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settling time, and peak time of the closed-loop system for a step input; (d) calculate
the step response for the closed-loop system; and (e) for the simplified model,
design the system gain to meet a transient response requirement.

� Given the block diagrams for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch and heading control systems on the back endpapers, you will be able
to represent each control system in state space.

5.1 Introduction

We have been working with individual subsystems represented by a block with its
input and output. More complicated systems, however, are represented by the
interconnection of many subsystems. Since the response of a single transfer function
can be calculated, we want to represent multiple subsystems as a single transfer
function. We can then apply the analytical techniques of the previous chapters and
obtain transient response information about the entire system.

In this chapter, multiple subsystems are represented in two ways: as block
diagrams and as signal-flow graphs. Although neither representation is limited to a
particular analysis and design technique, block diagrams are usually used for
frequency-domain analysis and design, and signal-flow graphs for state-space
analysis.

Signal-flow graphs represent transfer functions as lines, and signals as small-
circular nodes. Summing is implicit. To show why it is convenient to use signal-flow
graphs for state-space analysis and design, consider Figure 3.10. A graphical
representation of a system’s transfer function is as simple as Figure 3.10(a).
However, a graphical representation of a system in state space requires representa-
tion of each state variable, as in Figure 3.10(b). In that example, a single-block
transfer function requires seven blocks and a summing junction to show the state
variables explicitly. Thus, signal-flow graphs have advantages over block diagrams,
such as Figure 3.10(b): They can be drawn more quickly, they are more compact, and
they emphasize the state variables.

We will develop techniques to reduce each representation to a single transfer
function. Block diagram algebra will be used to reduce block diagrams and Mason’s
rule to reduce signal-flow graphs. Again, it must be emphasized that these methods
are typically used as described. As we shall see, however, either method can be used
for frequency-domain or state-space analysis and design.

5.2 Block Diagrams

As you already know, a subsystem is represented as a block with an input, an output,
and a transfer function. Many systems are composed of multiple subsystems, as in
Figure 5.1. When multiple subsystems are interconnected, a few more schematic
elements must be added to the block diagram. These new elements are summing
junctions and pickoff points. All component parts of a block diagram for a linear,
time-invariant system are shown in Figure 5.2. The characteristic of the summing
junction shown in Figure 5.2(c) is that the output signal, C(s), is the algebraic sum of
the input signals, R1(s), R2(s), and R3(s). The figure shows three inputs, but any
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number can be present. A pickoff point, as shown in Figure 5.2(d), distributes the
input signal, R(s), undiminished, to several output points.

We will now examine some common topologies for interconnecting subsystems
and derive the single transfer function representation for each of them. These
common topologies will form the basis for reducing more complicated systems to a
single block.

Cascade Form
Figure 5.3(a) shows an example of cascaded subsystems. Intermediate signal values
are shown at the output of each subsystem. Each signal is derived from the product
of the input times the transfer function. The equivalent transfer function, Ge(s),
shown in Figure 5.3(b), is the output Laplace transform divided by the input Laplace
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FIGURE 5.1 The space shuttle consists of multiple subsystems. Can you identify those that
are control systems or parts of control systems?
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transform from Figure 5.3(a), or

GeðsÞ ¼ G3ðsÞG2ðsÞG1ðsÞ ð5:1Þ

which is the product of the subsystems’ transfer functions.
Equation (5.1) was derived under the assumption that interconnected sub-

systems do not load adjacent subsystems. That is, a subsystem’s output remains the
same whether or not the subsequent subsystem is connected. If there is a change in
the output, the subsequent subsystem loads the previous subsystem, and the
equivalent transfer function is not the product of the individual transfer functions.
The network of Figure 5.4(a) demonstrates this concept. Its transfer function is

G1ðsÞ ¼ V1ðsÞ
ViðsÞ ¼

1

R1C1

sþ 1

R1C1

ð5:2Þ

Similarly, the network of Figure 5.4(b) has the following transfer function:

G2ðsÞ ¼ V2ðsÞ
V1ðsÞ ¼

1

R2C2

sþ 1

R2C2

ð5:3Þ

FIGURE 5.3 a. Cascaded
subsystems; b. equivalent
transfer function
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If the networks are placed in cascade, as in Figure 5.4(c), you can verify that the
transfer function found using loop or node equations is

GðsÞ ¼ V2ðsÞ
ViðsÞ ¼

1

R1C1R2C2

s2 þ 1

R1C1
þ 1

R2C2
þ 1

R2C1

� �
sþ 1

R1C1R2C2

ð5:4Þ

But, using Eq. (5.1),

GðsÞ ¼ G2ðsÞG1ðsÞ ¼
1

R1C1R2C2

s2 þ 1

R1C1
þ 1

R2C2

� �
sþ 1

R1C1R2C2

ð5:5Þ

Equations (5.4) and (5.5) are not the same: Eq. (5.4) has one more term for the
coefficient of s in the denominator and is correct.

One way to prevent loading is to use an amplifier between the two networks, as
shown in Figure 5.4(d). The amplifier has a high-impedance input, so that it does not
load the previous network. At the same time it has a low-impedance output, so that it
looks like a pure voltage source to the subsequent network. With the amplifier
included, the equivalent transfer function is the product of the transfer functions and
the gain, K, of the amplifier.

Parallel Form
Figure 5.5 shows an example of parallel subsystems. Again, by writing the output of
each subsystem, we can find the equivalent transfer function. Parallel subsystems
have a common input and an output formed by the algebraic sum of the outputs from
all of the subsystems. The equivalent transfer function, Ge(s), is the output transform
divided by the input transform from Figure 5.5(a), or

GeðsÞ ¼ �G1ðsÞ �G2ðsÞ �G3ðsÞ ð5:6Þ

which is the algebraic sum of the subsystems’ transfer functions; it appears in
Figure 5.5(b).

±
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(b)
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G2(s)

G3(s)

X1(s) = R(s)G1(s)

X2(s) = R(s)G2(s)

X3(s) = R(s)G3(s)

C(s) = [±G1(s) ± G2(s) ± G3(s)]R(s)

C(s)
±G1(s) ± G2(s) ± G3(s)

±

R(s)

±

FIGURE 5.5 a. Parallel sub-
systems; b. equivalent transfer
function
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Feedback Form
The third topology is the feedback form, which will be seen repeatedly in subsequent
chapters. The feedback system forms the basis for our study of control systems
engineering. In Chapter 1, we defined open-loop and closed-loop systems and
pointed out the advantage of closed-loop, or feedback control, systems over open-
loop systems. As we move ahead, we will focus on the analysis and design of
feedback systems.

Let us derive the transfer function that represents the system from its input to
its output. The typical feedback system, described in detail in Chapter 1, is shown in
Figure 5.6(a); a simplified model is shown in Figure 5.6(b).1 Directing our attention
to the simplified model,

EðsÞ ¼ RðsÞ � CðsÞHðsÞ ð5:7Þ
But since CðsÞ ¼ EðsÞGðsÞ,

EðsÞ ¼ CðsÞ
GðsÞ ð5:8Þ

1 The system is said to have negative feedback if the sign at the summing junction is negative and positive
feedback if the sign is positive.

FIGURE 5.6 a. Feedback
control system; b. simplified
model; c. equivalent transfer
function
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Substituting Eq. (5.8) into Eq. (5.7) and solving for the transfer function, CðsÞ=RðsÞ ¼
GeðsÞ, we obtain the equivalent, or closed-loop, transfer function shown in
Figure 5.6(c),

GeðsÞ ¼ GðsÞ
1 �GðsÞHðsÞ ð5:9Þ

The product, G(s)H(s), in Eq. (5.9) is called the open-loop transfer function, or
loop gain.

So far, we have explored three different configurations for multiple subsys-
tems. For each, we found the equivalent transfer function. Since these three forms
are combined into complex arrangements in physical systems, recognizing these
topologies is a prerequisite to obtaining the equivalent transfer function of a
complex system. In this section, we will reduce complex systems composed of
multiple subsystems to single transfer functions.

Moving Blocks to Create Familiar Forms
Before we begin to reduce block diagrams, it must be explained that the familiar
forms (cascade, parallel, and feedback) are not always apparent in a block diagram.
For example, in the feedback form, if there is a pickoff point after the summing
junction, you cannot use the feedback formula to reduce the feedback system to a
single block. That signal disappears, and there is no place to reestablish the
pickoff point.

This subsection will discuss basic block moves that can be made to order to
establish familiar forms when they almost exist. In particular, it will explain how to
move blocks left and right past summing junctions and pickoff points.

Figure 5.7 shows equivalent block diagrams formed when transfer functions
are moved left or right past a summing junction, and Figure 5.8 shows equivalent
block diagrams formed when transfer functions are moved left or right past a pickoff
point. In the diagrams the symbol � means ‘‘equivalent to.’’ These equivalences,
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+–

(a)

X(s)

G(s)
C(s) R(s)

G(s)
C(s)

G(s)

X(s)

+

+

–

1

(b)

+

+

–

R(s)
G(s)

C(s) R(s)
G(s)

C(s)

G(s)

X(s)

X(s)

FIGURE 5.7 Block diagram
algebra for summing
junctions—equivalent forms
for moving a block a. to the left
past a summing junction; b. to
the right past a summing
junction
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along with the forms studied earlier in this section, can be used to reduce a block
diagram to a single transfer function. In each case of Figures 5.7 and 5.8, the
equivalence can be verified by tracing the signals at the input through to the output
and recognizing that the output signals are identical. For example, in Figure 5.7(a),
signals R(s) and X(s) are multiplied by G(s) before reaching the output. Hence, both
block diagrams are equivalent, with CðsÞ ¼ RðsÞGðsÞ �XðsÞGðsÞ. In Figure 5.7(b),
R(s) is multiplied by G(s) before reaching the output, but X(s) is not. Hence, both
block diagrams in Figure 5.7(b) are equivalent, with CðsÞ ¼ RðsÞGðsÞ �XðsÞ. For
pickoff points, similar reasoning yields similar results for the block diagrams of
Figure 5.8(a) and (b).

Let us now put the whole story together with examples of block diagram
reduction.

Example 5.1

Block Diagram Reduction via Familiar Forms

PROBLEM: Reduce the block diagram shown in Figure 5.9 to a single transfer
function.

FIGURE 5.8 Block diagram
algebra for pickoff points—
equivalent forms for moving a
block a. to the left past a
pickoff point; b. to the right
past a pickoff point (b)
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FIGURE 5.9 Block diagram
for Example 5.1
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SOLUTION: We solve the problem by following the steps in Figure 5.10. First, the
three summing junctions can be collapsed into a single summing junction, as shown
in Figure 5.10(a).

Second, recognize that thethree feedbackfunctions,H1(s),H2(s),andH3(s),are
connectedinparallel.Theyarefedfromacommonsignal source,andtheiroutputsare
summed.TheequivalentfunctionisH1ðsÞ �H2ðsÞ þH3ðsÞ.AlsorecognizethatG2(s)
and G3(s) are connected in cascade. Thus, the equivalent transfer function is the
product, G3(s)G2(s). The results of these steps are shown in Figure 5.10(b).

Finally, the feedback system is reduced and multiplied by G1(s) to yield the
equivalent transfer function shown in Figure 5.10(c).

Example 5.2

Block Diagram Reduction by Moving Blocks

PROBLEM: Reduce the system shown in Figure 5.11 to a single transfer function.

(c)

R(s) G3(s)G2(s)G1(s) C(s)

1 + G3(s)G2(s)[H1(s) – H2(s) + H3(s)]

+

–
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+ –

(a)

R(s) +
G1(s) G2(s) G3(s)
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H2(s)

H3(s)

+ C(s)

–

FIGURE 5.10 Steps in solving
Example 5.1: a. Collapse sum-
ming junctions; b. form equi-
valent cascaded system in the
forward path and equivalent
parallel system in the feedback
path; c. form equivalent feed-
back system and multiply by
cascaded G1(s)
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FIGURE 5.11 Block diagram
for Example 5.2
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SOLUTION: In this example we make use of the equivalent forms shown in
Figures 5.7 and 5.8. First, move G2(s) to the left past the pickoff point to create
parallel subsystems, and reduce the feedback system consisting of G3(s) and H3(s).
This result is shown in Figure 5.12(a).

Second, reduce the parallel pair consisting of 1/G2(s) and unity, and push
G1(s) to the right past the summing junction, creating parallel subsystems in the
feedback. These results are shown in Figure 5.12(b).

(e)

R(s)

[1 + G2(s)H2(s) + G1(s)G2(s)H1(s)][1 + G3(s)H3(s)]

G1(s)G3(s)[1 + G2(s)] C(s)

(d)
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1 + G3(s)H3(s)

1
 + 1

G2(s)

G3(s)

1 + G2(s)H2(s) + G1(s)G2(s)H1(s)

C(s)

 + H1(s)

+

– 1 + G3(s)H3(s)

(c)
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+

–
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+
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–
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FIGURE 5.12 Steps in the block diagram reduction for Example 5.2
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Third, collapse the summing junctions, add the two feedback elements
together, and combine the last two cascaded blocks. Figure 5.12(c) shows these results.

Fourth, use the feedback formula to obtain Figure 5.12(d).
Finally, multiply the two cascaded blocks and obtain the final result, shown in

Figure 5.12(e).

Students who are using MATLAB should now run ch5p1 in Appendix B to
perform block diagram reduction.

Skill-Assessment Exercise 5.1

PROBLEM: Find the equivalent transfer function, TðsÞ ¼ CðsÞ=RðsÞ, for the system
shown in Figure 5.13.

ANSWER:

TðsÞ ¼ s3 þ 1

2s4 þ s2 þ 2s

The complete solution is at www.wiley.com/college/nise.

In this section, we examined the equivalence of several block diagram
configurations containing signals, systems, summing junctions, and pickoff points.
These configurations were the cascade, parallel, and feedback forms. During block
diagram reduction, we attempt to produce these easily recognized forms and then
reduce the block diagram to a single transfer function. In the next section, we will
examine some applications of block diagram reduction.

5.3 Analysis and Design of Feedback
Systems

An immediate application of the principles of Section 5.2 is the analysis and design of
feedback systems that reduce to second-order systems. Percent overshoot, settling
time, peak time, and rise time can then be found from the equivalent transfer function.

+ +

+–

–
R(s)

s

s s
C(s)

1
s

1
s

FIGURE 5.13 Block diagram for Skill-Assessment Exercise 5.1

TryIt 5.1

Use the following MATLAB
and Control System Toolbox
statements to find the closed-
loop transfer function of the
system in Example 5.2 if all
GiðsÞ ¼ 1=ðsþ 1Þ and all
HiðsÞ ¼ 1=s.

G1=tf(1,[1 1]);
G2=G1;G3=G1;
H1=tf(1,[1 0]);
H2=H1;H3=H1;
System=append...
(G1,G2,G3,H1,H2,H3);
input=1;output=3;
Q= [l -4 0 0 0

2 1 -5 0 0
3 2 1 -5 -6
4 2 0 0 0
5 2 0 0 0
6 3 0 0 0];

T=connect(System,...
Q,input,output);
T=tf(T);T=minreal(T)
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Consider the system shown in Figure 5.14, which can model a
control system such as the antenna azimuth position control system. For
example, the transfer function, K=sðsþ aÞ, can model the amplifiers,
motor, load, and gears. From Eq. (5.9), the closed-loop transfer func-
tion, T(s), for this system is

TðsÞ ¼ K

s2 þ asþK
ð5:10Þ

where K models the amplifier gain, that is, the ratio of the output voltage to the input
voltage. As K varies, the poles move through the three ranges of operation of a
second-order system: overdamped, critically damped, and underdamped. For exam-
ple, for K between 0 and a2=4, the poles of the system are real and are located at

s1;2 ¼ � a

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4K

p

2
ð5:11Þ

As K increases, the poles move along the real axis, and the system remains
overdamped until K ¼ a2=4. At that gain, or amplification, both poles are real and
equal, and the system is critically damped.

For gains above a2=4, the system is underdamped, with complex poles located at

s1;2 ¼ � a

2
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K � a2

p

2
ð5:12Þ

Now as K increases, the real part remains constant and the imaginary part increases.
Thus, the peak time decreases and the percent overshoot increases, while the settling
time remains constant.

Let us look at two examples that apply the concepts to feedback control
systems. In the first example, we determine a system’s transient response. In the
second example, we design the gain to meet a transient response requirement.

Example 5.3

Finding Transient Response

PROBLEM: For the system shown in Figure 5.15, find the peak time,
percent overshoot, and settling time.

SOLUTION: The closed-loop transfer function found from Eq. (5.9) is

TðsÞ ¼ 25

s2 þ 5sþ 25
ð5:13Þ

From Eq. (4.18),

vn ¼
ffiffiffiffiffi
25

p
¼ 5 ð5:14Þ

From Eq. (4.21),

2zvn ¼ 5 ð5:15Þ
Substituting Eq. (5.14) into (5.15) and solving for z yields

z ¼ 0:5 ð5:16Þ

K+

– s(s + a)

R(s) C(s)

FIGURE 5.14 Second-order feedback
control system

–

25+

s(s + 5)

R(s) C(s)

FIGURE 5.15 Feedback system for
Example 5.3
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Using the values for z and vn along with Eqs (4.34), (4.38), and (4.42), we find
respectively,

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ¼ 0:726 second ð5:17Þ

%OS ¼ e�zp=
ffiffiffiffiffiffiffiffi
1�z2

p
� 100 ¼ 16:303 ð5:18Þ

Ts ¼ 4

zvn
¼ 1:6 seconds ð5:19Þ

StudentswhoareusingMATLABshouldnowrunch5p2inAppendixB.You
will learn how to perform block diagram reduction followed by an
evaluation of the closed-loop system’s transient response by find-
ing, Tp,%OS, and Ts. Finally, you will learn how to use MATLAB to
generate a closed-loop step response. This exercise uses MATLAB to
do Example 5.3.

MATLAB’s Simulink provides an alternative method of simulating
feedback systems to obtain the time response. Students who are
performing the MATLAB exercises and want to explore the added
capability of MATLAB’s Simulink should now consult Appendix C.
Example C.3 includes a discussion about, and an example of, the use
of Simulink to simulate feedback systems with nonlinearities.

Example 5.4

Gain Design for Transient Response

PROBLEM: Design the value of gain.K, for the feedback control system of Figure 5.16
so that the system will respond with a 10% overshoot.

SOLUTION: The closed-loop transfer function of the system is

TðsÞ ¼ K

s2 þ 5sþK
ð5:20Þ

From Eq. (5.20),

2zvn ¼ 5 ð5:21Þ
and

vn ¼
ffiffiffiffi
K

p
ð5:22Þ

Thus,

z ¼ 5

2
ffiffiffiffi
K

p ð5:23Þ

Since percent overshoot is a function only of z, Eq. (5.23) shows that the percent
overshoot is a function of K.

–
s(s + 5)

K+R(s) C(s)

FIGURE 5.16 Feedback
system for Example 5.4

Virtual Experiment 5.1
Position Control
Gain Design

Put theory into practice
designing the position control
gain for the Quanser Linear
Servo and simulating its closed-
loop response in LabVIEW.
This concept is used, for
instance, to control a rover
exploring the terrainofa planet.

Virtual experiment are found
on WileyPLUS.
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A 10% overshoot implies that z ¼ 0:591. Substituting this value for the
damping ratio into Eq. (5.23) and solving for K yields

K ¼ 17:9 ð5:24Þ
Although we are able to design for percent overshoot in this problem, we

could not have selected settling time as a design criterion because, regardless of the
value of K, the real parts, �2.5, of the poles of Eq. (5.20) remain the same.

Skill-Assessment Exercise 5.2

PROBLEM: For a unity feedback control system with a forward-path transfer

function GðsÞ ¼ 16

sðsþ aÞ, design the value of a to yield a closed-loop step response

that has 5% overshoot.

ANSWER:

a ¼ 5:52

The complete solution is at www.wiley.com/college/nise.

5.4 Signal-Flow Graphs

Signal-flow graphs are an alternative to block diagrams. Unlike block diagrams,
which consist of blocks, signals, summing junctions, and pickoff points, a signal-flow
graph consists only of branches, which represent systems, and nodes, which represent
signals. These elements are shown in Figure 5.17(a) and (b), respectively. A system is
represented by a line with an arrow showing the direction of signal flow through the

TryIt 5.2

Use the following MATLAB and Control
System Toolbox statements to find z, vn,
%OS, Ts, Tp, and Tr for the closed-loop unity
feedback system described in Skill-Assessment
Exercise 5.2. Start with a ¼ 2 and try some
other values. A step response for the closed-
loop system will also be produced.

a=2;
numg=16;
deng=poly([0 -a]);
G=tf(numg,deng);
T=feedback(G,1);

[numt,dent]=...
tfdata(T, ’v ’);
wn=sqrt(dent)3))
z=dent(2)/(2*wn)
Ts=4/(z*wn)
Tp=pi/(wn*...
sqrt(l -z^2))
pos=exp(-z*pi...
/sqrt(l -z^2))*100
Tr=(1.76*z^3 - ...
0.417*z^2 + 1.039*...
z + 1)/wn
step(T)

FIGURE 5.17 Signal-flow
graph components: a. system;
b. signal; c. interconnection of
systems and signals

R1(s)

R2(s)

G1(s)

–G2(s)

R3(s)

G3(s) –G6(s)

G5(s)

G4(s)

V(s)

C1(s)

C2(s)

C3(s)

(c)(b)

V(s)

(a)

G(s)
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