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6.1 Introduction

In Chapter 1, we saw that three requirements enter into the design of a control
system: transient response, stability, and steady-state errors. Thus far we have
covered transient response, which we will revisit in Chapter 8. We are now ready
to discuss the next requirement, stability.

Stability is the most important system specification. If a system is unstable,
transient response and steady-state errors are moot points. An unstable system
cannot be designed for a specific transient response or steady-state error require-
ment. What, then, is stability? There are many definitions for stability, depending
upon the kind of system or the point of view. In this section, we limit ourselves to
linear, time-invariant systems.

In Section 1.5, we discussed that we can control the output of a system if the
steady-state response consists of only the forced response. But the total response of a
system is the sum of the forced and natural responses, or

cðtÞ ¼ cforcedðtÞ þ cnaturalðtÞ ð6:1Þ
Using these concepts, we present the following definitions of stability, instability, and
marginal stability:

A linear, time-invariant system is stable if the natural response approaches zero as
time approaches infinity.

A linear, time-invariant system is unstable if the natural response grows without
bound as time approaches infinity.

A linear, time-invariant system is marginally stable if the natural response neither
decays nor grows but remains constant or oscillates as time approaches infinity.

Thus, the definition of stability implies that only the forced response remains as the
natural response approaches zero.

These definitions rely on a description of the natural response. When one is
looking at the total response, it may be difficult to separate the natural response from
the forced response. However, we realize that if the input is bounded and the total
response is not approaching infinity as time approaches infinity, then the natural
response is obviously not approaching infinity. If the input is unbounded, we see an
unbounded total response, and we cannot arrive at any conclusion about the stability
of the system; we cannot tell whether the total response is unbounded because the
forced response is unbounded or because the natural response is unbounded. Thus,
our alternate definition of stability, one that regards the total response and implies
the first definition based upon the natural response, is this:

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded-input, bounded-output (BIBO) definition of
stability.

Let us now produce an alternate definition for instability based on the total
response rather than the natural response. We realize that if the input is bounded but
the total response is unbounded, the system is unstable, since we can conclude that
the natural response approaches infinity as time approaches infinity. If the input is
unbounded, we will see an unbounded total response, and we cannot draw any
conclusion about the stability of the system; we cannot tell whether the total
response is unbounded because the forced response is unbounded or because the
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natural response is unbounded. Thus, our alternate definition of instability, one that
regards the total response, is this:

A system is unstable if any bounded input yields an unbounded output.

These definitions help clarify our previous definition of marginal stability,
which really means that the system is stable for some bounded inputs and unstable
for others. For example, we will show that if the natural response is undamped, a
bounded sinusoidal input of the same frequency yields a natural response of growing
oscillations. Hence, the system appears stable for all bounded inputs except this one
sinusoid. Thus, marginally stable systems by the natural response definitions are
included as unstable systems under the BIBO definitions.

Let us summarize our definitions of stability for linear, time-invariant systems.
Using the natural response:

1. A system is stable if the natural response approaches zero as time approaches
infinity.

2. A system is unstable if the natural response approaches infinity as time
approaches infinity.

3. A system is marginally stable if the natural response neither decays nor grows but
remains constant or oscillates.

Using the total response (BIBO):

1. A system is stable if every bounded input yields a bounded output.

2. A system is unstable if any bounded input yields an unbounded output.

Physically, an unstable system whose natural response grows without bound
can cause damage to the system, to adjacent property, or to human life. Many times
systems are designed with limited stops to prevent total runaway. From the
perspective of the time response plot of a physical system, instability is displayed
by transients that grow without bound and, consequently, a total response that does
not approach a steady-state value or other forced response.1

How do we determine if a system is stable? Let us focus on the natural response
definitions of stability. Recall from our study of system poles that poles in the left
half-plane (lhp) yield either pure exponential decay or damped sinusoidal natural
responses. These natural responses decay to zero as time approaches infinity. Thus, if
the closed-loop system poles are in the left half of the plane and hence have a
negative real part, the system is stable. That is, stable systems have closed-loop
transfer functions with poles only in the left half-plane.

Poles in the right half-plane (rhp) yield either pure exponentially increasing or
exponentially increasing sinusoidal natural responses. These natural responses
approach infinity as time approaches infinity. Thus, if the closed-loop system poles
are in the right half of the s-plane and hence have a positive real part, the system is
unstable. Also, poles of multiplicity greater than 1 on the imaginary axis lead to
the sum of responses of the form Atn cos ðvt þ fÞ, where n ¼ 1; 2; . . . ; which also
approaches infinity as time approaches infinity. Thus, unstable systems have closed-
loop transfer functions with at least one pole in the right half-plane and/or poles of
multiplicity greater than 1 on the imaginary axis.

1 Care must be taken here to distinguish between natural responses growing without bound and a forced
response, such as a ramp or exponential increase, that also grows without bound. A system whose forced
response approaches infinity is stable as long as the natural response approaches zero.
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Finally, a system that has imaginary axis poles of multiplicity 1 yields pure
sinusoidal oscillations as a natural response. These responses neither increase nor
decrease in amplitude. Thus, marginally stable systems have closed-loop transfer
functionswith only imaginary axis poles ofmultiplicity 1 and poles in the left half-plane.

As an example, the unit step response of the stable system of Figure 6.1(a) is
compared to that of the unstable system of Figure 6.1(b). The responses, also shown
in Figure 6.1, show that while the oscillations for the stable system diminish, those for
the unstable system increase without bound. Also notice that the stable system’s
response in this case approaches a steady-state value of unity.

It is not always a simple matter to determine if a feedback control system is
stable. Unfortunately, a typical problem that arises is shown in Figure 6.2. Although
we know the poles of the forward transfer function in Figure 6.2(a), we do not know
the location of the poles of the equivalent closed-loop system of Figure 6.2(b)
without factoring or otherwise solving for the roots.

However, under certain conditions, we can draw some conclusions about
the stability of the system. First, if the closed-loop transfer function has only

FIGURE 6.1 Closed-loop
poles and response:
a. stable system;
b. unstable system
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left–half-plane poles, then the factors of the denominator of the closed-loop system
transfer function consist of products of terms such as ðsþ aiÞ, where ai is real and
positive, or complex with a positive real part. The product of such terms is a
polynomial with all positive coefficients.2 No term of the polynomial can be missing,
since that would imply cancellation between positive and negative coefficients or
imaginary axis roots in the factors, which is not the case. Thus, a sufficient condition
for a system to be unstable is that all signs of the coefficients of the denominator of
the closed-loop transfer function are not the same. If powers of s are missing, the
system is either unstable or, at best, marginally stable. Unfortunately, if all coef-
ficients of the denominator are positive and not missing, we do not have definitive
information about the system’s pole locations.

If the method described in the previous paragraph is not sufficient, then a
computer can be used to determine the stability by calculating the root locations of
the denominator of the closed-loop transfer function. Today some hand-held
calculators can evaluate the roots of a polynomial. There is, however, another
method to test for stability without having to solve for the roots of the denominator.
We discuss this method in the next section.

6.2 Routh-Hurwitz Criterion

In this section, we learn a method that yields stability information without the need
to solve for the closed-loop system poles. Using this method, we can tell how many
closed-loop system poles are in the left half-plane, in the right half-plane, and on the
jv-axis. (Notice that we say how many, not where.) We can find the number of poles
in each section of the s-plane, but we cannot find their coordinates. The method is
called the Routh-Hurwitz criterion for stability (Routh, 1905).

The method requires two steps: (1) Generate a data table called a Routh table
and (2) interpret the Routh table to tell how many closed-loop system poles are in
the left half-plane, the right half-plane, and on the jv-axis. You might wonder why we
study the Routh-Hurwitz criterion when modern calculators and computers can tell
us the exact location of system poles. The power of the method lies in design rather
than analysis. For example, if you have an unknown parameter in the denominator of
a transfer function, it is difficult to determine via a calculator the range of this
parameter to yield stability. You would probably rely on trial and error to answer the
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FIGURE 6.2 Common cause
of problems in finding closed-
loop poles: a. original system;
b. equivalent system

2 The coefficients can also be made all negative by multiplying the polynomial by �1. This operation does
not change the root location.
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stability question. We shall see later that the Routh-Hurwitz criterion can yield a
closed-form expression for the range of the unknown parameter.

In this section, we make and interpret a basic Routh table. In the next section,
we consider two special cases that can arise when generating this data table.

Generating a Basic Routh Table
Look at the equivalent closed-loop transfer function shown in Fig-
ure 6.3. Since we are interested in the system poles, we focus our
attention on the denominator. We first create the Routh table shown
in Table 6.1. Begin by labeling the rows with powers of s from the
highest power of the denominator of the closed-loop transfer func-

tion to s0. Next start with the coefficient of the highest power of s in the denominator
and list, horizontally in the first row, every other coefficient. In the second row, list
horizontally, starting with the next highest power of s, every coefficient that was
skipped in the first row.

The remaining entries are filled in as follows. Each entry is a negative determi-
nant of entries in the previous two rows divided by the entry in the first column directly
above the calculated row. The left-hand column of the determinant is always the first
column of the previous two rows, and the right-hand column is the elements of the
columnaboveandtotheright.Thetable iscompletewhenallof therowsarecompleted
down to s0. Table 6.2 is the completed Routh table. Let us look at an example.

Example 6.1

Creating a Routh Table

PROBLEM: Make the Routh table for the system shown in Figure 6.4(a).

SOLUTION: The first step is to find the equivalent closed-loop system because we
want to test the denominator of this function, not the given forward transfer

N(s) C(s)R(s)

a4s4 + a3s3 + a2s2 + a1s + a0

FIGURE 6.3 Equivalent closed-loop transfer
function

TABLE 6.1 Initial layout for Routh table
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FIGURE 6.4 a. Feedback
system for Example 6.1;
b. equivalent closed-
loop system
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function, for pole location. Using the feedback formula, we obtain the equivalent
system of Figure 6.4(b). The Routh-Hurwitz criterion will be applied to this
denominator. First label the rows with powers of s from s3 down to s0 in a vertical
column, as shown in Table 6.3. Next form the first row of the table, using the
coefficients of the denominator of the closed-loop transfer function. Start with
the coefficient of the highest power and skip every other power of s. Now form the
second row with the coefficients of the denominator skipped in the previous step.
Subsequent rows are formed with determinants, as shown in Table 6.2.

For convenience, any row of the Routh table can be multiplied by a positive
constant without changing the values of the rows below. This can be proved by
examining the expressions for the entries and verifying that any multiplicative
constant from a previous row cancels out. In the second row of Table 6.3, for
example, the row was multiplied by 1/10. We see later that care must be taken not to
multiply the row by a negative constant.

Interpreting the Basic Routh Table
Now that we know how to generate the Routh table, let us see how to interpret it.
The basic Routh table applies to systems with poles in the left and right half-planes.
Systems with imaginary poles and the kind of Routh table that results will be
discussed in the next section. Simply stated, the Routh-Hurwitz criterion declares
that the number of roots of the polynomial that are in the right half-plane is equal to
the number of sign changes in the first column.

If the closed-loop transfer function has all poles in the left half of the s-plane,
the system is stable. Thus, a system is stable if there are no sign changes in the first
column of the Routh table. For example, Table 6.3 has two sign changes in the
first column. The first sign change occurs from 1 in the s2 row to �72 in the s1 row.
The second occurs from �72 in the s1 row to 103 in the s0 row. Thus, the system of
Figure 6.4 is unstable since two poles exist in the right half-plane.

Skill-Assessment Exercise 6.1

PROBLEM: Make a Routh table and tell how many roots of the following
polynomial are in the right half-plane and in the left half-plane.

PðsÞ ¼ 3s7 þ 9s6 þ 6s5 þ 4s4 þ 7s3 þ 8s2 þ 2sþ 6

ANSWER: Four in the right half-plane (rhp), three in the left half-plane (lhp).

The complete solution is at www.wiley.com/college/nise.

TABLE 6.3 Completed Routh table for Example 6.1

s3 1 31 0

s2 10 1 1030 103 0

s1
�
���� 11

31
103

����
1

¼ �72
�
���� 10

0
0

����
1

¼ 0
�
���� 11

0
0

����
1

¼ 0

s0
�
���� 1
�72

103
0

����
�72

¼ 103
�
���� 1
�72

0
0

����
�72

¼ 0
�
���� 1
�72

0
0

����
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¼ 0
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Now that we have described how to generate and interpret a basic Routh table,
let us look at two special cases that can arise.

6.3 Routh-Hurwitz Criterion: Special Cases

Two special cases can occur: (1) The Routh table sometimes will have a zero only in
the first column of a row, or (2) the Routh table sometimes will have an entire row
that consists of zeros. Let us examine the first case.

Zero Only in the First Column
If the first element of a row is zero, division by zero would be required to form the
next row. To avoid this phenomenon, an epsilon, e, is assigned to replace the zero in
the first column. The value e is then allowed to approach zero from either the
positive or the negative side, after which the signs of the entries in the first column
can be determined. Let us look at an example.

Example 6.2

Stability via Epsilon Method

PROBLEM: Determine the stability of the closed-loop transfer function

TðsÞ ¼ 10

s5 þ 2s4 þ 3s3 þ 6s2 þ 5sþ 3
ð6:2Þ

SOLUTION: The solution is shown in Table 6.4. We form the Routh table by using
the denominator of Eq. (6.2). Begin by assembling the Routh table down to the row
where a zero appears only in the first column (the s3 row). Next replace the zero by
a small number, e, and complete the table. To begin the interpretation, we must first
assume a sign, positive or negative, for the quantity e. Table 6.5 shows the first
column of Table 6.4 along with the resulting signs for choices of e positive and
e negative.

TryIt 6.1

Use the following MATLAB
statement to find the poles of
the closed-loop transfer
function in Eq. (6.2).

roots([1 2 3 6 5 3])

TABLE 6.4 Completed Routh table for
Example 6.2

s5 1 3 5

s4 2 6 3

s3 0 e
7

2
0

s2 6e� 7

e
3 0

s1 42e� 49 � 6e2

12e� 14
0 0

s0 3 0 0

TABLE 6.5 Determining signs in first column of a Routh table with
zero as first element in a row

Label First column e ¼ þ e ¼ �
s5 1 + +

s4 2 + +

s3 0 e + �

s2 6e� 7

e
� +

s1 42e� 49 � 6e2

12e� 14
+ +

s0 3 + +
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If e is chosen positive, Table 6.5 will show a sign change from the s3 row to the
s2 row, and there will be another sign change from the s2 row to the s1 row. Hence,
the system is unstable and has two poles in the right half-plane.

Alternatively, we could choose e negative. Table 6.5 would then show a
sign change from the s4 row to the s3 row. Another sign change would occur
from the s3 row to the s2 row. Our result would be exactly the same as that for
a positive choice for e. Thus, the system is unstable, with two poles in the right
half-plane.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch6sp1 in Appendix F at www.wiley.com/college/
nise. You will learn how to use the Symbolic Math Toolbox to
calculate the values of cells in a Routh table even if the table
contains symbolic objects, such as e. You will see that the
Symbolic Math Toolbox and MATLAB yield an alternate way to gen-
erate the Routh table for Example 6.2.

Another method that can be used when a zero appears only in the first column
of a row is derived from the fact that a polynomial that has the reciprocal roots of the
original polynomial has its roots distributed the same—right half-plane, left half-
plane, or imaginary axis—because taking the reciprocal of the root value does not
move it to another region. Thus, if we can find the polynomial that has the reciprocal
roots of the original, it is possible that the Routh table for the new polynomial will
not have a zero in the first column. This method is usually computationally easier
than the epsilon method just described.

We now show that the polynomial we are looking for, the one with the
reciprocal roots, is simply the original polynomial with its coefficients written in
reverse order (Phillips, 1991). Assume the equation

sn þ an�1s
n�1 þ � � � þ a1sþ a0 ¼ 0 ð6:3Þ

If s is replaced by 1=d, then d will have roots which are the reciprocal of s. Making this
substitution in Eq. (6.3),

1

d

� �n

þ an�1
1

d

� �n�1

þ � � � þ a1
1

d

� �
þ a0 ¼ 0 ð6:4Þ

Factoring out ð1=dÞn,

1

d

� �n

1 þ an�1
1

d

� ��1

þ � � � þ a1
1

d

� � 1�nð Þ
þ a0

1

d

� ��n
" #

¼ 1

d

� �n

½1 þ an�1dþ � � � þ a1d
ðn�1Þ þ a0d

n� ¼ 0 ð6:5Þ

Thus, the polynomial with reciprocal roots is a polynomial with the coefficients
written in reverse order. Let us redo the previous example to show the computa-
tional advantage of this method.
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Example 6.3

Stability via Reverse Coefficients

PROBLEM: Determine the stability of the closed-loop transfer function

TðsÞ ¼ 10

s5 þ 2s4 þ 3s3 þ 6s2 þ 5sþ 3
ð6:6Þ

SOLUTION: First write a polynomial that has the reciprocal roots of the denomi-
nator of Eq. (6.6). From our discussion, this polynomial is formed by writing the
denominator of Eq. (6.6) in reverse order. Hence,

DðsÞ ¼ 3s5 þ 5s4 þ 6s3 þ 3s2 þ 2sþ 1 ð6:7Þ
We form the Routh table as shown in Table 6.6 using Eq. (6.7). Since there are two
sign changes, the system is unstable and has two right-half-plane poles. This is the
same as the result obtained in Example 6.2. Notice that Table 6.6 does not have a
zero in the first column.

Entire Row is Zero
We now look at the second special case. Sometimes while making a Routh table, we
find that an entire row consists of zeros because there is an even polynomial that is a
factor of the original polynomial. This case must be handled differently from the case
of a zero in only the first column of a row. Let us look at an example that
demonstrates how to construct and interpret the Routh table when an entire row
of zeros is present.

Example 6.4

Stability via Routh Table with Row of Zeros

PROBLEM: Determine the number of right-half-plane poles in the closed-loop
transfer function

TðsÞ ¼ 10

s5 þ 7s4 þ 6s3 þ 42s2 þ 8sþ 56
ð6:8Þ

SOLUTION: Start by forming the Routh table for the denominator of Eq. (6.8)
(see Table 6.7). At the second row we multiply through by 1/7 for convenience. We
stop at the third row, since the entire row consists of zeros, and use the following

TABLE 6.6 Routh table for Example 6.3

s5 3 6 2

s4 5 3 1

s3 4.2 1.4

s2 1.33 1

s1 �1.75

s0 1
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procedure. First we return to the row immediately above the row of zeros and
form an auxiliary polynomial, using the entries in that row as coefficients. The
polynomial will start with the power of s in the label column and continue by
skipping every other power of s. Thus, the polynomial formed for this example is

PðsÞ ¼ s4 þ 6s2 þ 8 ð6:9Þ
Next we differentiate the polynomial with respect to s and obtain

dPðsÞ
ds

¼ 4s3 þ 12sþ 0 ð6:10Þ
Finally, we use the coefficients of Eq. (6.10) to replace the row of zeros. Again, for
convenience, the third row is multiplied by 1/4 after replacing the zeros.

The remainder of the table is formed in a straightforward manner by
following the standard form shown in Table 6.2. Table 6.7 shows that all entries
in the first column are positive. Hence, there are no right–half-plane poles.

Let us look further into the case that yields an entire row of
zeros. An entire row of zeros will appear in the Routh table when a
purely even or purely odd polynomial is a factor of the original
polynomial. For example, s4 þ 5s2 þ 7 is an even polynomial; it has
only even powers of s. Even polynomials only have roots that are
symmetrical about the origin.3 This symmetry can occur under three
conditions of root position: (1) The roots are symmetrical and real,
(2) the roots are symmetrical and imaginary, or (3) the roots are
quadrantal. Figure 6.5 shows examples of these cases. Each case or
combination of these cases will generate an even polynomial.

It is this even polynomial that causes the row of zeros to
appear. Thus, the row of zeros tells us of the existence of an even
polynomial whose roots are symmetric about the origin. Some of
these roots could be on the jv-axis. On the other hand, since jv roots
are symmetric about the origin, if we do not have a row of zeros, we
cannot possibly have jv roots.

Another characteristic of the Routh table for the case in
question is that the row previous to the row of zeros contains the even polynomial
that is a factor of the original polynomial. Finally, everything from the row
containing the even polynomial down to the end of the Routh table is a test of
only the even polynomial. Let us put these facts together in an example.

TABLE 6.7 Routh table for Example 6.4

s5 1 6 8

s4 7 1 42 6 56 8

s3 0 4 1 0 12 3 0 0 0

s2 3 8 0

s1
1

3
0 0

s0 8 0 0

C

C

C

C

A A
σ

ωj

s-plane

A:   Real and symmetrical about the origin
B:   Imaginary and symmetrical about the origin
C:   Quadrantal and symmetrical about the origin

B

B

FIGURE 6.5 Root positions to generate even
polynomials: A, B, C, or any combination

3 The polynomial s5 þ 5s3 þ 7s is an example of an odd polynomial; it has only odd powers of s. Odd
polynomials are the product of an even polynomial and an odd power of s. Thus, the constant term of an
odd polynomial is always missing.

6.3 Routh-Hurwitz Criterion: Special Cases 311

Aamir Sharif
Rectangle

Aamir Sharif
Polyline



Apago PDF Enhancer

E1C06 11/03/2010 21:23:6 Page 312

Example 6.5

Pole Distribution via Routh Table with Row of Zeros

PROBLEM: For the transfer function

TðsÞ ¼ 20

s8 þ s7 þ 12s6 þ 22s5 þ 39s4 þ 59s3 þ 48s2 þ 38sþ 20
ð6:11Þ

tell how many poles are in the right half-plane, in the left half-plane, and on the
jv-axis.

SOLUTION: Use the denominator of Eq. (6.11) and form the Routh table in
Table 6.8. For convenience the s6 row is multiplied by 1/10, and the s5 row is
multiplied by 1/20. At the s3 row we obtain a row of zeros. Moving back one row to
s4, we extract the even polynomial, P(s), as

PðsÞ ¼ s4 þ 3s2 þ 2 ð6:12Þ

This polynomial will divide evenly into the denominator of Eq. (6.11) and thus is a
factor. Taking the derivative with respect to s to obtain the coefficients that replace
the row of zeros in the s3 row, we find

dPðsÞ
ds

¼ 4s3 þ 6sþ 0 ð6:13Þ

Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for
convenience. Finally, continue the table to the s0 row, using the standard procedure.

How do we now interpret this Routh table? Since all entries from the even
polynomial at the s4 row down to the s0 row are a test of the even polynomial, we
begin to draw some conclusions about the roots of the even polynomial. No sign
changes exist from the s4 row down to the s0 row. Thus, the even polynomial does
not have right–half-plane poles. Since there are no right–half-plane poles, no left–
half-plane poles are present because of the requirement for symmetry. Hence, the
even polynomial, Eq. (6.12), must have all four of its poles on the jv-axis.4 These
results are summarized in the first column of Table 6.9.

TABLE 6.8 Routh table for Example 6.5

s8 1 12 39 48 20

s7 1 22 59 38 0

s6 � 10 � 1 � 20 � 2 10 1 20 2 0

s5 20 1 60 3 40 2 0 0

s4 1 3 2 0 0

s3 0 4 2 0 6 3 0 0 0 0 0

s2 3

2
3 2 4 0 0 0

s1 1

3
0 0 0 0

s0 4 0 0 0 0

4 A necessary condition for stability is that the jv roots have unit multiplicity. The even polynomial must be
checked for multiple jv roots. For this case, the existence of multiple jv roots would lead to a perfect,
fourth-order square polynomial. Since Eq. (6.12) is not a perfect square, the four jv roots are distinct.
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The remaining roots of the total polynomial are evaluated from the s8 row down
to the s4 row. We notice two sign changes: one from the s7 row to the s6 row and the
other from the s6 row to the s5 row. Thus, the other polynomial must have two roots in
the right half-plane. These results are included in Table 6.9 under ‘‘Other’’. The final
tally is the sum of roots from each component, the even polynomial and the other
polynomial, as shown under ‘‘Total’’ in Table 6.9. Thus, the system has two poles in
the right half-plane, two poles in the left half-plane, and four poles on the jv-axis; it is
unstable because of the right–half-plane poles.

We nowsummarize what wehave learned about polynomials that generate entire
rows ofzeros intheRouthtable. Thesepolynomials have apurelyevenfactor withroots
that are symmetrical about the origin. The even polynomial appears in the Routh
table in the row directly above the row of zeros. Every entry in the table from the even
polynomial’s rowto theendof the chartapplies only to theevenpolynomial. Therefore,
the number of sign changes from the even polynomial to the end of the table equals the
number of right-half-plane roots of the even polynomial. Because of the symmetry of
roots about the origin, the even polynomial must have the same number of left–half-
plane roots as it does right–half-plane roots. Having accounted for the roots in the right
and left half-planes, we know the remaining roots must be on the jv-axis.

Every row in the Routh table from the beginning of the chart to the row
containing the even polynomial applies only to the other factor of the original
polynomial. For this factor, the number of sign changes, from the beginning of the
table down to the even polynomial, equals the number of right–half-plane roots.
The remaining roots are left–half-plane roots. There can be no jv roots contained in
the other polynomial.

Skill-Assessment Exercise 6.2

PROBLEM: Use the Routh-Hurwitz criterion to find how many poles of the
following closed-loop system, T(s), are in the rhp, in the lhp, and on the jv-axis:

TðsÞ ¼ s3 þ 7s2 � 21sþ 10

s6 þ s5 � 6s4 þ 0s3 � s2 � sþ 6

ANSWER: Two rhp, two lhp, and two jv

The complete solution is at www.wiley.com/college/nise.

Let us demonstrate the usefulness of the Routh-Hurwitz criterion with a few
additional examples.

TABLE 6.9 Summary of pole locations for Example 6.5

Polynomial

Location
Even

(fourth-order)
Other

(fourth-order)
Total

(eighth-order)

Right half-plane 0 2 2

Left half-plane 0 2 2

jv 4 0 4
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Virtual Experiment 6.1
Stability

Put theory into practice and
evaluate the stability of the
Quanser Linear Inverted Pendu-
lum in LabVIEW. When in the
upward balanced position, this
system addresses the challenge of
stabilizing a rocket during take-
off. In the downward position it
emulates the construction
gantry crane.

Virtual experiments are found
on WileyPLUS.

www.wiley.com/college/nise
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