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8.1 Introduction

Root locus, a graphical presentation of the closed-loop poles as a system parameter is
varied, is a powerful method of analysis and design for stability and transient response
(Evans, 1948; 1950). Feedback control systems are difficult to comprehend from a
qualitative point of view, and hence they rely heavily upon mathematics. The root locus
covered in this chapter is a graphical technique that gives us the qualitative description
of a control system’s performance that we are looking for and also serves as a powerful
quantitative tool that yields more information than the methods already discussed.

Up to this point, gains and other system parameters were designed to yield a
desired transient response for only first- and second-order systems. Even though the
root locus can be used to solve the same kind of problem, its real power lies in its
ability to provide solutions for systems of order higher than 2. For example, under
the right conditions, a fourth-order system’s parameters can be designed to yield a
given percent overshoot and settling time using the concepts learned in Chapter 4.

The root locus can be used to describe qualitatively the performance of a
system as various parameters are changed. For example, the effect of varying gain
upon percent overshoot, settling time, and peak time can be vividly displayed. The
qualitative description can then be verified with quantitative analysis.

Besides transient response, the root locus also gives a graphical representation
of a system’s stability. We can clearly see ranges of stability, ranges of instability, and
the conditions that cause a system to break into oscillation.

Before presenting root locus, let us review two concepts that we need for the
ensuing discussion: (1) the control system problem and (2) complex numbers and
their representation as vectors.

The Control System Problem
We have previously encountered the control system problem in Chapter 6: Whereas the
poles of the open-loop transfer function are easily found (typically, they are known by
inspection and do not change with changes in system gain), the poles of the closed-loop
transferfunctionaremoredifficulttofind(typically,theycannotbefoundwithoutfactoring
the closed-loop system’s characteristic polynomial, the denominator of the closed-loop
transfer function), and further, the closed-loop poles change with changes in system gain.

A typical closed-loop feedback control system is shown in Figure 8.1(a). The
open-loop transfer function was defined in Chapter 5 as KG(s)H(s). Ordinarily, we
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can determine the poles of KG(s)H(s), since these poles arise from simple cascaded
first- or second-order subsystems. Further, variations in K do not affect the location
of any pole of this function. On the other hand, we cannot determine the poles of
TðsÞ ¼ KGðsÞ=½1þKGðsÞHðsÞ� unless we factor the denominator. Also, the poles of
T(s) change with K.

Let us demonstrate. Letting

GðsÞ ¼ NGðsÞ
DGðsÞ ð8:1Þ

and

HðsÞ ¼ NHðsÞ
DHðsÞ ð8:2Þ

then

TðsÞ ¼ KNGðsÞDHðsÞ
DGðsÞDHðsÞ þKNGðsÞNHðsÞ ð8:3Þ

whereN andD are factored polynomials and signify numerator and denominator terms,
respectively. We observe the following: Typically, we know the factors of the numerators
and denominators of G(s) and H(s). Also, the zeros of T(s) consist of the zeros of G(s)
and the poles of H(s). The poles of T(s) are not immediately known and in fact can
change with K. For example, if GðsÞ ¼ ðsþ 1Þ=½sðsþ 2Þ� and HðsÞ ¼ ðsþ 3Þ=ðsþ 4Þ,
the poles of KG(s)H(s) are 0;�2; and�4. The zeros of KG(s)H(s) are �1 and � 3.
Now, TðsÞ ¼ Kðsþ 1Þðsþ 4Þ=½s3 þ ð6þKÞs2þ ð8þ 4KÞsþ 3K�. Thus, the zeros of
T(s) consist of the zeros of G(s) and the poles of H(s). The poles of T(s) are not
immediately known without factoring the denominator, and they are a function of K.
Since the system’s transient response and stability are dependent upon the poles ofT(s),
we have no knowledge of the system’s performance unless we factor the denominator
for specific values ofK. The root locus will be used to give us a vivid picture of the poles
of T(s) as K varies.

Vector Representation of Complex Numbers
Any complex number, s þ jv, described in Cartesian coordinates can be graphi-
cally represented by a vector, as shown in Figure 8.2(a). The complex number also
can be described in polar form with magnitude M and angle u, as M—u. If the
complex number is substituted into a complex function, F(s), another complex
number will result. For example, if FðsÞ ¼ ðsþ aÞ, then substituting the com-
plex number s ¼ s þ jv yields FðsÞ ¼ ðs þ aÞ þ jv, another complex number. This
number is shown in Figure 8.2(b). Notice that F(s) has a zero at �a. If we translate
the vector a units to the left, as in Figure 8.2(c), we have an alternate represen-
tation of the complex number that originates at the zero of F(s) and terminates on
the point s ¼ s þ jv.

We conclude that (sþ a) is a complex number and can be represented by a
vector drawn from the zero of the function to the point s. For example, ðsþ 7Þjs!5þj2 is
a complex number drawn from the zero of the function, �7, to the point s, which is
5þ j2, as shown in Figure 8.2(d).
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Now let us apply the concepts to a complicated function. Assume a function

FðsÞ ¼
Qm
i¼1
ðsþ ziÞ

Qn
j¼1
ðsþ pjÞ

¼
Q

numerator’s complex factorsQ
denominator’s complex factors

ð8:4Þ

where the symbol
Q

means ‘‘product,’’ m ¼ number of zeros; and n ¼ number of
poles. Each factor in the numerator and each factor in the denominator is a complex
number that can be represented as a vector. The function defines the complex
arithmetic to be performed in order to evaluate F(s) at any point, s. Since each com-
plex factor can be thought of as a vector, the magnitude, M, of F(s) at any point, s, is

M ¼
Q

zero lengthsQ
pole lengths

¼

Ym
i¼1

j sþ zið Þj
Yn
j¼1

jðsþ pjÞj
ð8:5Þ

where a zero length, jðsþ ziÞj, is the magnitude of the vector drawn from the zero ofF(s)
at�zi to the point s, and a pole length, jðsþ pjÞj, is the magnitude of the vector drawn
from the pole of F(s) at �pj to the point s. The angle, u, of F(s) at any point, s, is

u ¼P zero angles�P pole angles

¼
Xm
i¼1

— sþ zið Þ �
Xn
j¼1

—ðsþ pjÞ ð8:6Þ

where a zero angle is the angle, measured from the positive extension of the real axis,
of a vector drawn from the zero of F(s) at �zi to the point s, and a pole angle is the

FIGURE 8.2 Vector
representation of complex
numbers: a. s ¼ s þ jv;
b. ðsþ aÞ; c. alternate
representation of ðsþ aÞ;
d. ðsþ 7Þjs!5þj2
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angle, measured from the positive extension of the real axis, of the vector drawn from
the pole of F(s) at �pj to the point s.

As a demonstration of the above concept, consider the following example.

Example 8.1

Evaluation of a Complex Function via Vectors

PROBLEM: Given

FðsÞ ¼ ðsþ 1Þ
sðsþ 2Þ ð8:7Þ

find F(s) at the point s ¼ �3þ j4.

SOLUTION: The problem is graphically depicted in Figure 8.3, where each
vector, ðsþ aÞ, of the function is shown terminating on the selected point
s ¼ �3þ j4. The vector originating at the zero at �1 isffiffiffiffiffi

20
p

—116:6� ð8:8Þ
The vector originating at the pole at the origin is

5—126:9� ð8:9Þ
The vector originating at the pole at �2 isffiffiffiffiffi

17
p

—104:0� ð8:10Þ
Substituting Eqs. (8.8) through (8.10) into Eqs. (8.5) and (8.6) yields

M—u ¼
ffiffiffiffiffi
20
p

5
ffiffiffiffiffi
17
p —116:6� � 126:9� � 104:0� ¼ 0:217—� 114:3� ð8:11Þ

as the result for evaluating F(s) at the point �3þ j4.

Skill-Assessment Exercise 8.1

PROBLEM: Given

FðsÞ ¼ ðsþ 2Þðsþ 4Þ
sðsþ 3Þðsþ 6Þ

find F(s) at the point s ¼ �7þ j9 the following ways:

a. Directly substituting the point into F(s)

b. Calculating the result using vectors

ANSWER:

�0:0339� j0:0899 ¼ 0:096—� 110:7�

The complete solution is at www.wiley.com/college/nise.

We are now ready to begin our discussion of the root locus.
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FIGURE 8.3 Vector
representation of Eq. (8.7)

TryIt 8.1

Use the following MATLAB
statements to solve the
problem given in Skill-
Assessment Exercise 8.1.

s=-7+9j;
G=(s+2)*(s+4)/...
(s*(s+3)*(s+6));
Theta=(180/pi)*...
angle(G)

M=abs(G)
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8.2 Defining the Root Locus

A security camera system similar to that shown in Figure 8.4(a) can automatically
follow a subject. The tracking system monitors pixel changes and positions the
camera to center the changes.

The root locus technique can be used to analyze and design the effect of loop
gain upon the system’s transient response and stability. Assume the block diagram
representation of a tracking system as shown in Figure 8.4(b), where the closed-loop
poles of the system change location as the gain, K, is varied. Table 8.1, which was
formed by applying the quadratic formula to the denominator of the transfer
function in Figure 8.4(c), shows the variation of pole location for different values
of gain, K. The data of Table 8.1 is graphically displayed in Figure 8.5(a), which
shows each pole and its gain.

As the gain, K, increases in Table 8.1 and Figure 8.5(a), the closed-loop pole,
which is at�10 for K ¼ 0, moves toward the right, and the closed-loop pole, which is
at 0 forK ¼ 0, moves toward the left. They meet at�5, break away from the real axis,
and move into the complex plane. One closed-loop pole moves upward while the
other moves downward. We cannot tell which pole moves up or which moves down.
In Figure 8.5(b), the individual closed-loop pole locations are removed and their
paths are represented with solid lines. It is this representation of the paths of the
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FIGURE 8.4 a. Security cameras with auto tracking can be used to follow moving objects
automatically; b. block diagram; c. closed-loop transfer function
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closed-loop poles as the gain is varied that we call a root locus. For most of our work,
the discussion will be limited to positive gain, or K � 0.

The root locus shows the changes in the transient response as the gain, K, varies.
First of all, the poles are real for gains less than 25. Thus, the system is overdamped. At
a gain of 25, the poles are real and multiple and hence critically damped. For gains
above 25, the system is underdamped. Even though these preceding conclusions were
available through the analytical techniques covered in Chapter 4, the following
conclusions are graphically demonstrated by the root locus.

Directing our attention to the underdamped portion of the root locus, we see that
regardless of the value of gain, the real parts of the complex poles are always the same.

TABLE 8.1 Pole location as function of gain for the
system of Figure 8.4

K Pole 1 Pole 2

0 �10 0

5 �9.47 �0.53

10 �8.87 �1.13

15 �8.16 �1.84

20 �7.24 �2.76

25 �5 �5

30 �5þ j2:24 �5� j2:24

35 �5þ j3:16 �5� j3:16

40 �5þ j3:87 �5� j3:87

45 �5þ j4:47 �5� j4:47

50 �5þ j5 �5� j5

FIGURE 8.5 a. Pole plot from Table 8.1; b. root locus
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Since the settling time is inversely proportional to the real part of the complex poles for
this second-order system, the conclusion is that regardless of the value of gain, the settling
time for the system remains the same under all conditions of underdamped responses.

Also, as we increase the gain, the damping ratio diminishes, and the percent
overshoot increases. The damped frequency of oscillation, which is equal to the
imaginary part of the pole, also increases with an increase in gain, resulting in a
reduction of the peak time. Finally, since the root locus never crosses over into the
right half-plane, the system is always stable, regardless of the value of gain, and can
never break into a sinusoidal oscillation.

These conclusions for such a simple system may appear to be trivial. What we
are about to see is that the analysis is applicable to systems of order higher than 2.
For these systems, it is difficult to tie transient response characteristics to the pole
location. The root locus will allow us to make that association and will become an
important technique in the analysis and design of higher-order systems.

8.3 Properties of the Root Locus

In Section 8.2, we arrived at the root locus by factoring the second-order polynomial
in the denominator of the transfer function. Consider what would happen if that
polynomial were of fifth or tenth order. Without a computer, factoring the polyno-
mial would be quite a problem for numerous values of gain.

We are about to examine the properties of the root locus. From these
properties we will be able to make a rapid sketch of the root locus for higher-order
systems without having to factor the denominator of the closed-loop transfer
function.

The properties of the root locus can be derived from the general control system
of Figure 8.1(a). The closed-loop transfer function for the system is

TðsÞ ¼ KGðsÞ
1þKGðsÞHðsÞ ð8:12Þ

From Eq. (8.12), a pole, s, exists when the characteristic polynomial in the denomi-
nator becomes zero, or

KGðsÞHðsÞ ¼ �1 ¼ 1—ð2kþ 1Þ180� k ¼ 0;�1;�2;�3; . . . ð8:13Þ

where�1 is represented in polar form as 1 —ð2kþ 1Þ180�. Alternately, a value of s is
a closed-loop pole if

jKGðsÞHðsÞj ¼ 1 ð8:14Þ

and

—KGðsÞHðsÞ ¼ ð2kþ 1Þ180� ð8:15Þ

Equation (8.13) implies that if a value of s is substituted into the function
KG(s)H(s), a complex number results. If the angle of the complex number is an odd
multiple of 180�, that value of s is a system pole for some particular value of K. What
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