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A 10% overshoot implies that z ¼ 0:591. Substituting this value for the
damping ratio into Eq. (5.23) and solving for K yields

K ¼ 17:9 ð5:24Þ
Although we are able to design for percent overshoot in this problem, we

could not have selected settling time as a design criterion because, regardless of the
value of K, the real parts, �2.5, of the poles of Eq. (5.20) remain the same.

Skill-Assessment Exercise 5.2

PROBLEM: For a unity feedback control system with a forward-path transfer

function GðsÞ ¼ 16

sðsþ aÞ, design the value of a to yield a closed-loop step response

that has 5% overshoot.

ANSWER:

a ¼ 5:52

The complete solution is at www.wiley.com/college/nise.

5.4 Signal-Flow Graphs

Signal-flow graphs are an alternative to block diagrams. Unlike block diagrams,
which consist of blocks, signals, summing junctions, and pickoff points, a signal-flow
graph consists only of branches, which represent systems, and nodes, which represent
signals. These elements are shown in Figure 5.17(a) and (b), respectively. A system is
represented by a line with an arrow showing the direction of signal flow through the

TryIt 5.2

Use the following MATLAB and Control
System Toolbox statements to find z, vn,
%OS, Ts, Tp, and Tr for the closed-loop unity
feedback system described in Skill-Assessment
Exercise 5.2. Start with a ¼ 2 and try some
other values. A step response for the closed-
loop system will also be produced.

a=2;
numg=16;
deng=poly([0 -a]);
G=tf(numg,deng);
T=feedback(G,1);

[numt,dent]=...
tfdata(T, ’v ’);
wn=sqrt(dent)3))
z=dent(2)/(2*wn)
Ts=4/(z*wn)
Tp=pi/(wn*...
sqrt(l -z^2))
pos=exp(-z*pi...
/sqrt(l -z^2))*100
Tr=(1.76*z^3 - ...
0.417*z^2 + 1.039*...
z + 1)/wn
step(T)

FIGURE 5.17 Signal-flow
graph components: a. system;
b. signal; c. interconnection of
systems and signals
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FIGURE 5.18 Building signal-
flow graphs: a. cascaded sys-
tem nodes (from Figure 5.3(a));
b. cascaded system signal-flow
graph; c. parallel system nodes
(from Figure 5.5(a)); d. parallel
system signal-flow graph; e.
feedback system nodes (from
Figure 5.6(b)); f. feedback sys-
tem signal-flow graph

system. Adjacent to the line we write the transfer function. A signal is a node with
the signal’s name written adjacent to the node.

Figure 5.17(c) shows the interconnection of the systems and the signals. Each signal
is the sum of signals flowing into it. For example, the signal VðsÞ ¼ R1ðsÞG1ðsÞ�
R2ðsÞG2ðsÞ þ R3ðsÞG3ðsÞ. The signal C2ðsÞ ¼ VðsÞG5ðsÞ ¼ R1ðsÞG1ðsÞG5ðsÞ � R2ðsÞ
G2ðsÞG5ðsÞ þ R3ðsÞG3ðsÞG5ðsÞ. The signal C3ðsÞ ¼ �VðsÞG6ðsÞ ¼ �R1ðsÞG1ðsÞ
G6ðsÞ þ R2ðsÞG2ðsÞG6ðsÞ � R3ðsÞG3ðsÞG6ðsÞ. Notice that in summing negative signals
we associate the negative sign with the system and not with a summing junction, as in
the case of block diagrams.

To show the parallel between block diagrams and signal-flow graphs, we will
take some of the block diagram forms from Section 5.2 and convert them to signal-
flow graphs in Example 5.5. In each case, we will first convert the signals to nodes
and then interconnect the nodes with system branches. In Example 5.6, we will
convert an intricate block diagram to a signal-flow graph.

Example 5.5

Converting Common Block Diagrams to Signal-Flow Graphs

PROBLEM: Convert the cascaded, parallel, and feedback forms of the block diagrams
shown in Figures 5.3(a), 5.5(a), and 5.6(b), respectively, into signal-flow graphs.

SOLUTION: In each case, we start by drawing the signal nodes for that system. Next
we interconnect the signal nodes with system branches. The signal nodes for the
cascaded, parallel, and feedback forms are shown in Figure 5.18(a), (c), and (e),
respectively. The interconnection of the nodes with branches that represent the
subsystems is shown in Figure 5.18(b), (d), and (f) for the cascaded, parallel, and
feedback forms, respectively.

5.4 Signal-Flow Graphs 249
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Example 5.6

Converting a Block Diagram to a Signal-Flow Graph

PROBLEM: Convert the block diagram of Figure 5.11 to a signal-flow graph.

SOLUTION: Begin by drawing the signal nodes, as shown in Figure 5.19(a). Next,
interconnect the nodes, showing the direction of signal flow and identifying each
transfer function. The result is shown in Figure 5.19(b). Notice that the negative
signs at the summing junctions of the block diagram are represented by the
negative transfer functions of the signal-flow graph. Finally, if desired, simplify
the signal-flow graph to the one shown in Figure 5.19(c) by eliminating signals that
have a single flow in and a single flow out, such as V2(s), V6(s), V7(s), and V8(s).
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FIGURE 5.19 Signal-flow graph development: a. signal nodes; b. signal-flow graph;
c. simplified signal-flow graph
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Skill-Assessment Exercise 5.3

PROBLEM: Convert the block diagram of Figure 5.13 to a signal-flow graph.

ANSWER: The complete solution is at www.wiley.com/college/nise.

5.5 Mason’s Rule

Earlier in this chapter, we discussed how to reduce block diagrams to single transfer
functions. Now we are ready to discuss a technique for reducing signal-flow graphs to
single transfer functions that relate the output of a system to its input.

The block diagram reduction technique we studied in Section 5.2 requires
successive application of fundamental relationships in order to arrive at the system
transfer function. On the other hand, Mason’s rule for reducing a signal-flow graph
to a single transfer function requires the application of one formula. The formula was
derived by S. J. Mason when he related the signal-flow graph to the simultaneous
equations that can be written from the graph (Mason, 1953).

In general, it can be complicated to implement the formula without making
mistakes. Specifically, the existence of what we will later call nontouching loops
increases the complexity of the formula. However, many systems do not have non-
touching loops. For these systems, you may find Mason’s rule easier to use than block
diagram reduction.

Mason’s formula has several components that must be evaluated. First, we must
be sure that the definitions of the components are well understood. Then we must
exert care in evaluating the components. To that end, we discuss some basic definitions
applicable to signal-flow graphs; then we state Mason’s rule and do an example.

Definitions
Loop gain. The product of branch gains found by traversing a path that starts at a
node and ends at the same node, following the direction of the signal flow, without
passing through any other node more than once. For examples of loop gains, see
Figure 5.20. There are four loop gains:

1. G2ðsÞH1ðsÞ ð5:25aÞ
2. G4ðsÞH2ðsÞ ð5:25bÞ
3. G4ðsÞG5ðsÞH3ðsÞ ð5:25cÞ
4. G4ðsÞG6ðsÞH3ðsÞ ð5:25dÞ

Forward-path gain. The product of gains found
by traversing a path from the input node to the output
node of the signal-flow graph in the direction of signal flow. Examples of forward-path
gains are also shown in Figure 5.20. There are two forward-path gains:

1. G1ðsÞG2ðsÞG3ðsÞG4ðsÞG5ðsÞG7ðsÞ ð5:26aÞ
2. G1ðsÞG2ðsÞG3ðsÞG4ðsÞG6ðsÞG7ðsÞ ð5:26bÞ

Nontouching loops. Loops that do not have any nodes in common. In Figure 5.20,
loopG2(s)H1(s) does not touch loopsG4(s)H2(s),G4(s)G5(s)H3(s), andG4(s)G6(s)H3(s).
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V3(s)

G5(s)
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FIGURE 5.20 Signal-flow graph for demonstrating Mason’s rule
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Nontouching-loop gain. The product of loop gains from nontouching loops
taken two, three, four, or more at a time. In Figure 5.20 the product of loop gain
G2(s)H1(s) and loop gain G4(s)H2(s) is a nontouching-loop gain taken two at a time.
In summary, all three of the nontouching-loop gains taken two at a time are

1. ½G2ðsÞH1ðsÞ�½G4ðsÞH2ðsÞ� ð5:27aÞ
2. ½G2ðsÞH1ðsÞ�½G4ðsÞG5ðsÞH3ðsÞ� ð5:27bÞ
3. ½G2ðsÞH1ðsÞ�½G4ðsÞG6ðsÞH3ðsÞ� ð5:27cÞ
The product of loop gains ½G4ðsÞG5ðsÞH3ðsÞ�½G4ðsÞG6ðsÞH3ðsÞ� is not a nontouching-
loop gain since these two loops have nodes in common. In our example there are no
nontouching-loop gains taken three at a time since three nontouching loops do not
exist in the example.

We are now ready to state Mason’s rule.

Mason’s Rule
The transfer function, CðsÞ=RðsÞ, of a system represented by a signal-flow graph is

GðsÞ ¼ CðsÞ
RðsÞ ¼

P
kTkDk

D
ð5:28Þ

where

k ¼ number of forward paths
Tk ¼ the kth forward-path gain
D ¼ 1 � S loop gains þ S nontouching-loop gains taken two at a time � S

nontouching-loop gains taken three at a time þ S nontouching-loop gains
taken four at a time � . . .

Dk ¼ D� S loop gain terms in D that touch the kth forward path: In other words; Dk

is formed by eliminating from D those loop gains that touch the kth forward
path:

Notice the alternating signs for the components of D. The following example will
help clarify Mason’s rule.

Example 5.7

Transfer Function via Mason’s Rule

PROBLEM: Find the transfer function, C(s)/R(s), for the signal-flow graph in
Figure 5.21.

FIGURE 5.21 Signal-flow graph
for Example 5.7

R(s)
G1(s) G2(s)

V4(s)

H1(s)

G3(s)

V3(s)

G8(s)

V2(s)

G4(s)

V1(s)

G5(s)

H2(s)

C(s)

G6(s)

G7(s)

H4(s)

V5(s)V6(s)

252 Chapter 5 Reduction of Multiple Subsystems



Apago PDF Enhancer

E1C05 11/03/2010 12:17:53 Page 253

SOLUTION: First, identify the forward-path gains. In this example there is only
one:

G1ðsÞG2ðsÞG3ðsÞG4ðsÞG5ðsÞ ð5:29Þ

Second, identify the loop gains. There are four, as follows:

1. G2ðsÞH1ðsÞ ð5:30aÞ
2. G4ðsÞH2ðsÞ ð5:30bÞ
3. G7ðsÞH4ðsÞ ð5:30cÞ
4. G2ðsÞG3ðsÞG4ðsÞG5ðsÞG6ðsÞG7ðsÞG8ðsÞ ð5:30dÞ

Third, identify the nontouching loops taken two at a time. From Eqs. (5.30) and
Figure 5.21, we can see that loop 1 does not touch loop 2, loop 1 does not touch
loop 3, and loop 2 does not touch loop 3. Notice that loops 1, 2, and 3 all touch
loop 4. Thus, the combinations of nontouching loops taken two at a time are as
follows:

Loop 1 and loop 2 : G2ðsÞH1ðsÞG4ðsÞH2ðsÞ ð5:31aÞ

Loop 1 and loop 3 : G2ðsÞH1ðsÞG7ðsÞH4ðsÞ ð5:31bÞ
Loop 2 and loop 3 : G4ðsÞH2ðsÞG7ðsÞH4ðsÞ ð5:31cÞ

Finally, the nontouching loops taken three at a time are as follows:

Loops 1; 2; and 3 : G2ðsÞH1ðsÞG4ðsÞH2ðsÞG7ðsÞH4ðsÞ ð5:32Þ
Now, from Eq. (5.28) and its definitions, we form D and Dk. Hence,

D ¼ 1 �½G2ðsÞH1ðsÞ þG4ðsÞH2ðsÞ þG7ðsÞH4ðsÞ
þG2ðsÞG3ðsÞG4ðsÞG5ðsÞG6ðsÞG7ðsÞG8ðsÞ�

þ½G2ðsÞH1ðsÞG4ðsÞH2ðsÞ þG2ðsÞH1ðsÞG7ðsÞH4ðsÞ
þG4ðsÞH2ðsÞG7ðsÞH4ðsÞ�

�½G2ðsÞH1ðsÞG4ðsÞH2ðsÞG7ðsÞH4ðsÞ�
ð5:33Þ

We form Dk by eliminating from D the loop gains that touch the kth forward
path:

D1 ¼ 1 �G7ðsÞH4ðsÞ ð5:34Þ

Expressions (5.29), (5.33), and (5.34) are now substituted into Eq. (5.28),
yielding the transfer function:

GðsÞ ¼ T1D1

D
¼ ½G1ðsÞG2ðsÞG3ðsÞG4ðsÞG5ðsÞ�½1 �G7ðsÞH4ðsÞ�

D
ð5:35Þ

Since there is only one forward path, G(s) consists of only one term, rather than a
sum of terms, each coming from a forward path.
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Skill-Assessment Exercise 5.4

PROBLEM: Use Mason’s rule to find the transfer function of the signal-flow
diagram shown in Figure 5.19(c). Notice that this is the same system used in
Example 5.2 to find the transfer function via block diagram reduction.

ANSWER:

TðsÞ ¼ G1ðsÞG3ðsÞ½1 þG2ðsÞ�
1 þG2ðsÞH2ðsÞ þG1ðsÞG2ðsÞH1ðsÞ½ �½1 þG3ðsÞH3ðsÞ�

The complete solution is at www.wiley.com/college/nise.

5.6 Signal-Flow Graphs of State Equations

In this section, we draw signal-flow graphs from state equations. At first this process
will help us visualize state variables. Later we will draw signal-flow graphs and then
write alternate representations of a system in state space.

Consider the following state and output equations:

_x1 ¼ 2x1 � 5x2 þ 3x3 þ 2r ð5:36aÞ
_x2 ¼ �6x1 � 2x2 þ 2x3 þ 5r ð5:36bÞ
_x3 ¼ x1 � 3x2 � 4x3 þ 7r ð5:36cÞ
y ¼ �4x1 þ 6x2 þ 9x3 ð5:36dÞ

First, identify three nodes to be the three state variables, x1, x2, and x3; also
identify three nodes, placed to the left of each respective state variable, to be the
derivatives of the state variables, as in Figure 5.22(a). Also identify a node as the
input, r, and another node as the output, y.

Next interconnect the state variables and their derivatives with the defining
integration, 1/s, as shown in Figure 5.22(b). Then using Eqs. (5.36), feed to each node
the indicated signals. For example, from Eq. (5.36a), _x1 receives 2x1 � 5x2 þ 3x3 þ 2r,
as shown in Figure 5.22(c). Similarly, _x2 receives �6x1 � 2x2 þ 2x3 þ 5r, as shown in
Figure 5.22(d), and _x3 receives x1 � 3x2 � 4x3 þ 7r, as shown in Figure 5.22(e).
Finally, using Eq. (5.36d), the output, y, receives �4x1 þ 6x2 þ 9x3, as shown in
Figure 5.19(f ), the final phase-variable representation, where the state variables are
the outputs of the integrators.
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sX3(s) sX2(s) sX1(s)X3(s) X2(s) X1(s)
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sX3(s) sX2(s) sX1(s)X3(s) X2(s) X1(s)

(b)

1
s

1
s

1
s

FIGURE 5.22 Stages of development of a signal-flow graph for the system of Eqs. (5.36):
a. Place nodes; b. interconnect state variables and derivatives; (figure continues)
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FIGURE 5.22 (Continued) c. form dx1/dt; d. form dx2/dt; e. form dx3/dt; (figure continues)
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Skill-Assessment Exercise 5.5

PROBLEM: Draw a signal-flow graph for the following state and output equations:

_x ¼
�2 1 0

0 �3 1
�3 �4 �5

2
4

3
5x þ

0
0
1

2
4
3
5r

y ¼ ½ 0 1 0 �x

ANSWER: The complete solution is at www.wiley.com/college/nise.

In the next section, the signal-flow model will help us visualize the process of
determining alternative representations in state space of the same system. We will
see that even though a system can be the same with respect to its input and output
terminals, the state-space representations can be many and varied.

5.7 Alternative Representations in State Space

In Chapter 3, systems were represented in state space in phase-variable form.
However, system modeling in state space can take on many representations other
than the phase-variable form. Although each of these models yields the same
output for a given input, an engineer may prefer a particular one for several
reasons. For example, one set of state variables, with its unique representation,
can model actual physical variables of a system, such as amplifier and filter
outputs.

FIGURE 5.22 (Continued) f. form output (figure end)
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