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Since the settling time is inversely proportional to the real part of the complex poles for
this second-order system, the conclusion is that regardless of the value of gain, the settling
time for the system remains the same under all conditions of underdamped responses.

Also, as we increase the gain, the damping ratio diminishes, and the percent
overshoot increases. The damped frequency of oscillation, which is equal to the
imaginary part of the pole, also increases with an increase in gain, resulting in a
reduction of the peak time. Finally, since the root locus never crosses over into the
right half-plane, the system is always stable, regardless of the value of gain, and can
never break into a sinusoidal oscillation.

These conclusions for such a simple system may appear to be trivial. What we
are about to see is that the analysis is applicable to systems of order higher than 2.
For these systems, it is difficult to tie transient response characteristics to the pole
location. The root locus will allow us to make that association and will become an
important technique in the analysis and design of higher-order systems.

8.3 Properties of the Root Locus

In Section 8.2, we arrived at the root locus by factoring the second-order polynomial
in the denominator of the transfer function. Consider what would happen if that
polynomial were of fifth or tenth order. Without a computer, factoring the polyno-
mial would be quite a problem for numerous values of gain.

We are about to examine the properties of the root locus. From these
properties we will be able to make a rapid sketch of the root locus for higher-order
systems without having to factor the denominator of the closed-loop transfer
function.

The properties of the root locus can be derived from the general control system
of Figure 8.1(a). The closed-loop transfer function for the system is

TðsÞ ¼ KGðsÞ
1þKGðsÞHðsÞ ð8:12Þ

From Eq. (8.12), a pole, s, exists when the characteristic polynomial in the denomi-
nator becomes zero, or

KGðsÞHðsÞ ¼ �1 ¼ 1—ð2kþ 1Þ180� k ¼ 0;�1;�2;�3; . . . ð8:13Þ

where�1 is represented in polar form as 1 —ð2kþ 1Þ180�. Alternately, a value of s is
a closed-loop pole if

jKGðsÞHðsÞj ¼ 1 ð8:14Þ

and

—KGðsÞHðsÞ ¼ ð2kþ 1Þ180� ð8:15Þ

Equation (8.13) implies that if a value of s is substituted into the function
KG(s)H(s), a complex number results. If the angle of the complex number is an odd
multiple of 180�, that value of s is a system pole for some particular value of K. What
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value of K? Since the angle criterion of Eq. (8.15) is satisfied, all that remains is to
satisfy the magnitude criterion, Eq. (8.14). Thus,

K ¼ 1

jGðsÞjjHðsÞj ð8:16Þ

We have just found that a pole of the closed-loop system causes the angle of
KG(s)H(s), or simply G(s)H(s) since K is a scalar, to be an odd multiple of 180�.
Furthermore, the magnitude ofKG(s)H(s) must be unity, implying that the value ofK is
the reciprocal of the magnitude of G(s)H(s) when the pole value is substituted for s.

Let us demonstrate this relationship for the second-order system of Figure 8.4.
The fact that closed-loop poles exist at �9:47 and �0:53 when the gain is 5 has
already been established in Table 8.1. For this system,

KGðsÞHðsÞ ¼ K

sðsþ 10Þ ð8:17Þ

Substituting the pole at �9:47 for s and 5 for K yields KGðsÞHðsÞ ¼ �1. The student
can repeat the exercise for other points in Table 8.1 and show that each case yields
KGðsÞHðsÞ ¼ �1.

It is helpful to visualize graphically the meaning of Eq. (8.15). Let us apply the
complex number concepts reviewed in Section 8.1 to the root locus of the system
shown in Figure 8.6. For this system the open-loop transfer function is

KGðsÞHðsÞ ¼ Kðsþ 3Þðsþ 4Þ
ðsþ 1Þðsþ 2Þ ð8:18Þ

The closed-loop transfer function, T(s), is

TðsÞ ¼ Kðsþ 3Þðsþ 4Þ
ð1þKÞs2 þ ð3þ 7KÞsþ ð2þ 12KÞ ð8:19Þ

If point s is a closed-loop system pole for some value of gain, K, then s must
satisfy Eqs. (8.14) and (8.15).

K(s + 3) (s + 4)

(s + 1) (s + 2)

R(s)

(a)

(b)

C(s)

–

+

–4

jω

s-plane

–3 –2 –1

σ

FIGURE 8.6 a. Example
system; b. pole-zero plot
of G(s)
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Consider the point�2þ j3. If this point is a closed-loop pole for some value of
gain, then the angles of the zeros minus the angles of the poles must equal an odd
multiple of 180�. From Figure 8.7,

u1 þ u2 � u3 � u4 ¼ 56:31� þ 71:57� � 90� � 108:43� ¼ �70:55� ð8:20Þ
Therefore, �2þ j3 is not a point on the root locus, or alternatively, �2þ j3 is not a
closed-loop pole for any gain.

If these calculations are repeated for the point�2þ jð ffiffiffi2p =2Þ, the angles do add
up to 180�. That is, �2þ jð ffiffiffi2p =2Þ is a point on the root locus for some value of gain.
We now proceed to evaluate that value of gain.

From Eqs. (8.5) and (8.16),

K ¼ 1

jGðsÞHðsÞj ¼
1

M
¼
Q

pole lengthsQ
zero lengths

ð8:21Þ

Looking at Figure 8.7 with the point�2þ j3 replaced by�2þ jð ffiffiffi2p =2Þ, the gain,K, is
calculated as

K ¼ L3L4

L1L2
¼

ffiffiffi
2
p

2
ð1:22Þ

ð2:12Þð1:22Þ ¼ 0:33 ð8:22Þ

Thus, the point �2þ jð ffiffiffi2p =2Þ is a point on the root locus for a gain of 0.33.
We summarize what we have found as follows: Given the poles and zeros of the

open-loop transfer function, KG(s)H(s), a point in the s-plane is on the root locus for
a particular value of gain, K, if the angles of the zeros minus the angles of the poles,
all drawn to the selected point on the s-plane, add up to ð2kþ 1Þ180�. Furthermore,
gain K at that point for which the angles add up to ð2kþ 1Þ180� is found by dividing
the product of the pole lengths by the product of the zero lengths.

jω

j3

L4

s-plane

L3L2L1

–1–2–3– 4

3θ 4θ2θ1θ
σ

FIGURE 8.7 Vector representation of G(s) from Figure 8.6(a) at �2þ j3
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Skill-Assessment Exercise 8.2

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðsþ 2Þ
ðs2 þ 4sþ 13Þ

do the following:

a. Calculate the angle ofG(s) at the point (�3þ j0) by finding the algebraic sum of
angles of the vectors drawn from the zeros and poles of G(s) to the given point.

b. Determine if the point specified in a is on the root locus.

c. If the point specified in a is on the root locus, find the gain, K, using the
lengths of the vectors.

ANSWERS:

a. Sum of angles ¼ 180�

b. Point is on the root locus

c. K ¼ 10

The complete solution is at www.wiley.com/college/nise.

8.4 Sketching the Root Locus

It appears from our previous discussion that the root locus can be obtained by
sweeping through every point in the s-plane to locate those points for which the
angles, as previously described, add up to an odd multiple of 180�. Although this task
is tedious without the aid of a computer, the concept can be used to develop rules
that can be used to sketch the root locus without the effort required to plot the locus.
Once a sketch is obtained, it is possible to accurately plot just those points that are of
interest to us for a particular problem.

The following five rules allow us to sketch the root locus using minimal
calculations. The rules yield a sketch that gives intuitive insight into the behavior
of a control system. In the next section, we refine the sketch by finding actual points
or angles on the root locus. These refinements, however, require some calculations or
the use of computer programs, such as MATLAB.

1. Number of branches. Each closed-loop pole moves as the gain is varied. If we
define a branch as the path that one pole traverses, then there will be one branch
for each closed-loop pole. Our first rule, then, defines the number of branches of
the root locus:

The number of branches of the root locus equals the number of closed-loop poles.

As an example, look at Figure 8.5(b), where the two branches are shown. One
originates at the origin, the other at �10.

2. Symmetry. If complex closed-loop poles do not exist in conjugate pairs, the resulting
polynomial, formed by multiplying the factors containing the closed-loop poles,

TryIt 8.2

Use MATLAB and the fol-
lowing statements to solve
Skill-Assessment Exercise
8.2.

s=-3+0j;
G=(s+2)/(s^2+4*s+13);
Theta=(180/pi)*...
angle(G)
M=abs(G);
K=1/M
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would have complex coefficients. Physically realizable systems cannot have complex
coefficients in their transfer functions. Thus, we conclude:

The root locus is symmetrical about the real axis.

An example of symmetry about the real axis is shown in Figure 8.5(b).

3. Real-axis segments. Let us make use of the angle property, Eq. (8.15), of the
points on the root locus to determine where the real-axis segments of the root

locus exist. Figure 8.8 shows the poles and zeros of a general open-loop
system. If an attempt is made to calculate the angular contribution of
the poles and zeros at each point, P1, P2, P3, and P4, along the real axis,
we observe the following: (1) At each point the angular contribution of
a pair of open-loop complex poles or zeros is zero, and (2) the
contribution of the open-loop poles and open-loop zeros to the left
of the respective point is zero. The conclusion is that the only contri-
bution to the angle at any of the points comes from the open-loop, real-
axis poles and zeros that exist to the right of the respective point. If we
calculate the angle at each point using only the open-loop, real-axis
poles and zeros to the right of each point, we note the following: (1) The
angles on the real axis alternate between 0� and 180�, and (2) the angle

is 180� for regions of the real axis that exist to the left of an odd number of poles
and/or zeros. The following rule summarizes the findings:

On the real axis, for K > 0 the root locus exists to the left of an odd number of real-
axis, finite open-loop poles and/or finite open-loop zeros.

Examine Figure 8.6(b). According to the rule just developed, the real-axis
segments of the root locus are between �1 and �2 and between �3 and �4
as shown in Figure 8.9.

4. Starting and ending points. Where does the root locus begin (zero gain) and end
(infinite gain)? The answer to this question will enable us to expand the sketch of
the root locus beyond the real-axis segments. Consider the closed-loop transfer
function, T(s), described by Eq. (8.3). T(s) can now be evaluated for both large
and small gains, K. As K approaches zero (small gain),

TðsÞ � KNGðsÞDHðsÞ
DGðsÞDHðsÞ þ e

ð8:23Þ

From Eq. (8.23) we see that the closed-loop system poles at small gains approach
the combined poles of G(s) and H(s). We conclude that the root locus begins at
the poles of G(s)H(s), the open-loop transfer function.

s-plane

jω

P4 P3 P2 P1
σ

FIGURE 8.8 Poles and zeros of a general
open-loop system with test points, Pi, on the
real axis

–4

jω

s-plane

–3 –2 –1

σ

FIGURE 8.9 Real-axis segments of the root locus for the system of Figure 8.6

398 Chapter 8 Root Locus Techniques



Apago PDF Enhancer

E1C08 11/02/2010 10:23:15 Page 399

At high gains, where K is approaching infinity,

TðsÞ � KNGðsÞDHðsÞ
eþKNGðsÞNHðsÞ ð8:24Þ

From Eq. (8.24) we see that the closed-loop system poles at large gains approach
the combined zeros of G(s) and H(s). Now we conclude that the root locus ends at
the zeros of G(s)H(s), the open-loop transfer function.

Summarizing what we have found:

The root locus begins at the finite and infinite poles of G(s)H(s) and ends at the
finite and infinite zeros of G(s)H(s).

Remember that these poles and zeros are the open-loop poles and zeros.
In order to demonstrate this rule, look at the system in Figure 8.6(a), whose

real-axis segments have been sketched in Figure 8.9. Using the rule just derived,
we find that the root locus begins at the poles at�1 and�2 and ends at the zeros at
�3 and �4 (see Figure 8.10). Thus, the poles start out at �1 and �2 and move
through the real-axis space between the two poles. They meet somewhere
between the two poles and break out into the complex plane, moving as complex
conjugates. The poles return to the real axis somewhere between the zeros at �3
and �4, where their path is completed as they move away from each other, and
end up, respectively, at the two zeros of the open-loop system at �3 and �4.

5. Behavior at infinity. Consider applying Rule 4 to the following open-loop transfer
function:

KGðsÞHðsÞ ¼ K

sðsþ 1Þðsþ 2Þ ð8:25Þ

There are three finite poles, at s ¼ 0;�1; and� 2, and no finite zeros.

A function can also have infinite poles and zeros. If the function approaches
infinity as s approaches infinity, then the function has a pole at infinity. If the
function approaches zero as s approaches infinity, then the function has a zero at
infinity. For example, the function GðsÞ ¼ s has a pole at infinity, since G(s)
approaches infinity as s approaches infinity. On the other hand, GðsÞ ¼ 1=s has a
zero at infinity, since G(s) approaches zero as s approaches infinity.

Every function of s has an equal number of poles and zeros if we include the
infinite poles and zeros as well as the finite poles and zeros. In this example,

jω

–3–4 –2 –1

s-plane

σ

j1

–j1 FIGURE 8.10 Complete root
locus for the system of Figure
8.6

8.4 Sketching the Root Locus 399



Apago PDF Enhancer

E1C08 11/02/2010 10:23:15 Page 400

Eq. (8.25) contains three finite poles and three infinite zeros. To illustrate, let s
approach infinity. The open-loop transfer function becomes

KGðsÞHðsÞ � K

s3
¼ K

s 	 s 	 s ð8:26Þ

Each s in the denominator causes the open-loop function, KG(s)H(s), to become
zero as that s approaches infinity. Hence, Eq. (8.26) has three zeros at infinity.

Thus, for Eq. (8.25), the root locus begins at the finite poles of KG(s)H(s) and
ends at the infinite zeros. The question remains: Where are the infinite zeros? We
must know where these zeros are in order to show the locus moving from the three
finite poles to the three infinite zeros. Rule 5 helps us locate these zeros at infinity.
Rule 5 also helps us locate poles at infinity for functions containing more finite zeros
than finite poles.1

We now state Rule 5, which will tell us what the root locus looks like as it
approaches the zeros at infinity or as it moves from the poles at infinity. The
derivation can be found in Appendix M.1 at www.wiley.com/college/nise.

The root locus approaches straight lines as asymptotes as the locus approaches
infinity. Further, the equation of the asymptotes is given by the real-axis intercept, sa

and angle, ua as follows:

sa ¼
P

finite poles�P finite zeros

#finite poles�#finite zeros
ð8:27Þ

ua ¼
ð2kþ 1Þp

#finite poles�#finite zeros
ð8:28Þ

where k ¼ 0;�1;�2;�3 and the angle is given in radianswith respect to the positive
extension of the real axis.

Notice that the running index, k, in Eq. (8.28) yields a multiplicity of lines that
account for the many branches of a root locus that approach infinity. Let us
demonstrate the concepts with an example.

Example 8.2

Sketching a Root Locus with Asymptotes

PROBLEM: Sketch the root locus for the system shown in Figure 8.11.

1 Physical systems, however, have more finite poles than finite zeros, since the implied differentiation
yields infinite output for discontinuous input functions, such as step inputs.

R(s) +

–

C(s)K(s + 3)

s(s + 1)(s + 2)(s + 4)

FIGURE 8.11 System for Example 8.2.
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SOLUTION: Let us begin by calculating the asymptotes. Using Eq. (8.27), the real-
axis intercept is evaluated as

sa ¼ ð�1� 2� 4Þ � ð�3Þ
4� 1

¼ � 4

3
ð8:29Þ

The angles of the lines that intersect at �4=3, given by Eq. (8.28), are

ua ¼ ð2kþ 1Þp
#finite poles�#finite zeros

ð8:30aÞ

¼ p=3 for k ¼ 0 ð8:30bÞ
¼ p for k ¼ 1 ð8:30cÞ
¼ 5p=3 for k ¼ 2 ð8:30dÞ

If the value for k continued to increase, the angles would begin to repeat. The
number of lines obtained equals the difference between the number of finite poles
and the number of finite zeros.

Rule 4 states that the locus begins at the open-loop poles and ends at the
open-loop zeros. For the example there are more open-loop poles than open-loop
zeros. Thus, there must be zeros at infinity. The asymptotes tell us how we get to
these zeros at infinity.

Figure 8.12 shows the complete root locus as well as the asymptotes that were
just calculated. Notice that we have made use of all the rules learned so far. The
real-axis segments lie to the left of an odd number of poles and/or zeros. The locus
starts at the open-loop poles and ends at the open-loop zeros. For the example
there is only one open-loop finite zero and three infinite zeros. Rule 5, then, tells us
that the three zeros at infinity are at the ends of the asymptotes.

–2 0

Asymptote

s-plane

–4 –3

Asymptote

Asymptote

j1

jω

1 2

–j1

σ

–j2

–j3

j3

–1

j2

FIGURE 8.12 Root locus and
asymptotes for the system of
Figure 8.11
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Skill-Assessment Exercise 8.3

PROBLEM: Sketch the root locus and its asymptotes for a unity feedback system
that has the forward transfer function

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

8.5 Refining the Sketch

The rules covered in the previous section permit us to sketch a root locus rapidly. If we
want more detail, we must be able to accurately find important points on the root locus
along with their associated gain. Points on the real axis where the root locus enters or
leaves the complex plane—real-axis breakaway and break-in points—and the jv-axis
crossings are candidates. We can also derive a better picture of the root locus by finding
the angles of departure and arrival from complex poles and zeros, respectively.

In this section, we discuss the calculations required to obtain specific points on
the root locus. Some of these calculations can be made using the basic root locus
relationship that the sum of the zero angles minus the sum of the pole angles equals
an odd multiple of 180�, and the gain at a point on the root locus is found as the ratio
of (1) the product of pole lengths drawn to that point to (2) the product of zero
lengths drawn to that point. We have yet to address how to implement this task. In
the past, an inexpensive tool called a SpiruleTM added the angles together rapidly
and then quickly multiplied and divided the lengths to obtain the gain. Today we can
rely on hand-held or programmable calculators as well as personal computers.

Students pursuing MATLAB will learn how to apply it to the root locus at the
end of Section 8.6. Other alternatives are discussed in Appendix H.2 at www.wiley.
com/college/nise. The discussion can be adapted to programmable hand-held calcu-
lators. All readers are encouraged to select a computational aid at this point. Root
locus calculations can be labor intensive if hand calculations are used.

We now discuss how to refine our root locus sketch by calculating real-axis
breakaway and break-in points, jv-axis crossings, angles of departure from complex
poles, and angles of arrival to complex zeros. We conclude by showing how to find
accurately any point on the root locus and calculate the gain.

Real-Axis Breakaway and Break-In Points
Numerous root loci appear to break away from the real axis as the system poles
move from the real axis to the complex plane. At other times the loci appear to
return to the real axis as a pair of complex poles becomes real. We illustrate this in
Figure 8.13. This locus is sketched using the first four rules: (1) number of branches,
(2) symmetry, (3) real-axis segments, and (4) starting and ending points. The figure
shows a root locus leaving the real axis between �1 and�2 and returning to the real
axis betweenþ3 andþ5. The point where the locus leaves the real axis,�s1, is called
the breakaway point, and the point where the locus returns to the real axis, s2, is
called the break-in point.
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