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which implies a response similar to output 2 of Figure 7.2(b). Notice that the
integration in the forward path yields a finite error for a ramp input, rather than
the infinite error found in Example 7.2.

For the input, 5t2u(t), whose Laplace transform is 10=s3, the steady-state error
will be 10 times as large as that given by Eq. (7.20), or

eð1Þ ¼ eparabolað1Þ ¼ 10

lim
s!0

s2GðsÞ ¼
10

0
¼ 1 ð7:29Þ

Notice that the integration in the forward path does not yield any improvement in
steady-state error over that found in Example 7.2 for a parabolic input.

Skill-Assessment Exercise 7.1

PROBLEM: A unity feedback system has the following forward transfer function:

G sð Þ ¼ 10ðsþ 20Þðsþ 30Þ
sðsþ 25Þðsþ 35Þ

a. Find the steady-state error for the following inputs: 15u(t), 15tu(t), and 15t2u(t).

b. Repeat for

G sð Þ ¼ 10ðsþ 20Þðsþ 30Þ
s2ðsþ 25Þðsþ 35Þðsþ 50Þ

ANSWERS:

a. The closed-loop system is stable. For 15u(t), estepð1Þ ¼ 0; for 15tu(t),
erampð1Þ ¼ 2:1875; for 15(t2)u(t), eparabolað1Þ ¼ 1:

b. The closed-loop system is unstable. Calculations cannot be made.

The complete solution is at www.wiley.com/college/nise.

7.3 Static Error Constants and
System Type

We continue our focus on unity negative feedback systems and define parameters
that we can use as steady-state error performance specifications, just as we defined
damping ratio, natural frequency, settling time, percent overshoot, and so on as
performance specifications for the transient response. These steady-state error
performance specifications are called static error constants. Let us see how they
are defined, how to calculate them, and, in the next section, how to use them for
design.
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Static Error Constants
In the previous section we derived the following relationships for steady-state error.
For a step input, u(t),

eð1Þ ¼ estepð1Þ ¼ 1

1 þ lim
s!0

GðsÞ ð7:30Þ

For a ramp input, tu(t),

eð1Þ ¼ erampð1Þ ¼ 1

lim
s!0

sGðsÞ ð7:31Þ

For a parabolic input,
1

2
t2uðtÞ.

eð1Þ ¼ eparabolað1Þ ¼ 1

lim
s!0

s2GðsÞ ð7:32Þ

The three terms in the denominator that are taken to the limit determine the
steady-state error. We call these limits static error constants. Individually, their names
are
position constant, Kp, where

Kp ¼ lim
s!0

GðsÞ ð7:33Þ

velocity constant, Kv, where

Kv ¼ lim
s!0

sGðsÞ ð7:34Þ

acceleration constant, Ka, where

Ka ¼ lim
s!0

s2GðsÞ ð7:35Þ

As we have seen, these quantities, depending upon the form of G(s), can
assume values of zero, finite constant, or infinity. Since the static error constant
appears in the denominator of the steady-state error. Eqs. (7.30) through (7.32), the
value of the steady-state error decreases as the static error constant increases.

In Section 7.2, we evaluated the steady-state error by using the final value
theorem. An alternate method makes use of the static error constants. A few
examples follow.

Example 7.4

Steady-State Error via Static Error Constants

PROBLEM: For each system of Figure 7.7, evaluate the static error constants and
find the expected error for the standard step, ramp, and parabolic inputs.
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SOLUTION: First verify that all closed-loop systems shown are indeed stable. For
this example we leave out the details. Next, for Figure 7.7(a),

Kp ¼ lim
s!0

G sð Þ ¼ 500 � 2 � 5

8 � 10 � 12
¼ 5:208 ð7:36Þ

Kv ¼ lim
s!0

sGðsÞ ¼ 0 ð7:37Þ

Ka ¼ lim
s!0

s2GðsÞ ¼ 0 ð7:38Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0:161 ð7:39Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 1 ð7:40Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1 ð7:41Þ

Now, for Figure 7.7(b),

Kp ¼ lim
s!0

GðsÞ ¼ 1 ð7:42Þ

Kv ¼ lim
s!0

sG sð Þ ¼ 500 � 2 � 5 � 6

8 � 10 � 12
¼ 31:25 ð7:43Þ

+

–

R(s) C(s)500(s + 2)(s + 5)

(s + 8)(s + 10)(s + 12)

(a)

+

–

R(s) C(s)500(s + 2)(s + 5)(s + 6)

s(s + 8)(s + 10)(s + 12)

(b)

+

–

R(s) C(s)500(s + 2)(s + 4)(s + 5)(s + 6)(s + 7)

s2(s + 8)(s + 10)(s + 12)

(c)

E(s)

E(s)

E(s)

FIGURE 7.7 Feedback control systems for Example 7.4
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and

Ka ¼ lim
s!0

s2GðsÞ ¼ 0 ð7:44Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0 ð7:45Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 1

31:25
¼ 0:032 ð7:46Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1 ð7:47Þ

Finally, for Figure 7.7(c),

Kp ¼ lim
s!0

GðsÞ ¼ 1 ð7:48Þ

Kv ¼ lim
s!0

sGðsÞ ¼ 1 ð7:49Þ

and

Ka ¼ lim
s!0

s2G sð Þ ¼ 500 � 2 � 4 � 5 � 6 � 7

8 � 10 � 12
¼ 875 ð7:50Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0 ð7:51Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 0 ð7:52Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1

875
¼ 1:14 � 10�3 ð7:53Þ

Students who are using MATLAB should now run ch7p1 in Appendix B.
You will learn how to test the system for stability, evaluate
static error constants, and calculate steady-state error using
MATLAB. This exercise applies MATLAB to solve Example 7.4 with
System (b).

System Type
Let us continue to focus on a unity negative feedback system. The values of the static
error constants, again, depend upon the form of G(s), especially the number of pure
integrations in the forward path. Since steady-state errors are dependent upon the
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number of integrations in the forward path, we give a name to this
system attribute. Given the system in Figure 7.8, we define system
type to be the value of n in the denominator or, equivalently, the
number of pure integrations in the forward path. Therefore, a
system with n ¼ 0 is a Type 0 system. If n ¼ 1 or n ¼ 2, the
corresponding system is a Type 1 or Type 2 system, respectively.

Table 7.2 ties together the concepts of steady-state error,
static error constants, and system type. The table shows the static error constants and
the steady-state errors as functions of input waveform and system type.

Skill-Assessment Exercise 7.2

PROBLEM: A unity feedback system has the following forward transfer function:

G sð Þ ¼ 1000ðsþ 8Þ
ðsþ 7Þðsþ 9Þ

a. Evaluate system type, Kp, Kv, and Ka.

b. Use your answers to a. to find the steady-state errors for the standard step,
ramp, and parabolic inputs.

ANSWERS:

a. The closed-loop system is stable. System type¼Type 0. Kp ¼ 127, Kv ¼ 0,
and Ka ¼ 0.

b. estepð1Þ ¼ 7:8 � 10�3; erampð1Þ ¼ 1; and eparabolað1Þ ¼ 1
The complete solution is at www.wiley.com/college/nise.

In this section, we defined steady-state errors, static error constants, and system
type. Now the specifications for a control system’s steady-state errors will be
formulated, followed by some examples.

7.4 Steady-State Error Specifications

Static error constants can be used to specify the steady-state error characteristics of
control systems, such as that shown in Figure 7.9. Just as damping ratio, z, settling
time, Ts, peak time, Tp, and percent overshoot, %OS, are used as specifications for a

+

–

R(s) C(s)K(s + z1)(s + z2) ...

sn(s + p1)(s + p2) ...

E(s)

FIGURE 7.8 Feedback control system for
defining system type

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type 0 Type 1 Type 2

Input
Steady-state
error formula

Static error
constant Error

Static error
constant Error

Static error
constant Error

Step, u(t)
1

1 þKp
Kp ¼ Constant

1

1 þKp
Kp ¼ 1 0 Kp ¼ 1 0

Ramp, tu(t)
1

Kv
Kv ¼ 0 1 Kv ¼ Constant

1

Kv
Kv ¼ 1 0

Parabola,
1

2
t2u tð Þ 1

Ka
Ka ¼ 0 1 Ka ¼ 0 1 Ka ¼ Constant

1

Ka

TryIt 7.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to find Kp,
estepð1Þ, and the closed-loop
poles to check for stability for
the system of Skill-Assessment
Exercise 7.2.

numg=1000*[1 8];
deng=poly([-7 -9]);
G=tf(numg,deng);
Kp=dcgain(G)
estep=1/(1+Kp)
T=feedback(G,1);
poles=pole(T)
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control system’s transient response, so the position constant, Kp, velocity constant,
Kv, and acceleration constant, Ka, can be used as specifications for a control system’s
steady-state errors. We will soon see that a wealth of information is contained within
the specification of a static error constant.

For example, if a control system has the specification Kv ¼ 1000, we can draw
several conclusions:

1. The system is stable.

2. The system is of Type 1, since only Type 1 systems haveKv’s that are finite constants.
Recall that Kv ¼ 0 for Type 0 systems, whereas Kv ¼ 1 for Type 2 systems.

3. A ramp input is the test signal. Since Kv is specified as a finite constant, and the
steady-state error for a ramp input is inversely proportional to Kv, we know the
test input is a ramp.

4. The steady-state error between the input ramp and the output ramp is 1=Kv per
unit of input slope.

Let us look at two examples that demonstrate analysis and design using static
error constants.

Example 7.5

Interpreting the Steady-State Error Specification

PROBLEM: What information is contained in the specification Kp ¼ 1000?

SOLUTION: The system is stable. The system is Type 0, since only a Type 0 system
has a finite Kp. Type 1 and Type 2 systems have Kp ¼ 1. The input test signal is a
step, since Kp is specified. Finally, the error per unit step is

eð1Þ ¼ 1

1 þKp
¼ 1

1 þ 1000
¼ 1

1001
ð7:54Þ

FIGURE 7.9 A robot used in the
manufacturing of semiconductor
random-access memories
(RAMs) similar to those in
personal computers. Steady-state
error is an important design
consideration for assembly-line
robots.
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Example 7.6

Gain Design to Meet a Steady-State Error Specification

PROBLEM: Given the control system in Figure 7.10, find the
value of K so that there is 10% error in the steady state.

SOLUTION: Since the system is Type 1, the error stated in the
problem must apply to a ramp input; only a ramp yields a finite
error in a Type 1 system. Thus,

eð1Þ ¼ 1

Kv
¼ 0:1 ð7:55Þ

Therefore,

Kv ¼ 10 ¼ lim
s!0

sG sð Þ ¼ K � 5

6 � 7 � 8
ð7:56Þ

which yields

K ¼ 672 ð7:57Þ
Applying the Routh-Hurwitz criterion, we see that the system is stable at this gain.

Although this gain meets the criteria for steady-state error and stability, it
may not yield a desirable transient response. In Chapter 9 we will design feedback
control systems to meet all three specifications.

Students who are using MATLAB should now run ch7 p2 in Appendix B.
You will learn how to find the gain to meet a steady-state error
specification using MATLAB. This exercise solves Example 7.6
using MATLAB.

Skill-Assessment Exercise 7.3

PROBLEM: A unity feedback system has the following forward
transfer function:

GðsÞ ¼ Kðsþ 12Þ
ðsþ 14Þðsþ 18Þ

Find the value of K to yield a 10% error in the steady state.

ANSWER: K ¼ 189

The complete solution is at www.wiley.com/college/nise.

+

–

R(s) C(s)K(s + 5)

s(s + 6)(s + 7)(s + 8)

E(s)

FIGURE 7.10 Feedback control system for
Example 7.6

TryIt 7.2

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 7.3
and check the resulting
system for stability.

numg=[l 12];
deng=poly([-14 -18]);
G=tf(numg,deng);
Kpdk=dcgain(G);
estep=0.1;
K=(l/estep-1)/Kpdk
T=feedback(G,1);
poles=pole(T)
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