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c. Evaluate the steady-state error for a unit ramp input to your compensated
system.

d. Evaluate how much improvement in steady-state error was realized.

ANSWERS:

a. erampð1Þ ¼ 0:1527

b. GlagðsÞ ¼ sþ 0:2

sþ 0:01

c. erampð1Þ ¼ 0:0078

d. 19.58 times improvement

The complete solution is at www.wiley.com/college/nise.

9.3 Improving Transient Response
via Cascade Compensation

Since we have solved the problem of improving the steady-state error without
affecting the transient response, let us now improve the transient response itself. In
this section, we discuss two ways to improve the transient response of a feedback
control system by using cascade compensation. Typically, the objective is to design a
response that has a desirable percent overshoot and a shorter settling time than the
uncompensated system.

The first technique we will discuss is ideal derivative compensation. With ideal
derivative compensation, a pure differentiator is added to the forward path of the
feedback control system. We will see that the result of adding differentiation is the
addition of a zero to the forward-path transfer function. This type of compensation
requires an active network for its realization. Further, differentiation is a noisy
process; although the level of the noise is low, the frequency of the noise is high
compared to the signal. Thus, differentiating high-frequency noise yields a large,
unwanted signal.

The second technique does not use pure differentiation. Instead, it approx-
imates differentiation with a passive network by adding a zero and a more distant
pole to the forward-path transfer function. The zero approximates pure differentia-
tion as described previously.

As with compensation to improve steady-state error, we introduce names
associated with the implementation of the compensators. We call an ideal deriva-
tive compensator a proportional-plus-derivative (PD) controller, since the imple-
mentation, as we will see, consists of feeding the error (proportional) plus
the derivative of the error forward to the plant. The second technique uses a
passive network called a lead compensator. As with the lag compensator, the name
comes from its frequency response, which is discussed in Chapter 11. Thus, we use
the name PD controller interchangeably with ideal derivative compensator, and
we use the name lead compensator when the cascade compensator does not employ
pure differentiation.
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Ideal Derivative Compensation (PD)
The transient response of a system can be selected by choosing an appropriate
closed-loop pole location on the s-plane. If this point is on the root locus, then a
simple gain adjustment is all that is required in order to meet the transient response
specification. If the closed-loop pole location is not on the root locus, then the root
locus must be reshaped so that the compensated (new) root locus goes through the
selected closed-loop pole location. In order to accomplish the latter task, poles and
zeros can be added in the forward path to produce a new open-loop function whose
root locus goes through the design point on the s-plane. One way to speed up the
original system that generally works is to add a single zero to the forward path.

This zero can be represented by a compensator whose transfer function is

GcðsÞ ¼ sþ zc ð9:12Þ
This function, the sum of a differentiator and a pure gain, is called an ideal derivative,
or PD controller. Judicious choice of the position of the compensator zero can
quicken the response over the uncompensated system. In summary, transient
responses unattainable by a simple gain adjustment can be obtained by augmenting
the system’s poles and zeros with an ideal derivative compensator.

We now show that ideal derivative compensation speeds up the response of a
system. Several simple examples are shown in Figure 9.15, where the uncompensated
system of Figure 9.15(a), operating with a damping ratio of 0.4, becomes a compensated
system by the addition of a compensating zero at�2,�3, and�4 in Figures 9.15(b), (c),
and (d), respectively. In each design, the zero is moved to a different position, and the
root locus is shown. For each compensated case, the dominant, second-order poles are
farther out along the 0.4 damping ratio line than the uncompensated system.

Each of the compensated cases has dominant poles with the same damping
ratio as the uncompensated case. Thus, we predict that the percent overshoot will be
the same for each case.

Also, the compensated, dominant, closed-loop poles have more negative real
parts than the uncompensated, dominant, closed-loop poles. Hence, we predict that
the settling times for the compensated cases will be shorter than for the
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FIGURE 9.15 Using ideal derivative compensation: a. uncompensated; b. compensator zero at �2; (figure continues)
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uncompensated case. The compensated, dominant, closed-loop poles with the more
negative real parts will have the shorter settling times. The system in Figure 9.15(b)
will have the shortest settling time.

All of the compensated systems will have smaller peak times than the
uncompensated system, since the imaginary parts of the compensated systems
are larger. The system of Figure 9.15(b) will have the smallest peak time.

Also notice that as the zero is placed farther from the dominant poles,
the closed-loop, compensated dominant poles move closer to the origin and
to the uncompensated, dominant closed-loop poles. Table 9.2 summarizes the

K = 35.34

–2.437 + j5.583
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FIGURE 9.15 (Continued ) c. compensator zero at �3; d. compensator zero at �4.

TABLE 9.2 Predicted characteristics for the systems of Figure 9.15

Uncompensated Compensation b Compensation c Compensation d

Plant and compensator
K

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 2Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 3Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 4Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Dom, poles �0:939 � j2:151 �3 � j6:874 �2:437 � j5:583 �1:869 � j4:282

K 23.72 51.25 35.34 20.76

z 0.4 0.4 0.4 0.4

vn 2.347 7.5 6.091 4.673

%OS 25.38 25.38 25.38 25.38

Ts 4.26 1.33 1.64 2.14

Tp 1.46 0.46 0.56 0.733

Kp 2.372 10.25 10.6 8.304

eð1Þ 0.297 0.089 0.086 0.107

Third pole �6:123 None �3:127 �4:262

Zero None None �3 �4

Comments Second-order
approx. OK

Pure
second-order

Second-order
approx. OK

Second-order
approx. OK
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results obtained from the root locus of each of the design cases shown in
Figure 9.15.

In summary, although compensation methods c and d yield slower responses
than method b, the addition of ideal derivative compensation shortened the response
time in each case while keeping the percent overshoot the same. This change can best
be seen in the settling time and peak time, where there is at least a doubling of speed
across all of the cases of compensation. An added benefit is the improvement in the
steady-state error, even though lag compensation was not used. Here the steady-state
error of the compensated system is at least one-third that of the uncompensated
system, as seen by eð1Þ and Kp. All systems in Table 9.2 are Type 0, and some steady-
state error is expected. The reader must not assume that, in general, improvement in
transient response always yields an improvement in steady-state error.

The time response of each case in Table 9.2 is shown in Figure 9.16. We see that
the compensated responses are faster and exhibit less error than the uncompensated
response.

Now that we have seen what ideal derivative compensation can do, we are
ready to design our own ideal derivative compensator to meet a transient response
specification. Basically, we will evaluate the sum of angles from the open-loop poles
and zeros to a design point that is the closed-loop pole that yields the desired
transient response. The difference between 180� and the calculated angle must be the
angular contribution of the compensator zero. Trigonometry is then used to locate
the position of the zero to yield the required difference in angle.

Example 9.3

Ideal Derivative Compensator Design

PROBLEM: Given the system of Figure 9.17, design an ideal derivative compen-
sator to yield a 16% overshoot, with a threefold reduction in settling time.

SOLUTION: Let us first evaluate the performance of the un-
compensated system operating with 16% overshoot. The root locus
for the uncompensated system is shown in Figure 9.18. Since 16%
overshoot is equivalent to z ¼ 0:504, we search along that damping
ratio line for an odd multiple of 180� and find that the dominant,
second-order pair of poles is at �1:205 � j2:064. Thus, the settling

FIGURE 9.16 Uncompensated
system and ideal derivative
compensation solutions from
Table 9.2
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FIGURE 9.17 Feedback control system for
Example 9.3
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time of the uncompensated system is

Ts ¼ 4

zvn
¼ 4

1:205
¼ 3:320 ð9:13Þ

Since our evaluation of percent overshoot and settling time is based upon a
second-order approximation, we must check the assumption by finding the third
pole and justifying the second-order approximation. Searching beyond �6 on
the real axis for a gain equal to the gain of the dominant, second-order pair,
43.35, we find a third pole at �7:59, which is over six times as far from the jv-axis
as the dominant, second-order pair. We conclude that our approximation is
valid. The transient and steady-state error characteristics of the uncompensated
system are summarized in Table 9.3.
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jω

σ
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–1.205 + j2.064

ζ  = 0.504

    = Closed-loop pole
    = Open-loop pole

j1

–1 0–2–34–56–7

j2

j3

–7.59

120.26°

––

FIGURE 9.18 Root locus for uncompensated system shown in Figure 9.17

TABLE 9.3 Uncompensated and compensated system characteristic of Example 9.3

Uncompensated Simulation Compensated Simulation

Plant and compensator
K

sðsþ 4Þðsþ 6Þ
Kðsþ 3:006Þ
sðsþ 4Þðsþ 6Þ

Dominant poles �1:205 � j2:064 �3:613 � j6:193

K 43.35 47.45

z 0.504 0.504

vn 2.39 7.17

%OS 16 14.8 16 11.8

Ts 3.320 3.6 1.107 1.2

Tp 1.522 1.7 0.507 0.5

Kv 1.806 5.94

eð1Þ 0.554 0.168

Third pole �7:591 �2:775

Zero None �3:006

Comments Second-order
approx. OK

Pole-zero
not canceling

Virtual Experiment 9.1
PD Controller Design

Put theory into practice and
use root-locus to design a PD
controller for the Quanser Ball
and Beam using LabVIEW.
The Ball and Beam is an un-
stable system, similar to exo-
thermic chemical processes
that have to be stabilized to
avoid overheating.

Virtual experiments are found
on WileyPLUS.
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Now we proceed to compensate the system. First we find the location of the
compensated system’s dominant poles. In order to have a threefold reduction in the
settling time, the compensated system’s settling time will be one-third of Eq. (9.13).
The new settling time will be 1.107. Therefore, the real part of the compensated
system’s dominant, second-order pole is

s ¼ 4

Ts
¼ 4

1:107
¼ 3:613 ð9:14Þ

Figure 9.19 shows the designed dominant, second-order pole, with a real part equal
to �3:613 and an imaginary part of

vd ¼ 3:613 tanð180� � 120:26�Þ ¼ 6:193 ð9:15Þ
Next we design the location of the compensator zero. Input the uncompensated

system’s poles and zeros in the root locus program as well as the design point
�3:613 � j6:193 as a test point. The result is the sum of the angles to the design
point of all the poles and zeros of the compensated system except for those of
the compensator zero itself. The difference between the result obtained and
180� is the angular contribution required of the compensator zero. Using the
open-loop poles shown in Figure 9.19 and the test point, �3:613 þ j6:193, which
is the desired dominant second-order pole, we obtain the sum of the angles as
�275:6�. Hence, the angular contribution required from the compensator zero
for the test point to be on the root locus is þ275:6� � 180� ¼ 95:6�. The geom-
etry is shown in Figure 9.20, where we now must solve for �s, the location of
the compensator zero.

From the figure,

6:193

3:613 � s
¼ tanð180� � 95:6�Þ ð9:16Þ

Thus, s ¼ 3:006. The complete root locus for the compensated system is shown in
Figure 9.21.

Table 9.3 summarizes the results for both the uncompensated system and the
compensated system. For the uncompensated system, the estimate of the transient

FIGURE 9.19 Compensated
dominant pole superimposed
over the uncompensated root
locus for Example 9.3
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response is accurate since the third pole is at least five times the real part of the
dominant, second-order pair. The second-order approximation for the compen-
sated system, however, may be invalid because there is no approximate closed-
loop third-pole and zero cancellation between the closed-loop pole at �2:775 and
the closed-loop zero at �3:006. A simulation or a partial-fraction expansion of the
closed-loop response to compare the residue of the pole at �2:775 to the residues
of the dominant poles at �3:613 � j6:193 is required. The results of a simulation
are shown in the table’s second column for the uncompensated system and the
fourth column for the compensated system. The simulation results can be
obtained using MATLAB (discussed at the end of this example) or a program
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FIGURE 9.21 Root locus for
the compensated system of
Example 9.3
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FIGURE 9.20 Evaluating the
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zero for Example 9.3
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like the state-space step-response program described in Appendix H.1 at www.
wiley.com/college/nise. The percent overshoot differs by 3% between the un-
compensated and compensated systems, while there is approximately a threefold
improvement in speed as evaluated from the settling time.

The final results are displayed in Figure 9.22, which compares the un-
compensated system and the faster compensated system.

Students who are using MATLAB should now run ch9p1 in Appendix B.
MATLAB will be used to design a PD controller. You will input the
desired percent overshoot from the keyboard. MATLAB will plot the
root locus of the uncompensated system and the percent overshoot
line. You will interactively select the gain, after which MATLAB
will display the performance characteristics of the un-
compensated system and plot its step response. Using these char-
acteristics, you will input the desired settling time. MATLAB
will design the PD controller, enumerate its performance char-
acteristics, and plot a step response. This exercise solves Exam-
ple 9.3 using MATLAB.

Once we decide on the location of the compensating zero,
how do we implement the ideal derivative, or PD controller? The
ideal integral compensator that improved steady-state error was
implemented with a proportional-plus-integral (PI) controller.
The ideal derivative compensator used to improve the transient
response is implemented with a proportional-plus-derivative
(PD) controller. For example, in Figure 9.23 the transfer function
of the controller is

GcðsÞ ¼ K2sþK1 ¼ K2 sþK1

K2

� �
ð9:17Þ

Hence, K1=K2 is chosen to equal the negative of the compensator zero, and K2 is
chosen to contribute to the required loop-gain value. Later in the chapter, we will
study circuits that can be used to approximate differentiation and produce gain.

While the ideal derivative compensator can improve the transient response of
the system, it has two drawbacks. First, it requires an active circuit to perform the

FIGURE 9.22 Uncompensated
and compensated system step
responses of Example 9.3
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differentiation. Second, as previously mentioned, differentiation is a noisy process:
The level of the noise is low, but the frequency of the noise is high compared to the
signal. Differentiation of high frequencies can lead to large unwanted signals or
saturation of amplifiers and other components. The lead compensator is a passive
network used to overcome the disadvantages of ideal differentiation and still retain
the ability to improve the transient response.

Lead Compensation
Just as the active ideal integral compensator can be approximated with a passive lag
network, an active ideal derivative compensator can be approximated with a passive
lead compensator. When passive networks are used, a single zero cannot be
produced; rather, a compensator zero and a pole result. However, if the pole is
farther from the imaginary axis than the zero, the angular contribution of the
compensator is still positive and thus approximates an equivalent single zero. In
other words, the angular contribution of the compensator pole subtracts from the
angular contribution of the zero but does not preclude the use of the compensator to
improve transient response, since the net angular contribution is positive, just as for a
single PD controller zero.

The advantages of a passive lead network over an active PD controller are that
(1) no additional power supplies are required and (2) noise due to differentiation is
reduced. The disadvantage is that the additional pole does not reduce the number of
branches of the root locus that cross the imaginary axis into the right–half-plane,
while the addition of the single zero of the PD controller tends to reduce the number
of branches of the root locus that cross into the right half-plane.

Let us first look at the concept behind lead compensation. If we select a desired
dominant, second-order pole on the s-plane, the sum of the angles from the
uncompensated system’s poles and zeros to the design point can be found. The
difference between 180� and the sum of the angles must be the angular contribution
required of the compensator.

For example, looking at Figure 9.24, we see that

u2 � u1 � u3 � u4 þ u5 ¼ ð2kþ 1Þ180� ð9:18Þ
where ðu2 � u1Þ ¼ uc is the angular contribution of the lead compensator. From
Figure 9.24 we see that uc is the angle of a ray extending from the design point and
intersecting the real axis at the pole value and zero value of the compensator. Now
visualize this ray rotating about the desired closed-loop pole location and

TryIt 9.2

Use MATLAB, the Control Sys-
tem Toobox, and the following
steps to use SISOTOOL to per-
form the design of Example 9.3.

1. Type SISOTOOL in the
MATLAB Command
Window.

2. Select Import in the File
menu of the SISO Design
for SISO Design Task
Window.

3. In theData field for G, type
zpk([],[0,-4,-6],1)
and hit ENTER on the
keyboard. Click OK.

4. On the Edit menu choose
SISO Tool Preferences . . .
and select Zero/pole/gain:

under the Options tab.
Click OK.

5. Right-click on the root locus
white space and choose De-
signRequirements/New . . .

6. Choose Percent overshoot
and type in 16. Click OK.

7. Right-click on the root locus
white space and choose De-
signRequirements/New . . .

8. Choose Settling time and
click OK.

9. Drag the settling time ver-
tical line to the intersection
of the root locus and 16%
overshoot radial line.

10. Read the settling time at
the bottom of the window.

11. Drag the settling time ver-
tical line to a settling time
that is 1/3 of the value
found in Step 9.

12. Click on a redzero icon in the
menu bar. Place the zero on
the root locus real axis by
clickingagainontherealaxis.

13. Left-click on the real-axis
zero and drag it along the
real axis until the root locus
intersects the settling time
and percent overshoot lines.

14. Drag a red square along the
root locus until it is at the
intersection of the root lo-
cus, settling time line, and
the percent overshoot line.

15. Click the Compensator Ed-
itor tab of the Control and
Estimation Tools Manager
window to see the resulting
compensator, including the
gain.
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FIGURE 9.24 Geometry of lead compensation
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intersecting the real axis at the compensator pole and zero, as illustrated in Figure
9.25. We realize that an infinite number of lead compensators could be used to meet
the transient response requirement.

How do the possible lead compensators differ? The differences are in the
values of static error constants, the gain required to reach the design point on the
compensated root locus, the difficulty in justifying a second-order approximation
when the design is complete, and the ensuing transient response.

For design, we arbitrarily select either a lead compensator pole or zero and find
the angular contribution at the design point of this pole or zero along with the system’s
open-loop poles and zeros. The difference between this angle and 180� is the required
contribution of the remaining compensator pole or zero. Let us look at an example.

Example 9.4

Lead Compensator Design

PROBLEM: Design three lead compensators for the system of Figure 9.17 that will
reduce the settling time by a factor of 2 while maintaining 30% overshoot. Compare

the system characteristics between the three designs.

SOLUTION: First determine the characteristics of the
uncompensated system operating at 30% overshoot to
see what the uncompensated settling time is. Since 30%
overshoot is equivalent to a damping ratio of 0.358, we
search along the z ¼ 0:358 line for the uncompensated
dominant poles on the root locus, as shown in Figure
9.26. From the pole’s real part, we calculate the un-
compensated settling time as Ts ¼ 4=1:007 ¼ 3:972
seconds. The remaining characteristics of the un-
compensated system are summarized in Table 9.4.

Next we find the design point. A twofold reduc-
tion in settling time yields Ts ¼ 3:972=2 ¼ 1:986 sec-
onds, from which the real part of the desired pole
location is �zvn ¼ �4=Ts ¼ �2:014. The imaginary
part is vd ¼ �2:014 tanð110:98�Þ ¼ 5:252.

We continue by designing the lead compensator.
Arbitrarily assume a compensator zero at �5 on the
real axis as a possible solution. Using the root locus
program, sum the angles from both this zero and the

FIGURE 9.25 Three of the
infinite possible lead
compensator solutions
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FIGURE 9.26 Lead compensator design, showing evaluation
of uncompensated and compensated dominant poles for
Example 9.4
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uncompensated system’s poles and zeros, using the design point as a test point. The
resulting angle is �172:69�. The difference between this angle and 180� is the angular
contribution required from the compensator pole in order to place the design point on
the root locus. Hence, an angular contribution of �7:31� is required from the
compensator pole.

The geometry shown in Figure 9.27 is used to calculate the location of the
compensator pole. From the figure,

5:252

pc � 2:014
¼ tan 7:31� ð9:19Þ

from which the compensator pole is found to be

pc ¼ 42:96 ð9:20Þ
The compensated system root locus is sketched in Figure 9.28.

TABLE 9.4 Comparison of lead compensation designs for Example 9.4

Uncompensated Compensation a Compensation b Compensation c

Plant and
compensator

K

sðsþ 4Þðsþ 6Þ
Kðsþ 5Þ

sðsþ 4Þðsþ 6Þðsþ 42:96Þ
Kðsþ 4Þ

sðsþ 4Þðsþ 6Þðsþ 20:09Þ
Kðsþ 2Þ

sðsþ 4Þðsþ 6Þðsþ 8:971Þ

Dominant poles �1:007 � j2:627 �2:014 � j5:252 �2:014 � j5:252 �2:014 � j5:252

K 63.21 1423 698.1 345.6

z 0.358 0.358 0.358 0.358

vn 2.813 5.625 5.625 5.625

%OS� 30 (28) 30 (30.7) 30 (28.2) 30 (14.5)

Ts
� 3.972 (4) 1.986 (2) 1.986 (2) 1.986 (1.7)

Tp
� 1.196 (1.3) 0.598 (0.6) 0.598 (0.6) 0.598 (0.7)

Kv 2.634 6.9 5.791 3.21

eð1Þ 0.380 0.145 0.173 0.312

Other poles �7:986 �43.8, �5:134 �22:06 �13:3, �1:642

Zero None �5 None �2

Comments Second-order
approx. OK

Second-order
approx. OK

Second-order
approx. OK

No pole-zero
cancellation

�
Simulation results are shown in parentheses.

jω

s-plane

j5.252

–2.014–pc

Desired
compensated

dominant pole

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

7.31°
σ

FIGURE 9.27 s-plane picture
used to calculate the location
of the compensator pole for
Example 9.4

s-plane

j

–4 0–5–6–42.96

Note: This figure is not drawn to scale.

    = Closed-loop pole
    = Open-loop pole

ω

σ

FIGURE 9.28 Compensated
system root locus
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In order to justify our estimates of percent overshoot and settling time, we
must show that the second-order approximation is valid. To perform this validity
check, we search for the third and fourth closed-loop poles found beyond �42:96
and between �5 and �6 in Figure 9.28. Searching these regions for the gain equal to
that of the compensated dominant pole, 1423, we find that the third and fourth
poles are at �43:8 and �5:134, respectively. Since �43:8 is more than 20 times the
real part of the dominant pole, the effect of the third closed-loop pole is negligible.
Since the closed-loop pole at �5:134 is close to the zero at �5, we have pole-zero
cancellation, and the second-order approximation is valid.

All results for this design and two other designs, which place the compensator
zero arbitrarily at �2 and �4 and follow similar design techniques, are summarized
in Table 9.4. Each design should be verified by a simulation, which could consist of
using MATLAB (discussed at the end of this example) or the state-space model
and the step-response program discussed in Appendix H.1 at www.wiley.com/
college/nise. We have performed a simulation for this design problem, and the
results are shown by parenthetical entries next to the estimated values in the table.
The only design that disagrees with the simulation is the case where the compen-
sator zero is at �2. For this case the closed-loop pole and zero do not cancel.

A sketch of the root locus, which you should generate, shows why the effect of
the zero is pronounced, causing the response to be different from that predicted.
Placing the zero to the right of the pole at �4 creates a portion of the root locus that
is between the origin and the zero. In other words, there is a closed-loop pole closer
to the origin than the dominant poles, with little chance of pole-zero cancellation
except at high gain. Thus, a quick sketch of the root locus gives us information from
which we can make better design decisions. For this example, we want to place the
zero on, or to the left of, the pole at �4, which gives a better chance for pole-zero
cancellation and for a higher-order pole that is to the left of the dominant poles and
subsequently faster. This is verified by the fact that our results show good second-
order approximations for the cases where the zero was placed at �4 and �5. Again,
decisions about where to place the zero are based on simple rules of thumb and
must be verified by simulations at the end of the design.

Let us now summarize the results shown in Table 9.4. First we notice
differences in the following:

1. The position of the arbitrarily selected zero

2. The amount of improvement in the steady-state error

3. The amount of required gain, K

4. The position of the third and fourth poles and their relative effect upon the
second-order approximation. This effect is measured by their distance from the
dominant poles or the degree of cancellation with the closed-loop zero.

Once a simulation verifies desired performance, the choice of compensation
can be based upon the amount of gain required or the improvement in steady-state
error that can be obtained without a lag compensator.

The results of Table 9.4 are supported by simulations of the step response,
shown in Figure 9.29 for the uncompensated system and the three lead compensa-
tion solutions.

Students who are using MATLAB should now run ch9p2 in Appendix B.
MATLAB will be used to design a lead compensator. You will input
the desired percent overshoot from the keyboard. MATLAB
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will plot the root locus of the uncompensated system and the
percent overshoot line. You will interactively select the gain,
after which MATLAB will display the performance characteris-
tics of the uncompensated system and plot its step response.
Using these characteristics,you will input the desired set-
tling time and a zero value for the lead compensator.You will
then interactively select a value for the compensator pole.
MATLAB will respond with a root locus.You can then continue
selecting pole values until the root locus goes through the
desired point.MATLAB will display the lead compensator,enu-
merate its performance characteristics,and plot a step re-
sponse.This exercise solves Example 9.4 using MATLAB.

Skill-Assessment Exercise 9.2

PROBLEM: A unity feedback system with the forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 15% overshoot. Do the
following:

a. Evaluate the settling time.

b. Design a lead compensator to decrease the settling time by three times.
Choose the compensator’s zero to be at �10.

ANSWERS:

a. Ts ¼ 1:143 s

b. GleadðsÞ ¼ sþ 10

sþ 25:52
; K ¼ 476:3

The complete solution is at www.wiley.com/college/nise.

Compensation c
Uncompensated

Compensation a, b

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3

c(
t)

Time (seconds)
4

FIGURE 9.29 Uncompensated
system and lead compensation
responses for Example 9.4

9.3 Improving Transient Response via Cascade Compensation 481

www.wiley.com/college/nise


Apago PDF Enhancer

E1C09 11/03/2010 13:29:43 Page 482

9.4 Improving Steady-State Error and Transient Response

We now combine the design techniques covered in Sections 9.2 and 9.3 to obtain
improvement in steady-state error and transient response independently. Basically,
we first improve the transient response by using the methods of Section 9.3. Then we
improve the steady-state error of this compensated system by applying the methods
of Section 9.2. A disadvantage of this approach is the slight decrease in the speed of
the response when the steady-state error is improved.

As an alternative, we can improve the steady-state error first and then follow
with the design to improve the transient response. A disadvantage of this approach is
that the improvement in transient response in some cases yields deterioration in the
improvement of the steady-state error, which was designed first. In other cases,
the improvement in transient response yields further improvement in steady-state
errors. Thus, a system can be overdesigned with respect to steady-state errors.
Overdesign is usually not a problem unless it affects cost or produces other design
problems. In this textbook, we first design for transient response and then design for
steady-state error.

The design can use either active or passive compensators, as previously
described. If we design an active PD controller followed by an active PI controller,
the resulting compensator is called a proportional-plus-integral-plus-derivative
(PID) controller. If we first design a passive lead compensator and then design a
passive lag compensator, the resulting compensator is called a lag-lead compensator.

PID Controller Design
A PID controller is shown in Figure 9.30. Its transfer function is

GcðsÞ ¼ K1 þK2

s
þK3s ¼ K1sþK2 þK3s2

s
¼

K3 s2 þK1

K3
sþK2

K3

� �

s
ð9:21Þ

which has two zeros plus a pole at the origin. One zero and the pole at the origin can
be designed as the ideal integral compensator; the other zero can be designed as the
ideal derivative compensator.

The design technique, which is demonstrated in Example 9.5, consists of the
following steps:

1. Evaluate the performance of the uncompensated system to determine how much
improvement in transient response is required.

2. Design the PD controller to meet the transient response specifications. The
design includes the zero location and the loop gain.

FIGURE 9.30 PID controller

K1

K2
s

K3s

R(s) C(s)
+

G(s)
–

+ +
+
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3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.

5. Design the PI controller to yield the required steady-state error.

6. Determine the gains, K1, K2, and K3, in Figure 9.30.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if simulation shows that requirements have not been met.

Example 9.5

PID Controller Design

PROBLEM: Given the system of Figure 9.31, design a PID
controller so that the system can operate with a peak time
that is two-thirds that of the uncompensated system at 20%
overshoot and with zero steady-state error for a step input.

SOLUTION: Note that our solution follows the eight-step pro-
cedure described earlier.

Step 1 Let us first evaluate the uncompensated system operating at 20% over-
shoot. Searching along the 20% overshoot line ðz ¼ 0:456Þ in Figure 9.32,
we find the dominant poles to be �5:415 � j10:57 with a gain of 121.5. A
third pole, which exists at �8:169, is found by searching the region

K(s + 8)

(s + 3)(s + 6)(s + 10)

R(s) C(s)

–

+ E(s)

FIGURE 9.31 Uncompensated feedback control
system for Example 9.5

117.13°

K = 121.5
Uncompensated
dominant pole

–5.415 + j10.57 

j

s-plane

σ
−2 0−4−6−8−10

−8.169 −5.5

ω

j2

j4

j6

j8

j10

j12

−3

−4.6

= 0.456

= Closed-loop pole
= Open-loop pole

ζ

FIGURE 9.32 Root locus for the uncompensated system of Example 9.5
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between�8 and�10 for a gain equivalent to that at the dominant poles. The
complete performance of the uncompensated system is shown in the first
column of Table 9.5, where we compare the calculated values to those
obtained through simulation (Figure 9.35). We estimate that the un-
compensated system has a peak time of 0.297 second at 20% overshoot.

Step 2 To compensate the system to reduce the peak time to two-thirds of that of the
uncompensated system, we must first find the compensated system’s domi-
nant pole location. The imaginary part of the compensated dominant pole is

vd ¼ p

Tp
¼ p

ð2=3Þð0:297Þ ¼ 15:87 ð9:22Þ

Thus, the real part of the compensated dominant pole is

s ¼ vd

tan 117:13� ¼ �8:13 ð9:23Þ
Next we design the compensator. Using the geometry shown in Figure 9.33,

we calculate the compensating zero’s location. Using the root locus program,
we find the sum of angles from the uncompensated system’s poles and zeros to
the desired compensated dominant pole to be�198:37�. Thus, the contribution
required from the compensator zero is 198:37� � 180� ¼ 18:37�. Assume that
the compensator zero is located at �zc, as shown in Figure 9.33. Since

15:87

zc � 8:13
¼ tan 18:37� ð9:24Þ

then

zc ¼ 55:92 ð9:25Þ
Thus, the PD controller is

GPDðsÞ ¼ ðsþ 55:92Þ ð9:26Þ

TABLE 9.5 Predicted characteristics of uncompensated, PD-, and PID-compensated systems of Example 9.5

Uncompensated PD-compensated PID-compensated

Plant and compensator
Kðsþ 8Þ

ðsþ 3Þðsþ 6Þðsþ 10Þ
Kðsþ 8Þðsþ 55:92Þ
ðsþ 3Þðsþ 6Þðsþ 10Þ

Kðsþ 8Þðsþ 55:92Þðsþ 0:5Þ
ðsþ 3Þðsþ 6Þðsþ 10Þs

Dominant poles �5:415 � j10:57 �8:13 � j15:87 �7:516 � j14:67

K 121.5 5.34 4.6

z 0.456 0.456 0.456

vn 11.88 17.83 16.49

%OS 20 20 20

Ts 0.739 0.492 0.532

Tp 0.297 0.198 0.214

Kp 5.4 13.27 1
eð1Þ 0.156 0.070 0

Other poles �8:169 �8:079 �8:099, �0:468

Zeros �8 �8, �55:92 �8, �55:92, �0:5

Comments Second-order
approx. OK

Second-order
approx. OK

Zeros at �55:92
and �0:5 not canceled

–zc
–8.13

j15.87

s-plane

σ

PD-compensated
dominant pole

ωj

Note: This figure is not drawn to scale.

 = Closed-loop pole

18.37°

FIGURE 9.33 Calculating the
PD compensator zero for
Example 9.5
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The complete root locus for the PD-compensated system is sketched in
Figure 9.34. Using a root locus program, the gain at the design point is 5.34.
Complete specifications for ideal derivative compensation are shown in
the third column of Table 9.5.

Steps 3 and 4 We simulate the PD-compensated system, as shown in Figure 9.35.
We see the reduction in peak time and the improvement in steady-state
error over the uncompensated system.

Step 5 After we design the PD controller, we design the ideal integral compen-
sator to reduce the steady-state error to zero for a step input. Any ideal
integral compensator zero will work, as long as the zero is placed close to
the origin. Choosing the ideal integral compensator to be

GPIðsÞ ¼ sþ 0:5

s
ð9:27Þ

–10 –8 –6 –3 0

117.13°

j

K = 5.34

ζ = 0.456

–55.92

ω

σ

–8.13 + j15.87

–106

s-plane

PD-compensated
dominant pole

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

FIGURE 9.34 Root locus for PD-compensated system of Example 9.5
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FIGURE 9.35 Step responses
for uncompensated, PD-
compensated, and PID-
compensated systems of
Example 9.5
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we sketch the root locus for the PID-compensated system, as shown in
Figure 9.36. Searching the 0.456 damping ratio line, we find the dominant,
second-order poles to be �7:516 � j14:67, with an associated gain of 4.6.
The remaining characteristics for the PID-compensated system are
summarized in the fourth column of Table 9.5.

Step 6 Now we determine the gains, K1,K2, and K3, in Figure 9.30. From Eqs.
(9.26) and (9.27), the product of the gain and the PID controller is

GPIDðsÞ ¼ Kðsþ 55:92Þðsþ 0:5Þ
s

¼ 4:6ðsþ 55:92Þðsþ 0:5Þ
s

¼ 4:6ðs2 þ 56:42sþ 27:96Þ
s

ð9:28Þ

Matching Eqs. (9.21) and (9.28), K1 ¼ 259:5, K2 ¼ 128:6, and K3 ¼ 4:6

Steps 7 and 8 Returning to Figure 9.35, we summarize the results of our design. PD
compensation improved the transient response by decreasing the time re-
quired to reach the first peak as well as yielding some improvement in the
steady-state error. The complete PID controller further improved the steady-
state error without appreciably changing the transient response designed with
the PD controller. As we have mentioned before, the PID controller exhibits a
slower response, reaching the final value of unity at approximately 3 seconds. If
this is undesirable, the speed of the system must be increased by redesigning
the ideal derivative compensator or moving the PI controller zero farther from
the origin. Simulation plays an important role in this type of design since our
derived equation for settling time is not applicable for this part of the response,
where there is a slow correction of the steady-state error.

–10 –8 –6 –3 0

117.13°

–0.5

s-plane

j

K = 4.6

ζ = 0.456

–55.92

ω

σ

–7.516 + j14.67

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

PID-compensated
dominant pole

–106

FIGURE 9.36 Root locus for PID-compensated system of Example 9.5

486 Chapter 9 Design via Root Locus


	Inside Front Cover
	Title Page
	Dedication Page
	Copyright Page
	CONTENTS
	Preface
	Icons Identifying Major Topics


