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Skill-Assessment Exercise 8.3

PROBLEM: Sketch the root locus and its asymptotes for a unity feedback system
that has the forward transfer function

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

8.5 Refining the Sketch

The rules covered in the previous section permit us to sketch a root locus rapidly. If we
want more detail, we must be able to accurately find important points on the root locus
along with their associated gain. Points on the real axis where the root locus enters or
leaves the complex plane—real-axis breakaway and break-in points—and the jv-axis
crossings are candidates. We can also derive a better picture of the root locus by finding
the angles of departure and arrival from complex poles and zeros, respectively.

In this section, we discuss the calculations required to obtain specific points on
the root locus. Some of these calculations can be made using the basic root locus
relationship that the sum of the zero angles minus the sum of the pole angles equals
an odd multiple of 180�, and the gain at a point on the root locus is found as the ratio
of (1) the product of pole lengths drawn to that point to (2) the product of zero
lengths drawn to that point. We have yet to address how to implement this task. In
the past, an inexpensive tool called a SpiruleTM added the angles together rapidly
and then quickly multiplied and divided the lengths to obtain the gain. Today we can
rely on hand-held or programmable calculators as well as personal computers.

Students pursuing MATLAB will learn how to apply it to the root locus at the
end of Section 8.6. Other alternatives are discussed in Appendix H.2 at www.wiley.
com/college/nise. The discussion can be adapted to programmable hand-held calcu-
lators. All readers are encouraged to select a computational aid at this point. Root
locus calculations can be labor intensive if hand calculations are used.

We now discuss how to refine our root locus sketch by calculating real-axis
breakaway and break-in points, jv-axis crossings, angles of departure from complex
poles, and angles of arrival to complex zeros. We conclude by showing how to find
accurately any point on the root locus and calculate the gain.

Real-Axis Breakaway and Break-In Points
Numerous root loci appear to break away from the real axis as the system poles
move from the real axis to the complex plane. At other times the loci appear to
return to the real axis as a pair of complex poles becomes real. We illustrate this in
Figure 8.13. This locus is sketched using the first four rules: (1) number of branches,
(2) symmetry, (3) real-axis segments, and (4) starting and ending points. The figure
shows a root locus leaving the real axis between �1 and�2 and returning to the real
axis betweenþ3 andþ5. The point where the locus leaves the real axis,�s1, is called
the breakaway point, and the point where the locus returns to the real axis, s2, is
called the break-in point.
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At the breakaway or break-in point, the branches of the root locus form an
angle of 180�=n with the real axis, where n is the number of closed-loop poles arriving
at or departing from the single breakaway or break-in point on the real axis (Kuo,
1991). Thus, for the two poles shown in Figure 8.13, the branches at the breakaway
point form 90� angles with the real axis.

We now show how to find the breakaway and break-in points. As the two
closed-loop poles, which are at�1 and�2 when K ¼ 0, move toward each other, the
gain increases from a value of zero. We conclude that the gain must be maximum
along the real axis at the point where the breakaway occurs, somewhere between�1
and �2. Naturally, the gain increases above this value as the poles move into the
complex plane. We conclude that the breakaway point occurs at a point of maximum
gain on the real axis between the open-loop poles.

Now let us turn our attention to the break-in point somewhere between þ3
and þ5 on the real axis. When the closed-loop complex pair returns to the real axis,
the gain will continue to increase to infinity as the closed-loop poles move toward
the open-loop zeros. It must be true, then, that the gain at the break-in point is the
minimum gain found along the real axis between the two zeros.

The sketch in Figure 8.14 shows the variation of real-axis gain. The breakaway
point is found at the maximum gain between �1 and �2, and the break-in point is
found at the minimum gain between þ3 and þ5.

There are three methods for finding the points at which the root locus breaks
away from and breaks into the real axis. The first method is to maximize and
minimize the gain, K, using differential calculus. For all points on the root locus,
Eq. (8.13) yields

K ¼ � 1

GðsÞHðsÞ ð8:31Þ
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FIGURE 8.13 Root locus example showing real-axis breakaway (�s1) and break-in
points (s2)
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For points along the real-axis segment of the root locus where breakaway and break-
in points could exist, s ¼ s. Hence, along the real axis Eq. (8.31) becomes

K ¼ � 1

GðsÞHðsÞ ð8:32Þ

This equation then represents a curve ofK versuss similar to that shown in Figure 8.14.
Hence, if we differentiate Eq. (8.32) with respect to s and set the derivative equal to
zero, we can find the points of maximum and minimum gain and hence the breakaway
and break-in points. Let us demonstrate.

Example 8.3

Breakaway and Break-in Points via Differentiation

PROBLEM: Find the breakaway and break-in points for the root locus of Figure 8.13,
using differential calculus.

SOLUTION: Using the open-loop poles and zeros, we represent the open-loop
system whose root locus is shown in Figure 8.13 as follows:

KGðsÞHðsÞ ¼ Kðs� 3Þðs� 5Þ
ðsþ 1Þðsþ 2Þ ¼

Kðs2 � 8sþ 15Þ
ðs2 þ 3sþ 2Þ ð8:33Þ

But for all points along the root locus, KGðsÞHðsÞ ¼ �1, and along the real axis,
s ¼ s. Hence,

Kðs2 � 8s þ 15Þ
ðs2 þ 3s þ 2Þ ¼ �1 ð8:34Þ

Solving for K, we find

K ¼ �ðs
2 þ 3s þ 2Þ

ðs2 � 8s þ 15Þ ð8:35Þ

Differentiating K with respect to s and setting the derivative equal to zero yields

dK

ds
¼ ð11s2 � 26s � 61Þ
ðs2 � 8s þ 15Þ2 ¼ 0 ð8:36Þ

Solving fors, we finds ¼ �1:45 and 3.82, which are the breakaway and break-in points.

FIGURE 8.14 Variation of
gain along the real axis for the
root locus of Figure 8.13
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The second method is a variation on the differential calculus method. Called
the transition method, it eliminates the step of differentiation (Franklin, 1991). This
method, derived in Appendix M.2 at www.wiley.com/college/nise, is now stated:

Breakaway and break-in points satisfy the relationship

Xm
1

1

s þ zi
¼
Xn

1

1

s þ pi
ð8:37Þ

where zi and pi are the negative of the zero and pole values, respectively, of G(s)H(s).

Solving Eq. (8.37) for s, the real-axis values that minimize or maximize K, yields
the breakaway and break-in points without differentiating. Let us look at an
example.

Example 8.4

Breakaway and Break-in Points Without Differentiation

PROBLEM: Repeat Example 8.3 without differentiating.

SOLUTION: Using Eq. (8.37),

1

s � 3
þ 1

s � 5
¼ 1

s þ 1
þ 1

s þ 2
ð8:38Þ

Simplifying,

11s2 � 26s � 61 ¼ 0 ð8:39Þ
Hence, s ¼ �1:45 and 3.82, which agrees with Example 8.3.

For the third method, the root locus program discussed in Appendix H.2 at www
.wiley.com/college/nise can be used to find the breakaway and break-in points. Simply
use the program to search for the point of maximum gain between �1 and�2 and to
search for the point of minimum gain betweenþ3 andþ5. Table 8.2 shows the results
of the search. The locus leaves the axis at�1:45, the point of maximum gain between
�1 and�2, and reenters the real axis atþ3:8, the point of minimum gain betweenþ3
and þ5. These results are the same as those obtained using the first two methods.
MATLAB also has the capability of finding breakaway and break-in points.

The jv-Axis Crossings
We now further refine the root locus by finding the imaginary-axis crossings. The
importance of the jv-axis crossings should be readily apparent. Looking at Fig-
ure 8.12, we see that the system’s poles are in the left half-plane up to a particular
value of gain. Above this value of gain, two of the closed-loop system’s poles move
into the right half-plane, signifying that the system is unstable. The jv-axis crossing is
a point on the root locus that separates the stable operation of the system from the
unstable operation. The value of v at the axis crossing yields the frequency of
oscillation, while the gain at the jv-axis crossing yields, for this example, the
maximum positive gain for system stability. We should note here that other examples
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illustrate instability at small values of gain and stability at large values of gain. These
systems have a root locus starting in the right–half-plane (unstable at small values of
gain) and ending in the left–half-plane (stable for high values of gain).

To find the jv-axis crossing, we can use the Routh-Hurwitz criterion, covered in
Chapter 6, as follows: Forcing a row of zeros in the Routh table will yield the gain;
going back one row to the even polynomial equation and solving for the roots yields
the frequency at the imaginary-axis crossing.

Example 8.5

Frequency and Gain at Imaginary-Axis Crossing

PROBLEM: For the system of Figure 8.11, find the frequency and gain, K, for which
the root locus crosses the imaginary axis. For what range of K is the system stable?

SOLUTION: The closed-loop transfer function for the system of Figure 8.11 is

TðsÞ ¼ Kðsþ 3Þ
s4 þ 7s3 þ 14s2 þ ð8þKÞsþ 3K

ð8:40Þ

Using the denominator and simplifying some of the entries by multiplying any row
by a constant, we obtain the Routh array shown in Table 8.3.

A complete row of zeros yields the possibility for imaginary axis roots. For
positive values of gain, those for which the root locus is plotted, only the s1 row can
yield a row of zeros. Thus,

�K2 � 65K þ 720 ¼ 0 ð8:41Þ
From this equation K is evaluated as

K ¼ 9:65 ð8:42Þ

TABLE 8.2 Data for breakaway and break-in points for the root locus of Figure 8.13

Real-axis value Gain Comment

�1.41 0.008557

�1.42 0.008585

�1.43 0.008605

�1.44 0.008617

�1.45 0.008623  Max: gain: breakaway

�1.46 0.008622

3.3 44.686

3.4 37.125

3.5 33.000

3.6 30.667

3.7 29.440

3.8 29.000  Min: gain: break-in

3.9 29.202
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Forming the even polynomial by using the s2 row with K ¼ 9:65, we obtain

ð90�KÞs2 þ 21K ¼ 80:35s2 þ 202:7 ¼ 0 ð8:43Þ
and s is found to be equal to �j1:59. Thus the root locus crosses the jv-axis at
�j1:59 at a gain of 9.65. We conclude that the system is stable for 0 
 K < 9:65.

Another method for finding the jv-axis crossing (or any point on the root
locus, for that matter) uses the fact that at the jv-axis crossing, the sum of angles
from the finite open-loop poles and zeros must add to ð2kþ 1Þ180�. Thus, we can
search jv-axis until we find the point that meets this angle condition. A computer
program, such as the root locus program discussed in Appendix H.2 at www.wiley
.com/college/nise or MATLAB, can be used for this purpose. Subsequent exam-
ples in this chapter use this method to determine the jv-axis crossing.

Angles of Departure and Arrival
In this subsection, we further refine our sketch of the root locus by finding angles
of departure and arrival from complex poles and zeros. Consider Figure 8.15,
which shows the open-loop poles and zeros, some of which are complex. The root
locus starts at the open-loop poles and ends at the open-loop zeros. In order to
sketch the root locus more accurately, we want to calculate the root locus
departure angle from the complex poles and the arrival angle to the complex
zeros.

If we assume a point on the root locus e close to a complex pole, the sum of
angles drawn from all finite poles and zeros to this point is an odd multiple of 180�.
Except for the pole that is e close to the point, we assume all angles drawn from all
other poles and zeros are drawn directly to the pole that is near the point. Thus, the
only unknown angle in the sum is the angle drawn from the pole that is e close. We
can solve for this unknown angle, which is also the angle of departure from this
complex pole. Hence, from Figure 8.15(a),

�u1 þ u2 þ u3 � u4 � u5 þ u6 ¼ ð2kþ 1Þ180� ð8:44aÞ

or

u1 ¼ u2 þ u3 � u4 � u5 þ u6 � ð2kþ 1Þ180� ð8:44bÞ
If we assume a point on the root locus e close to a complex zero, the sum of

angles drawn from all finite poles and zeros to this point is an odd multiple of 180�.
Except for the zero that is e close to the point, we can assume all angles drawn from
all other poles and zeros are drawn directly to the zero that is near the point. Thus,

TABLE 8.3 Routh table for Eq. (8.40)

s4 1 14 3K

s3 7 8þK

s2 90�K 21K

s1 �K2 � 65K þ 720

90�K
s0 21K
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the only unknown angle in the sum is the angle drawn from the zero that is e close.
We can solve for this unknown angle, which is also the angle of arrival to this
complex zero. Hence, from Figure 8.15(b),

�u1 þ u2 þ u3 � u4 � u5 þ u6 ¼ ð2kþ 1Þ180� ð8:45aÞ
or

u2 ¼ u1 � u3 þ u4 þ u5 � u6 þ ð2kþ 1Þ180� ð8:45bÞ
Let us look at an example.
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FIGURE 8.15 Open-loop poles and zeros and calculation of a. angle of departure; b. angle of
arrival
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Example 8.6

Angle of Departure from a Complex Pole

PROBLEM: Given the unity feedback system of Figure 8.16, find the angle of
departure from the complex poles and sketch the root locus.

SOLUTION: Using the poles and zeros of GðsÞ ¼ ðsþ 2Þ=½ðsþ 3Þðs2 þ 2sþ 2Þ� as
plotted in Figure 8.17, we calculate the sum of angles drawn to a point e close to the
complex pole, �1þ j1, in the second quadrant. Thus,

�u1 � u2 þ u3 � u4 ¼ �u1 � 90� þ tan�1 1

1

� �
� tan�1 1

2

� �
¼ 180� ð8:46Þ

from which u ¼ �251:6� ¼ 108:4�. A sketch of the root locus is shown in Figure 8.17.
Notice how the departure angle from the complex poles helps us to refine the
shape.
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FIGURE 8.16 Unity feedback
system with complex poles

jw

j4

j3

j2

j1

–j4

–j3

–j2

–j1

Angle of
departure

–1 0–2–3–4

s-plane

q1

q3q4

q2

s

FIGURE 8.17 Root locus for
system of Figure 8.16 showing
angle of departure

8.5 Refining the Sketch 409



Apago PDF Enhancer

E1C08 11/02/2010 10:23:17 Page 410

Plotting and Calibrating the Root Locus
Once we sketch the root locus using the rules from Section 8.4, we may want to
accurately locate points on the root locus as well as find their associated gain. For
example, we might want to know the exact coordinates of the root locus as it crosses
the radial line representing 20% overshoot. Further, we also may want the value of
gain at that point.

Consider the root locus shown in Figure 8.12. Let us assume we want to find the
exact point at which the locus crosses the 0.45 damping ratio line and the gain at that
point. Figure 8.18 shows the system’s open-loop poles and zeros along with the z ¼
0:45 line. If a few test points along the z ¼ 0:45 line are selected, we can evaluate
their angular sum and locate that point where the angles add up to an odd multiple of
180�. It is at this point that the root locus exists. Equation (8.20) can then be used to
evaluate the gain, K, at that point.

Selecting the point at radius 2 ðr ¼ 2Þ on the z ¼ 0:45 line, we add the angles of
the zeros and subtract the angles of the poles, obtaining

u2 � u1 � u3 � u4 � u5 ¼ �251:5� ð8:47Þ

Since the sum is not equal to an odd multiple of 180�, the point at radius¼ 2 is not on
the root locus. Proceeding similarly for the points at radius ¼ 1:5; 1; 0:747, and 0.5,
we obtain the table shown in Figure 8.18. This table lists the points, giving their
radius, r, and the sum of angles indicated by the symbol —. From the table we see that
the point at radius 0.747 is on the root locus, since the angles add up to�180�. Using
Eq. (8.21), the gain, K, at this point is

K ¼ jAjjCjjDjjEjjBj ¼ 1:71 ð8:48Þ

In summary, we search a given line for the point yielding a summation of angles
(zero angles–pole angles) equal to an oddmultiple of 180�. We conclude that the point
is on the root locus. The gain at that point is then found by multiplying the pole
lengths drawn to that point and dividing by the product of the zero lengths drawn to
that point. A computer program, such as that discussed in Appendix H.2 at www.
wiley.com/college/nise or MATLAB, can be used.
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FIGURE 8.18 Finding and calibrating exact points on the root locus of Figure 8.12
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Skill-Assessment Exercise 8.4

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðsþ 2Þ
ðs2 � 4sþ 13Þ

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jv-axis crossing.

d. Find the break-in point.

e. Find the angle of departure from the complex poles.

ANSWERS:

a. See solution at www.wiley.com/college/nise.

b. s ¼ �j ffiffiffiffiffi
21
p

c. K ¼ 4

d. Break-in point ¼ �7

e. Angle of departure ¼ �233:1�

The complete solution is at www.wiley.com/college/nise.

8.6 An Example

We now review the rules for sketching and finding points on the root locus, as well as
present an example. The root locus is the path of the closed-loop poles of a system as
a parameter of the system is varied. Each point on the root locus satisfies the angle
condition, —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. Using this relationship, rules for sketching
and finding points on the root locus were developed and are now summarized:

Basic Rules for Sketching the Root Locus
Number of branches The number of branches of the root locus equals the number of

closed-loop poles.

Symmetry The root locus is symmetrical about the real axis.

Real-axis segments On the real axis, for K > 0 the root locus exists to the left of an
odd number of real-axis, finite open-loop poles and/or finite open-loop zeros.

Starting and ending points The root locus begins at the finite and infinite poles of
G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s).

Behavior at infinity The root locus approaches straight lines as asymptotes as the
locus approaches infinity. Further, the equations of the asymptotes are given by
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the real-axis intercept and angle in radians as follows:

sa ¼
P

finite poles�P finite zeros

#finite poles�#finite zeros
ð8:49Þ

ua ¼ ð2kþ 1Þp
#finite poles�#finite zeros

ð8:50Þ

where k ¼ 0;�1; � 2; � 3; . . . .

Additional Rules for Refining the Sketch
Real-axis breakaway and break-in points The root locus breaks away from the real

axis at a point where the gain is maximum and breaks into the real axis at a point
where the gain is minimum.

Calculation of jv-axis crossings The root locus crosses the jv-axis at the point
where —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. Routh-Hurwitz or a search of the jv-axis for
ð2kþ 1Þ180� can be used to find the jv-axis crossing.

Angles of departure and arrival The root locus departs from complex, open-loop
poles and arrives at complex, open-loop zeros at angles that can be calculated as
follows. Assume a point e close to the complex pole or zero. Add all angles drawn
from all open-loop poles and zeros to this point. The sum equals ð2kþ 1Þ180�. The
only unknown angle is that drawn from the e close pole or zero, since the vectors
drawn from all other poles and zeros can be considered drawn to the complex pole
or zero that is e close to the point. Solving for the unknown angle yields the angle
of departure or arrival.

Plotting and calibrating the root locus All points on the root locus satisfy the
relationship —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. The gain, K, at any point on the root
locus is given by

K ¼ 1

jGðsÞHðsÞj ¼
1

M
�
Q

finite pole lengthsQ
finite zero lengths

ð8:51Þ

Let us now look at a summary example.

Example 8.7

Sketching a Root Locus and Finding Critical Points

PROBLEM: Sketch the root locus for the system shown in Figure 8.19(a) and find
the following:

a. The exact point and gain where the locus crosses the 0.45 damping ratio line

b. The exact point and gain where the locus crosses the jv-axis

c. The breakaway point on the real axis

d. The range of K within which the system is stable

412 Chapter 8 Root Locus Techniques



Apago PDF Enhancer

E1C08 11/02/2010 10:23:18 Page 413

SOLUTION: The problem solution is shown, in part, in Figure 8.19(b). First sketch
the root locus. Using Rule 3, the real-axis segment is found to be between �2 and
�4. Rule 4 tells us that the root locus starts at the open-loop poles and ends at the
open-loop zeros. These two rules alone give us the general shape of the root locus.

a. To find the exact point where the locus crosses the z ¼ 0:45 line, we can use
the root locus program discussed in Appendix H.2 at www.wiley.com/college/
nise to search along the line

u ¼ 180� � cos�1 0:45 ¼ 116:7� ð8:52Þ
for the point where the angles add up to an odd multiple of 180�. Searching in
polar coordinates, we find that the root locus crosses the z ¼ 0:45 line at
3:4 — 116:7� with a gain, K, of 0.417.

b. To find the exact point where the locus crosses the jv-axis, use the root locus
program to search along the line

u ¼ 90� ð8:53Þ
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FIGURE 8.19 a. System for Example 8.7; b. root locus sketch.
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for the point where the angles add up to an odd multiple of 180�. Searching in
polar coordinates, we find that the root locus crosses the jv-axis at�j3:9 with
a gain of K ¼ 1:5.

c. To find the breakaway point, use the root locus program to search the real
axis between�2 and�4 for the point that yields maximum gain. Naturally, all
points will have the sum of their angles equal to an odd multiple of 180�. A
maximum gain of 0.0248 is found at the point �2:88. Therefore, the break-
away point is between the open-loop poles on the real axis at �2:88.

d. From the answer to b, the system is stable for K between 0 and 1.5.

Students who are using MATLAB should now run ch8p1 in Appendix B.
You will learn how to use MATLAB to plot and title a root locus,
overlay constant z and vn curves, zoom into and zoom out from a
root locus, and interact with the root locus to find critical
points as well as gains at those points. This exercise solves
Example 8.7 using MATLAB.

Skill-Assessment Exercise 8.5

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðs� 2Þðs� 4Þ
ðs2 þ 6sþ 25Þ

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jv-axis crossing.

d. Find the break-in point.

e. Find the point where the locus crosses the 0.5 damping ratio line.

f. Find the gain at the point where the locus crosses the 0.5 damping ratio line.

g. Find the range of gain, K, for which the system is stable.

ANSWERS:

a. See solution at www.wiley.com/college/nise.

b. s ¼ �j4:06

c. K ¼ 1

d. Break-in point ¼ þ2:89

e. s ¼ �2:42þ j4:18

f. K ¼ 0:108

g. K < 1

The complete solution is at www.wiley.com/college/nise.

TryIt 8.3

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to plot the
root locus for Skill-
Assessment Exercise 8.5.
Solve the remaining parts of
the problem by clicking on
the appropriate points on the
plotted root locus.

numg=poly([2 4]);
deng=[1 6 25];
G=tf(numg,deng)
rlocus(G)
z=0.5
sgrid(z,0)
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