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9.1 Introduction

In Chapter 8, we saw that the root locus graphically displayed both transient response
and stability information. The locus can be sketched quickly to get a general idea of the
changes in transient response generated by changes in gain. Specific points on the
locus also can be found accurately to give quantitative design information.

The root locus typically allows us to choose the proper loop gain to meet a
transient response specification. As the gain is varied, we move through different
regions of response. Setting the gain at a particular value yields the transient
response dictated by the poles at that point on the root locus. Thus, we are limited
to those responses that exist along the root locus.

Improving Transient Response
Flexibility in the design of a desired transient response can be increased if we can
design for transient responses that are not on the root locus. Figure 9.1(a) illustrates
the concept. Assume that the desired transient response, defined by percent over-
shoot and settling time, is represented by point B. Unfortunately, on the current root
locus at the specified percent overshoot, we only can obtain the settling time
represented by point A after a simple gain adjustment. Thus, our goal is to speed
up the response at A to that of B, without affecting the percent overshoot. This
increase in speed cannot be accomplished by a simple gain adjustment, since point B
does not lie on the root locus. Figure 9.1(b) illustrates the improvement in the
transient response we seek: The faster response has the same percent overshoot as
the slower response.

FIGURE 9.1 a. Sample root
locus, showing possible design
point via gain adjustment (A)
and desired design point that
cannot be met via simple gain
adjustment (B); b. responses
from poles at A and B
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One way to solve our problem is to replace the existing system with a system
whose root locus intersects the desired design point, B. Unfortunately, this replace-
ment is expensive and counterproductive. Most systems are chosen for character-
istics other than transient response. For example, an elevator cage and motor are
chosen for speed and power. Components chosen for their transient response may
not necessarily meet, for example, power requirements.

Rather than change the existing system, we augment, or compensate, the
system with additional poles and zeros, so that the compensated system has a root
locus that goes through the desired pole location for some value of gain. One of the
advantages of compensating a system in this way is that additional poles and zeros
can be added at the low-power end of the system before the plant. Addition of
compensating poles and zeros need not interfere with the power output require-
ments of the system or present additional load or design problems. The compensat-
ing poles and zeros can be generated with a passive or an active network.

A possible disadvantage of compensating a system with additional open-loop
poles and zeros is that the system order can increase, with a subsequent effect on the
desired response. In Chapters 4 and 8, we discussed the effect of additional closed-
loop poles and zeros on the transient response. At the beginning of the design
process discussed in this chapter, we determine the proper location of additional
open-loop poles and zeros to yield the desired second-order closed-loop poles.
However, we do not know the location of the higher-order closed-loop poles until the
end of the design. Thus, we should evaluate the transient response through simula-
tion after the design is complete to be sure the requirements have been met.

In Chapter 12, when we discuss state-space design, the disadvantage of finding
the location of higher-order closed-loop poles after the design will be eliminated by
techniques that allow the designer to specify and design the location of all the closed-
loop poles at the beginning of the design process.

One method of compensating for transient response that will be discussed later
is to insert a differentiator in the forward path in parallel with the gain. We can
visualize the operation of the differentiator with the following example. Assuming a
position control with a step input, we note that the error undergoes an initial large
change. Differentiating this rapid change yields a large signal that drives the plant.
The output from the differentiator is much larger than the output from the pure gain.
This large, initial input to the plant produces a faster response. As the error
approaches its final value, its derivative approaches zero, and the output from
the differentiator becomes negligible compared to the output from the gain.

Improving Steady-State Error
Compensators are not only used to improve the transient response of a system; they
are also used independently to improve the steady-state error characteristics.
Previously, when the system gain was adjusted to meet the transient response
specification, steady-state error performance deteriorated, since both the transient
response and the static error constant were related to the gain. The higher the gain,
the smaller the steady-state error, but the larger the percent overshoot. On the other
hand, reducing gain to reduce overshoot increased the steady-state error. If we use
dynamic compensators, compensating networks can be designed that will allow us to
meet transient and steady-state error specifications simultaneously.1 We no longer

1 The word dynamic describes compensators with noninstantaneous transient response. The transfer
functions of such compensators are functions of the Laplace variable, s, rather than pure gain.

9.1 Introduction 457



Apago PDF Enhancer

E1C09 11/03/2010 13:29:34 Page 458

need to compromise between transient response and steady-state error, as long as
the system operates in its linear range.

In Chapter 7, we learned that steady-state error can be improved by adding an
open-loop pole at the origin in the forward path, thus increasing the system type and
driving the associated steady-state error to zero. This additional pole at the origin
requires an integrator for its realization.

In summary, then, transient response is improved with the addition of differ-
entiation, and steady-state error is improved with the addition of integration in the
forward path.

Configurations
Two configurations of compensation are covered in this chapter: cascade compen-
sation and feedback compensation. These methods are modeled in Figure 9.2. With
cascade compensation, the compensating network, G1(s), is placed at the low-power
end of the forward path in cascade with the plant. If feedback compensation is used,
the compensator, H1(s), is placed in the feedback path. Both methods change the
open-loop poles and zeros, thereby creating a new root locus that goes through the
desired closed-loop pole location.

Compensators
Compensators that use pure integration for improving steady-state error or pure
differentiation for improving transient response are defined as ideal compensators.
Ideal compensators must be implemented with active networks, which, in the case of
electric networks, require the use of active amplifiers and possible additional power
sources. An advantage of ideal integral compensators is that steady-state error is
reduced to zero. Electromechanical ideal compensators, such as tachometers, are
often used to improve transient response, since they can be conveniently interfaced
with the plant.

Other design techniques that preclude the use of active devices for compen-
sation can be adopted. These compensators, which can be implemented with passive
elements such as resistors and capacitors, do not use pure integration and differen-
tiation and are not ideal compensators. Advantages of passive networks are that they

FIGURE 9.2 Compensation
techniques: a. cascade;
b. feedback
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are less expensive and do not require additional power sources for their operation.
Their disadvantage is that the steady-state error is not driven to zero in cases where
ideal compensators yield zero error.

Thus, the choice between an active or a passive compensator revolves around
cost, weight, desired performance, transfer function, and the interface between the
compensator and other hardware. In Sections 9.2, 9.3, and 9.4, we first discuss
cascade compensator design using ideal compensation and follow with cascade
compensation using compensators that are not implemented with pure integration
and differentiation.

9.2 Improving Steady-State Error
via Cascade Compensation

In this section, we discuss two ways to improve the steady-state error of a feedback
control system using cascade compensation. One objective of this design is to
improve the steady-state error without appreciably affecting the transient response.

The first technique is ideal integral compensation, which uses a pure integrator
to place an open-loop, forward-path pole at the origin, thus increasing the system
type and reducing the error to zero. The second technique does not use pure
integration. This compensation technique places the pole near the origin, and
although it does not drive the steady-state error to zero, it does yield a measurable
reduction in steady-state error.

While the first technique reduces the steady-state error to zero, the compen-
sator must be implemented with active networks, such as amplifiers. The second
technique, although it does not reduce the error to zero, does have the advantage
that it can be implemented with a less expensive passive network that does not
require additional power sources.

The names associated with the compensators come either from the method of
implementing the compensator or from the compensator’s characteristics. Systems
that feed the error forward to the plant are called proportional control systems.
Systems that feed the integral of the error to the plant are called integral control
systems. Finally, systems that feed the derivative of the error to the plant are called
derivative control systems. Thus, in this section we call the ideal integral compensator
a proportional-plus-integral (PI) controller, since the implementation, as we will see,
consists of feeding the error (proportional) plus the integral of the error forward to
the plant. The second technique uses what we call a lag compensator. The name of
this compensator comes from its frequency response characteristics, which will be
discussed in Chapter 11. Thus, we use the name PI controller interchangeably with
ideal integral compensator, and we use the name lag compensator when the cascade
compensator does not employ pure integration.

Ideal Integral Compensation (PI)
Steady-state error can be improved by placing an open-loop pole at the origin,
because this increases the system type by one. For example, a Type 0 system
responding to a step input with a finite error responds with zero error if the system
type is increased by one. Active circuits can be used to place poles at the origin. Later
in this chapter, we show how to build an integrator with active electronic circuits.

To see how to improve the steady-state error without affecting the transient
response, look at Figure 9.3(a). Here we have a system operating with a desirable
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transient response generated by the closed-loop poles at A. If we add a pole at the
origin to increase the system type, the angular contribution of the open-loop poles at
point A is no longer 180�, and the root locus no longer goes through point A, as
shown in Figure 9.3(b).

To solve the problem, we also add a zero close to the pole at the origin, as shown
in Figure 9.3(c). Now the angular contribution of the compensator zero and compen-
sator pole cancel out, point A is still on the root locus, and the system type has been
increased. Furthermore, the required gain at the dominant pole is about the same as
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FIGURE 9.3 Pole atA is a. on the root locus without compensator; b. not on the root locus with
compensator pole added; c. approximately on the root locus with compensator pole and zero
added
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before compensation, since the ratio of lengths from the compensator pole and the
compensator zero is approximately unity. Thus, we have improved the steady-state
error without appreciably affecting the transient response. A compensator with a pole
at the origin and a zero close to the pole is called an ideal integral compensator.

In the example that follows, we demonstrate the effect of ideal integral compen-
sation. An open-loop pole will be placed at the origin to increase the system type and
drive the steady-state error to zero. An open-loop zero will be placed very close to the
open-loop pole at the origin so that the original closed-loop poles on the original root
locus still remain at approximately the same points on the compensated root locus.

Example 9.1

Effect of an Ideal Integral Compensator

PROBLEM: Given the system of Figure 9.4(a), operating with a damping ratio of
0.174, show that the addition of the ideal integral compensator shown in Figure 9.4(b)
reduces the steady-state error to zero for a step input without appreciably affecting
transient response. The compensating network is chosen with a pole at the origin
to increase the system type and a zero at �0:1, close to the compensator pole, so that
the angular contribution of the compensator evaluated at the original, dominant,
second-order poles is approximately zero. Thus, the original, dominant, second-order
closed-loop poles are still approximately on the new root locus.

SOLUTION: We first analyze the uncompensated system and determine the loca-
tion of the dominant, second-order poles. Next we evaluate the uncompensated
steady-state error for a unit step input. The root locus for the uncompensated
system is shown in Figure 9.5.

A damping ratio of 0.174 is represented by a radial line drawn on the s-plane at
100:02�. Searching along this line with the root locus program discussed in Appendix
H at www.wiley.com/college/nise, we find that the dominant poles are 0:694 � j3:926
for a gain, K, of 164.6. Now look for the third pole on the root locus beyond �10 on
the real axis. Using the root locus program and searching for the same gain as that of
the dominant pair,K ¼ 164:6, we find that the third pole is approximately at�11:61.
This gain yields Kp ¼ 8:23. Hence, the steady-state error is

eð1Þ ¼ 1

1 þKp
¼ 1

1 þ 8:23
¼ 0:108 ð9:1Þ
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FIGURE 9.4 Closed-loop
system for Example 9.1:
a. before compensation;
b. after ideal integral
compensation
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Adding an ideal integral compensator with a zero at �0:1, as shown in Figure
9.4(b), we obtain the root locus shown in Figure 9.6. The dominant second-order
poles, the third pole beyond �10, and the gain are approximately the same as for
the uncompensated system. Another section of the compensated root locus is
between the origin and �0:1. Searching this region for the same gain at the
dominant pair, K ¼ 158:2, the fourth closed-loop pole is found at �0:0902, close
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enough to the zero to cause pole-zero cancellation. Thus, the compensated
system’s closed-loop poles and gain are approximately the same as the un-
compensated system’s closed-loop poles and gain, which indicates that the
transient response of the compensated system is about the same as the un-
compensated system. However, the compensated system, with its pole at the
origin, is a Type 1 system; unlike the uncompensated system, it will respond to a
step input with zero error.

Figure 9.7 compares the uncompensated response with the ideal integral
compensated response. The step response of the ideal integral compensated system
approaches unity in the steady state, while the uncompensated system approaches
0.892. Thus, the ideal integral compensated system responds with zero steady-state
error. The transient response of both the uncompensated and the ideal integral
compensated systems is the same up to approximately 3 seconds. After that time the
integrator in the compensator, shown in Figure 9.4(b), slowly compensates for the
error until zero error is finally reached. The simulation shows that it takes 18 seconds
for the compensated system to reach to within �2% of the final value of unity, while
the uncompensated system takes about 6 seconds to settle to within �2% of its final
value of 0.892. The compensation at first may appear to yield deterioration in the
settling time. However, notice that the compensated system reaches the un-
compensated system’s final value in about the same time. The remaining time is
used to improve the steady-state error over that of the uncompensated system.

A method of implementing an ideal integral compensator is shown in Figure 9.8.
The compensating network precedes G(s) and is an ideal integral compensator since

GcðsÞ ¼ K1 þK2

s
¼

K1 sþ K2
K1

� �

s
ð9:2Þ
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FIGURE 9.7 Ideal integral
compensated system response
and the uncompensated system
response of Example 9.1
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FIGURE 9.8 PI controller
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The value of the zero can be adjusted by varying K2=K1. In this implementation, the
error and the integral of the error are fed forward to the plant, G(s). Since Figure 9.8
has both proportional and integral control, the ideal integral controller, or compen-
sator, is given the alternate namePI controller. Later in the chapter we will see how to
implement each block, K1 and K2=s.

Lag Compensation
Ideal integral compensation, with its pole on the origin, requires an active integrator.
If we use passive networks, the pole and zero are moved to the left, close to the
origin, as shown in Figure 9.9(c). One may guess that this placement of the pole,
although it does not increase the system type, does yield an improvement in the static
error constant over an uncompensated system. Without loss of generality, we
demonstrate that this improvement is indeed realized for a Type 1 system.

Assume the uncompensated system shown in Figure 9.9(a). The static error
constant, KvO , for the system is

KvO ¼ K z1 z2 � � �
p1p2 � � �

ð9:3Þ

Assuming the lag compensator shown in Figure 9.9(b) and (c), the new static error
constant is

KvN ¼ ðK z1 z2 � � �ÞðzcÞ
ðp1p2 � � �ÞðpcÞ

ð9:4Þ

What is the effect on the transient response? Figure 9.10 shows the effect on the
root locus of adding the lag compensator. The uncompensated system’s root locus is
shown in Figure 9.10(a), where point P is assumed to be the dominant pole. If the lag
compensator pole and zero are close together, the angular contribution of the
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FIGURE 9.9 a. Type 1 uncompensated system; b. Type 1 compensated system; c. compensator
pole-zero plot
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compensator to pointP is approximately zero degrees. Thus, in Figure 9.10(b), where
the compensator has been added, point P is still at approximately the same location
on the compensated root locus.

What is the effect on the required gain, K? After inserting the compensator, we
find that K is virtually the same for the uncompensated and compensated systems,
since the lengths of the vectors drawn from the lag compensator are approximately
equal and all other vectors have not changed appreciably.

Now, what improvement can we expect in the steady-state error? Since we
established that the gain, K, is about the same for the uncompensated and compen-
sated systems, we can substitute Eq. (9.3) into (9.4) and obtain

KvN ¼ KvO

zc
pc

> KvO ð9:5Þ

Equation (9.5) shows that the improvement in the compensated system’s Kv

over the uncompensated system’s Kv is equal to the ratio of the magnitude of the
compensator zero to the compensator pole. In order to keep the transient response
unchanged, we know the compensator pole and zero must be close to each other.
The only way the ratio of zc to pc can be large in order to yield an appreciable
improvement in steady-state error and simultaneously have the compensator’s
pole and zero close to each other to minimize the angular contribution is to place
the compensator’s pole-zero pair close to the origin. For example, the ratio of zc to
pc can be equal to 10 if the pole is at �0:001 and the zero is at �0:01. Thus, the ratio
is 10, yet the pole and zero are very close, and the angular contribution of the
compensator is small.

In conclusion, although the ideal compensator drives the steady-state error
to zero, a lag compensator with a pole that is not at the origin will improve the
static error constant by a factor equal to zc=pc. There also will be a minimal effect
upon the transient response if the pole-zero pair of the compensator is placed
close to the origin. Later in the chapter we show circuit configurations for the lag
compensator. These circuit configurations can be obtained with passive networks
and thus do not require the active amplifiers and possible additional power
supplies that are required by the ideal integral (PI) compensator. In the following
example we design a lag compensator to yield a specified improvement in steady-
state error.

s-plane
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σ σ

(a) (b)

P
s-plane

ωj

P

–zc –pc

FIGURE 9.10 Root locus: a. before lag compensation; b. after lag compensation
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Example 9.2

Lag Compensator Design

PROBLEM: Compensate the system of Figure 9.4(a), whose root locus is shown in
Figure 9.5, to improve the steady-state error by a factor of 10 if the system is
operating with a damping ratio of 0.174.

SOLUTION: The uncompensated system error from Example 9.1 was 0.108 with
Kp ¼ 8:23. A tenfold improvement means a steady-state error of

eð1Þ ¼ 0:108

10
¼ 0:0108 ð9:6Þ

Since

eð1Þ ¼ 1

1 þKp
¼ 0:0108 ð9:7Þ

rearranging and solving for the required Kp yields

Kp ¼ 1 � eð1Þ
eð1Þ ¼ 1 � 0:0108

0:0108
¼ 91:59 ð9:8Þ

The improvement in Kp from the uncompensated system to the compensated
system is the required ratio of the compensator zero to the compensator pole, or

zc
pc

¼ KpN

KpO

¼ 91:59

8:23
¼ 11:13 ð9:9Þ

Arbitrarily selecting
pc ¼ 0:01 ð9:10Þ

we use Eq. (9.9) and find

zc ¼ 11:13pc � 0:111 ð9:11Þ
Let us now compare the compensated system, shown in Figure 9.11, with the

uncompensated system. First sketch the root locus of the compensated system, as
shown in Figure 9.12. Next search along the z ¼ 0:174 line for a multiple of 180� and
find that the second-order dominant poles are at �0:678 � j3:836 with a gain, K, of
158.1. The third and fourth closed-loop poles are at �11:55 and �0:101, respec-
tively, and are found by searching the real axis for a gain equal to that of the
dominant poles. All transient and steady-state results for both the uncompensated
and the compensated systems are shown in Table 9.1.

The fourth pole of the compensated system cancels its zero. This leaves the
remaining three closed-loop poles of the compensated system very close in value to
the three closed-loop poles of the uncompensated system. Hence, the transient

FIGURE 9.11 Compensated
system for Example 9.2
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response of both systems is approximately the same, as is the system gain, but notice
that the steady-state error of the compensated system is 1/9.818 that of the un-
compensated system and is close to the design specification of a tenfold improvement.

Figure 9.13 shows the effect of the lag compensator in the time domain. Even
though the transient responses of the uncompensated and lag-compensated sys-
tems are the same, the lag-compensated system exhibits less steady-state error by
approaching unity more closely than the uncompensated system.

We now examine another design possibility for the lag compensator and
compare the response to Figure 9.13. Let us assume a lag compensator whose pole
and zero are 10 times as close to the origin as in the previous design. The results are
compared in Figure 9.14. Even though both responses will eventually reach
approximately the same steady-state value, the lag compensator previously de-
signed, GcðsÞ ¼ ðsþ 0:111Þ=ðsþ 0:01Þ, approaches the final value faster than the
proposed lag compensator, GcðsÞ ¼ ðsþ 0:0111Þ=ðsþ 0:001Þ. We can explain this
phenomenon as follows. From Table 9.1, the previously designed lag compensator
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TABLE 9.1 Predicted characteristics of uncompensated and lag-compensated systems for
Example 9.2

Parameter Uncompensated Lag-compensated

Plant and compensator
K

ðsþ 1Þðsþ 2Þðsþ 10Þ
Kðsþ 0:111Þ

ðsþ 1Þðsþ 2Þðsþ 10Þðsþ 0:01Þ
K 164.6 158.1

Kp 8.23 87.75

eð1Þ 0.108 0.011

Dominant second-order poles �0:694 � j3:926 �0:678 � j3:836

Third pole �11:61 �11:55

Fourth pole None �0:101

Zero None �0:111

TryIt 9.1

Use the following MATLAB
and Control System Toolbox
statements to reproduce
Figure 9.13.

Gu=zpk([],...
[-1 -2 -10],164.6);
Gc=zpk([-0.111],...
[-0.01],1);
Gce=Gu*Gc;
Tu=feedback(Gu,1);
Tc=feedback(Gce,1);
step(Tu)
hold
step(Tc)
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has a fourth closed-loop pole at �0:101. Using the same analysis for the new lag
compensator with its open-loop pole 10 times as close to the imaginary axis, we
find its fourth closed-loop pole at �0:01. Thus, the new lag compensator has a
closed-loop pole closer to the imaginary axis than the original lag compensator.
This pole at �0:01 will produce a longer transient response than the original pole
at �0:101, and the steady-state value will not be reached as quickly.

Skill-Assessment Exercise 9.1

PROBLEM: A unity feedback system with the forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 15% overshoot. Do the
following:

a. Evaluate the steady-state error for a unit ramp input.

b. Design a lag compensator to improve the steady-state error by a factor of 20.

FIGURE 9.13 Step responses
of uncompensated and
lag-compensated systems for
Example 9.2
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FIGURE 9.14 Step responses
of the system for Example 9.2
using different lag
compensators
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c. Evaluate the steady-state error for a unit ramp input to your compensated
system.

d. Evaluate how much improvement in steady-state error was realized.

ANSWERS:

a. erampð1Þ ¼ 0:1527

b. GlagðsÞ ¼ sþ 0:2

sþ 0:01

c. erampð1Þ ¼ 0:0078

d. 19.58 times improvement

The complete solution is at www.wiley.com/college/nise.

9.3 Improving Transient Response
via Cascade Compensation

Since we have solved the problem of improving the steady-state error without
affecting the transient response, let us now improve the transient response itself. In
this section, we discuss two ways to improve the transient response of a feedback
control system by using cascade compensation. Typically, the objective is to design a
response that has a desirable percent overshoot and a shorter settling time than the
uncompensated system.

The first technique we will discuss is ideal derivative compensation. With ideal
derivative compensation, a pure differentiator is added to the forward path of the
feedback control system. We will see that the result of adding differentiation is the
addition of a zero to the forward-path transfer function. This type of compensation
requires an active network for its realization. Further, differentiation is a noisy
process; although the level of the noise is low, the frequency of the noise is high
compared to the signal. Thus, differentiating high-frequency noise yields a large,
unwanted signal.

The second technique does not use pure differentiation. Instead, it approx-
imates differentiation with a passive network by adding a zero and a more distant
pole to the forward-path transfer function. The zero approximates pure differentia-
tion as described previously.

As with compensation to improve steady-state error, we introduce names
associated with the implementation of the compensators. We call an ideal deriva-
tive compensator a proportional-plus-derivative (PD) controller, since the imple-
mentation, as we will see, consists of feeding the error (proportional) plus
the derivative of the error forward to the plant. The second technique uses a
passive network called a lead compensator. As with the lag compensator, the name
comes from its frequency response, which is discussed in Chapter 11. Thus, we use
the name PD controller interchangeably with ideal derivative compensator, and
we use the name lead compensator when the cascade compensator does not employ
pure differentiation.
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