Example 3. Prove that $H_n(-x) = (-1)^n H_n(x)$. Solution. We have

$$H_n(x) = \sum_{r=0}^{n/2} \frac{(-1)^r n! (2x)^{n-2r}}{(n-2r)! r!}$$

and

$$H_n(-x) = \sum_{r=0}^{n/2} \frac{(-1)^r n! (-2x)^{n-2r}}{(n-2r)! r!}$$

$$= \sum_{r=0}^{n/2} \frac{(-1)^r (-1)^{n-2r} n! (2x)^{n-2r}}{(n-2r)! r!}$$

$$= (-1)^n \sum_{r=0}^{n/2} \frac{(-1)^r n! (2x)^{n-2r}}{(n-2r)! r!} = (-1)^n H_n(x)$$

7.11. Laguerre's Differential Equation

The differential equation

$$xy'' + (1-x)y' + ny = 0$$
 ...(7.188)

む

where n is constant, is known as Laguerre's differential equation. This equation has removable singularity at x = 0 hence its solution can be found using series integration method. Let series solution of above equation be

$$y = \sum_{n=0}^{\infty} a_n x^{m+n} \qquad ... (7.189)$$

Substitution of (7.189) in (7.188) yields

$$\sum_{n=0}^{\infty} a_r \left[(m+r)^2 x^{m+r-1} - (m+r-n) x^{m+r} \right] = 0 \qquad ...(7.196)$$

The indicial equation then is

$$a_0 m^2 = 0$$

giving m = 0. Since a_0 is taken as arbitrary constant.

Equating the co-efficient x^{m+r} equal to zero, we have

$$a_{r+1}(m+r+1)^2 = (m+r-n)a_r$$

 $a_{r+1} = \frac{m+r-n}{(m+r+1)^2} a_r$.

and since m = 0

$$a_{r+1} = \frac{r-n}{(r+1)^2} a_r$$
 ...(7.19)

This is recurrence relation for the co-efficients a_r . Substituting r = 0, 1, 2, 3 etc. we get all the co-efficients.

If n is a positive integer the series terminate when r = n + 1 and if we put $a_0 = n \cdot 1^1$, then solution y representing equation (7.192) becomes Laguerre polynomial $L_n(x)$

$$L_n(x) = \sum_{r=0}^{n} \frac{(-1)^r n!}{(r!)^2 (n-r)!} x^r$$

The two expressions merely differ by a constant factor

^{1.} Some authors use $a_0 = 1$ and Laguerre polynomial is

$$L_{n}(x) = (-1)^{n} \left[x^{n} - \frac{x^{2}}{1!} x^{n-1} + \frac{x^{2} (n-1)^{2}}{2!} x^{n-2} + \dots + (-1)^{n} n! \right]$$

$$= \sum_{r=0}^{n} \frac{(-1)^{r} (n!)^{2}}{(r!)^{2} (n-r)!} x^{r} \qquad \dots (7.193)$$

Thus a Laguerre's polynomial is the solution of Laguerre differential equation.

Generating Function for Laguerre Polynomials

The generating function for Laguerre polynomials is

$$f(x, t) = \frac{e^{-xt/(1-t)}}{1-t} = \sum_{n=0}^{\infty} \frac{L_n(x)t^n}{n!} \text{ for } |t| < i \qquad ...(7.194)$$

We have

$$(1-t)^{-1}e^{-xt/(1-t)} = \sum_{r=0}^{\infty} \frac{(-1)^r \cdot t^r x^r}{(1-t)^{r+1}} \frac{1}{r!}$$

$$= \sum_{r=0}^{\infty} \frac{(-1)^r}{r!} t^r x^r (1-t)^{-(r+1)}$$

$$= \sum_{r=0}^{\infty} \frac{(-1)^r}{r!} x^r t^r \sum_{s=0}^{\infty} \frac{(r+1)(r+2)...(r+s)}{s!} t^s$$

$$= \sum_{r=0}^{\infty} \frac{(-1)^r}{r!} x^r t^r \sum_{s=0}^{\infty} \frac{(r+s)!}{r! s!} t^s$$

$$= \sum_{r,s=0}^{\infty} \frac{(-1)^r (r+s)!}{(r!)^2 s!} x^r t^{s+r} \qquad ...(7.195)$$

The co-efficient of r^n (for fixed value of r) on R.H.S. is obtained by putting r + s = n i.e. s = n - r and is given by

$$(-1)^r \frac{n!}{\left(r!\right)^2 (n-r)!} x^r.$$

The net co-efficient of r^n is obtained by summing over all allowed values of r.