors

SMP ADVANTAGES

Performance
more than one process can be running

simultaneously, each on a different

processor

Availability
failure of a single process does not

halt the system

Incremental

Growth

performance of a system can be

enhanced by adding an additional

processor

Scaling
vendors can offer a range of products

based on the number of processors

configured in the system

M G

U R

L A

T M

I M

P

R N

O G

I

VIRTUAL MACHINES AND

VIRTUALIZATION

Virtualization

Enables a single PC or server to simultaneously run

multiple operating systems or multiple sessions of a

single OS

A machine can host numerous applications, including

those that run on different operating systems, on a

single platform

Host operating system can support a number of virtual

machines (VM)

each has the characteristics of a particular OS and, in

some versions of virtualization, the characteristics of a

particular hardware platform.

VIRTUAL MEMORY CONCEPT

VIRTUAL MACHINE ARCHITECTURE

• the machine on which it executes consists of the virtual memory space

assigned to the process
• the processor registers it may use

• the user-level machine instructions it may execute

• OS system calls it may invoke for I/O

• ABI defines the machine as seen by a process

Process perspective:

• machine characteristics are specified by high-level language capabilities and

OS system library calls
• API defines the machine for an application

Application perspective:

• processes share a file system and other I/O resources

• system allocates real memory and I/O resources to the processes

• ISA provides the interface between the system and machine

OS perspective:

PROCESS AND SYSTEM

VIRTUAL MACHINES

PROCESS AND SYSTEM

VIRTUAL MACHINES

SYMMETRIC MULTIPROCESSOR

OS CONSIDERATIONS
A multiprocessor OS must provide all the functionality of a

multiprogramming system plus additional features to

accommodate multiple processors

Key design issues:

Simultaneous

concurrent
processes or

threads

kernel

routines

need to be

reentrant to
allow several

processors

to execute

the same

kernel code

simultaneous

ly

Scheduling

any

processor

may

perform
scheduling,

which
complicates

the task of

enforcing a

scheduling

policy

Synchronization

with multiple

active

processes

having

potential

access to
shared address

spaces or

shared I/O

resources, care
must be taken

to provide

effective

synchronizatio

Memory

Management

the reuse of

physical

pages is

the biggest
problem of

concern

Reliability

and Fault

Tolerance

the OS

should

provide

graceful
degradation

in the face
of processor

failure

MULTICORE OS CONSIDERATIONS

The design challenge for a

many-core multicore system

is to efficiently harness the

multicore processing power

and intelligently manage the

substantial on-chip

resources efficiently

Potential for parallelism

exists at three levels:

hardware parallelism within each

core processor, known as

instruction level parallelism (ILP)

potential for multiprogramming

and multithreaded execution

within each processor (TLP)

potential for a single application

to execute in concurrent

processes or threads across

multiple cores (CMP)

GENERAL UNIX ARCHITECTURE

5
5

MODULAR

MONOLITHIC KERNEL

LOADABLE MODULES

Relatively independent blocks

A module is an object file

whose code can be linked to

and unlinked from the kernel

at runtime

A module is executed in kernel

mode on behalf of the current

process

Have two important

characteristics:

Dynamic linking

Stackable modules

Includes virtually all of the

OS functionality in one

large block of code that

runs as a single process

with a single address space

All the functional

components of the kernel

have access to all of its

internal data structures and

routines

Linux is structured as a

collection of modules

KERNEL AND SHELL

Unix-like systems divide the OS into

• Kernel

• The lowest part of the OS that talks to the physical hardware.

• Implements Process/Memory Management etc.

• Runs in supervisor mode.

• Shell

• Accepts commands from the user.

• Shells for Unix-like systems allow combining simple programs to

achieve a complex task.

• Runs in user mode.

SYSTEM CALLS

System calls are the mechanism through which services of

the operating systems are sought.

Examples

• Starting a new process or thread

• Reading contents of a file

• Existing a program

SYSTEM CALLS

A system call starts with C/C++ procedure call

The procedure store the call number at some

special place and executes a trap instruction.

The system enters kernel mode and starts execution

from a fixed memory location as per the call

number.

After performing the task in kernel mode the system

returns to user mode and transfers control back to

the user program.

6
5

SYSTEM CALLS FOR PROCESS

MANAGEMENT

Call D e s c r i p t i on

pid = fork()
Create a child process identical to the

parent

pid = waitpid(pid, &statloc,

options)
Wait for a child to terminate

s = execve(name, argv, environp) Replace a process' core image

exit(status)
Terminate process execution and return

status

SYSTEM CALLS FOR FILE

MANAGEMENT

Call D e s c r i p t i on

fd = open(fife, how,...) Open a file for reading, writing, or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes)
Write data from a buffer into a file

position = lseek(fd, offset,

whence)

Move the file pointer

s = stat(narne, &buf) Get a fife's status information

SYSTEM CALLS FOR DIRECTORY

MANAGEMENT

Call D e s c r i p t i on

s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(name1, name2) Create a new entry, name2, pointing to namel

s = unlink(name) Remove a directory entry

s = mount(speciaf, name, flag) Mount a file system

s = umount(special) Unmount a file system

MISCELLANEOUS SYSTEM

CALLS

Call D e s c r i p t i on

s = chdir(dirname) Change the working directory

s = chmod(name, mode) Change a file's protection bits

s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

