This section defined two specifications, or parameters, of second-order systems: natural frequency, ω_n , and damping ratio, ζ . We saw that the nature of the response obtained was related to the value of ζ . Variations of damping ratio alone yield the complete range of overdamped, critically damped, underdamped, and undamped responses.

4.6 Underdamped Second-Order Systems

Now that we have generalized the second-order transfer function in terms of ζ and ω_n , let us analyze the step response of an *underdamped* second-order system. Not only will this response be found in terms of ζ and ω_n , but more specifications indigenous to the underdamped case will be defined. The underdamped second-order system, a common model for physical problems, displays unique behavior that must be itemized; a detailed description of the underdamped response is necessary for both analysis and design. Our first objective is to define transient specifications associated with underdamped responses. Next we relate these specifications to the underdamped second-order response. Finally, we tie the pole location to system parameters, thus closing the loop: Desired response generates required system components.

Let us begin by finding the step response for the general second-order system of Eq. (4.22). The transform of the response, C(s), is the transform of the input times the transfer function, or

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} = \frac{K_1}{s} + \frac{K_2 s + K_3}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(4.26)

where it is assumed that $\zeta < 1$ (the underdamped case). Expanding by partial fractions, using the methods described in Section 2.2, Case 3, yields

$$C(s) = \frac{1}{s} - \frac{(s + \zeta \omega_n) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \omega_n \sqrt{1 - \zeta^2}}{(s + \zeta \omega_n)^2 + \omega_n^2 (1 - \zeta^2)}$$
(4.27)

Taking the inverse Laplace transform, which is left as an exercise for the student, produces

$$c(t) = 1 - e^{-\zeta\omega_n t} \left(\cos \omega_n \sqrt{1 - \zeta^2} t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_n \sqrt{1 - \zeta^2} t \right)$$

$$= 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_n t} \cos(\omega_n \sqrt{1 - \zeta^2} t - \phi)$$

(4.28)

where $\phi = \tan^{-1}(\zeta/\sqrt{1-\zeta^2})$.

A plot of this response appears in Figure 4.13 for various values of ζ , plotted along a time axis normalized to the natural frequency. We now see the relationship between the value of ζ and the type of response obtained: The lower the value of ζ , the more oscillatory the response. The natural frequency is a time-axis scale factor and does not affect the nature of the response other than to scale it in time.

FIGURE 4.13 Second-order underdamped responses for damping ratio values

We have defined two parameters associated with second-order systems, ζ and ω_n . Other parameters associated with the underdamped response are rise time, peak time, percent overshoot, and settling time. These specifications are defined as follows (see also Figure 4.14):

- **1.** *Rise time,* T_r . The time required for the waveform to go from 0.1 of the final value to 0.9 of the final value.
- **2.** Peak time, T_P . The time required to reach the first, or maximum, peak.
- **3.** *Percent overshoot*, %*OS*. The amount that the waveform overshoots the steadystate, or final, value at the peak time, expressed as a percentage of the steady-state value.
- 4. Settling time, T_s . The time required for the transient's damped oscillations to reach and stay within $\pm 2\%$ of the steady-state value.

FIGURE 4.14 Second-order underdamped response specifications

Notice that the definitions for settling time and rise time are basically the same as the definitions for the first-order response. All definitions are also valid for systems of order higher than 2, although analytical expressions for these parameters cannot be found unless the response of the higher-order system can be approximated as a second-order system, which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the transient response. This information can help a designer determine if the speed and the nature of the response do or do not degrade the performance of the system. For example, the speed of an entire computer system depends on the time it takes for a hard drive head to reach steady state and read data; passenger comfort depends in part on the suspension system of a car and the number of oscillations it goes through after hitting a bump.

We now evaluate T_p , %OS, and T_s as functions of ζ and ω_n . Later in this chapter we relate these specifications to the location of the system poles. A precise analytical expression for rise time cannot be obtained; thus, we present a plot and a table showing the relationship between ζ and rise time.

Evaluation of T_{p}

 T_p is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing after t = 0. This task is simplified by "differentiating" in the frequency domain by using Item 7 of Table 2.2. Assuming zero initial conditions and using Eq. (4.26), we get

$$\mathscr{L}[\dot{c}(t)] = sC(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(4.29)

Completing squares in the denominator, we have

$$\mathscr{L}[\dot{c}(t)] = \frac{\omega_n^2}{(s+\zeta\omega_n)^2 + \omega_n^2(1-\zeta^2)} = \frac{\frac{\omega_n}{\sqrt{1-\zeta^2}}\omega_n\sqrt{1-\zeta^2}}{(s+\zeta\omega_n)^2 + \omega_n^2(1-\zeta^2)}$$
(4.30)

Therefore,

$$\dot{c}(t) = \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_n t} \sin\omega_n \sqrt{1-\zeta^2} t$$
(4.31)

Setting the derivative equal to zero yields

$$\omega_n \sqrt{1 - \zeta^2} t = n\pi \tag{4.32}$$

or

$$t = \frac{n\pi}{\omega_n \sqrt{1 - \zeta^2}} \tag{4.33}$$

Each value of *n* yields the time for local maxima or minima. Letting n = 0 yields t = 0, the first point on the curve in Figure 4.14 that has zero slope. The first peak, which occurs at the peak time, T_p , is found by letting n = 1 in Eq. (4.33):

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \tag{4.34}$$

Evaluation of %OS

From Figure 4.14 the percent overshoot, %OS, is given by

$$\%OS = \frac{c_{\max} - c_{\text{final}}}{c_{\text{final}}} \times 100 \tag{4.35}$$

The term c_{max} is found by evaluating c(t) at the peak time, $c(T_p)$. Using Eq. (4.34) for T_p and substituting into Eq. (4.28) yields

$$c_{\max} = c(T_p) = 1 - e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \left(\cos \pi + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \pi \right)$$

= 1 + e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} (4.36)

For the unit step used for Eq. (4.28),

$$c_{\text{final}} = 1 \tag{4.37}$$

Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

$$\% OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100$$
(4.38)

Notice that the percent overshoot is a function only of the damping ratio, ζ .

Whereas Eq. (4.38) allows one to find % OS given ζ , the inverse of the equation allows one to solve for ζ given % OS. The inverse is given by

$$\zeta = \frac{-\ln(\% OS/100)}{\sqrt{\pi^2 + \ln^2(\% OS/100)}}$$
(4.39)

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or, equivalently, (4.39)) is plotted in Figure 4.15.

FIGURE 4.15 Percent overshoot versus damping ratio

Evaluation of T_s

In order to find the settling time, we must find the time for which c(t) in Eq. (4.28) reaches and stays within $\pm 2\%$ of the steady-state value, c_{final} . Using our definition, the settling time is the time it takes for the amplitude of the decaying sinusoid in Eq. (4.28) to reach 0.02, or

$$e^{-\zeta\omega_n t} \frac{1}{\sqrt{1-\zeta^2}} = 0.02 \tag{4.40}$$

This equation is a conservative estimate, since we are assuming that $\cos(\omega_n\sqrt{1-\zeta^2}t-\phi)=1$ at the settling time. Solving Eq. (4.40) for *t*, the settling time is

$$T_s = \frac{-\ln(0.02\sqrt{1-\zeta^2})}{\zeta\omega_n} \tag{4.41}$$

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as ζ varies from 0 to 0.9. Let us agree on an approximation for the settling time that will be used for all values of ζ ; let it be

$$T_s = \frac{4}{\zeta \omega_n} \tag{4.42}$$

Evaluation of T_r

A precise analytical relationship between rise time and damping ratio, ζ , cannot be found. However, using a computer and Eq. (4.28), the rise time can be found. We first designate $\omega_n t$ as the normalized time variable and select a value for ζ . Using the computer, we solve for the values of $\omega_n t$ that yield c(t) = 0.9 and c(t) = 0.1. Subtracting the two values of $\omega_n t$ yields the normalized rise time, $\omega_n T_r$, for that value of ζ . Continuing in like fashion with other values of ζ , we obtain the results plotted in Figure 4.16.⁵ Let us look at an example.

FIGURE 4.16 Normalized rise time versus damping ratio for a second-order underdamped response

⁵ Figure 4.16 can be approximated by the following polynomials: $\omega_n T_r = 1.76\zeta^3 - 0.417\zeta^2 + 1.039\zeta + 1$ (maximum error less than $\frac{1}{2}$ % for $0 < \zeta < 0.9$), and $\zeta = 0.115(\omega_n T_r)^3 - 0.883(\omega_n T_r)^2 + 2.504(\omega_n T_r) - 1.738$ (maximum error less than 5% for $0.1 < \zeta < 0.9$). The polynomials were obtained using MATLAB's **polyfit** function.

Example 4.5

Finding T_p , %OS, T_s , and T_r from a Transfer Function

Virtual Experiment 4.2 Second-Order System Response

Put theory into practice studying the effect that natural frequency and damping ratio have on controlling the speed response of the Quanser Linear Servo in LabVIEW. This concept is applicable to automobile cruise controls or speed controls of subways or trucks.

Damping ratio	Normalized rise time
0.1	1.104
0.2	1.203
0.3	1.321
0.4	1.463
0.5	1.638
0.6	1.854
0.7	2.126
0.8	2.467
0.9	2.883

$$G(s) = \frac{100}{s^2 + 15s + 100} \tag{4.43}$$

find T_p , %OS, T_s , and T_r .

SOLUTION: ω_n and ζ are calculated as 10 and 0.75, respectively. Now substitute ζ and ω_n into Eqs. (4.34), (4.38), and (4.42) and find, respectively, that $T_p = 0.475$ second, % OS = 2.838, and $T_s = 0.533$ second. Using the table in Figure 4.16, the normalized rise time is approximately 2.3 seconds. Dividing by ω_n yields $T_r = 0.23$ second. This problem demonstrates that we can find T_p , %OS, T_s , and T_r without the tedious task of taking an inverse Laplace transform, plotting the output response, and taking measurements from the plot.

FIGURE 4.17 Pole plot for an underdamped second-order system

We now have expressions that relate peak time, percent overshoot, and settling time to the natural frequency and the damping ratio. Now let us relate these quantities to the location of the poles that generate these characteristics.

The pole plot for a general, underdamped second-order system, previously shown in Figure 4.11, is reproduced and expanded in Figure 4.17 for focus. We see from the Pythagorean theorem that the radial distance from the origin to the pole is the natural frequency, ω_n , and the $\cos \theta = \zeta$.

Now, comparing Eqs. (4.34) and (4.42) with the pole location, we evaluate peak time and settling time in terms of the pole location. Thus.

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d} \tag{4.44}$$

$$T_s = \frac{4}{\zeta \omega_n} = \frac{\pi}{\sigma_d} \tag{4.45}$$

where ω_d is the imaginary part of the pole and is called the *damped frequency of* oscillation, and σ_d is the magnitude of the real part of the pole and is the exponential damping frequency.

FIGURE 4.18 Lines of constant peak time, T_p , settling time, T_s , and percent overshoot, % OS. Note: $T_{s_2} < T_{s_1}$; $T_{p2} < T_{p1}$; $\% OS_1 < \% OS_2$.

Equation (4.44) shows that T_p is inversely proportional to the imaginary part of the pole. Since horizontal lines on the *s*-plane are lines of constant imaginary value, they are also lines of constant peak time. Similarly, Eq. (4.45) tells us that settling time is inversely proportional to the real part of the pole. Since vertical lines on the *s*-plane are lines of constant real value, they are also lines of constant settling time. Finally, since $\zeta = \cos \theta$, radial lines are lines of constant ζ . Since percent overshoot is only a function of ζ , radial lines are thus lines of constant percent overshoot, %OS. These concepts are depicted in Figure 4.18, where lines of constant T_p , T_s , and %OS are labeled on the *s*-plane.

At this point, we can understand the significance of Figure 4.18 by examining the actual step response of comparative systems. Depicted in Figure 4.19(a) are the step responses as the poles are moved in a vertical direction, keeping the real part the same. As the poles move in a vertical direction, the frequency increases, but the envelope remains the same since the real part of the pole is not changing. The figure shows a constant exponential envelope, even though the sinusoidal response is changing frequency. Since all curves fit under the same exponential decay curve, the settling time is virtually the same for all waveforms. Note that as overshoot increases, the rise time decreases.

Let us move the poles to the right or left. Since the imaginary part is now constant, movement of the poles yields the responses of Figure 4.19(b). Here the frequency is constant over the range of variation of the real part. As the poles move to the left, the response damps out more rapidly, while the frequency remains the same. Notice that the peak time is the same for all waveforms because the imaginary part remains the same.

Moving the poles along a constant radial line yields the responses shown in Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the responses look exactly alike, except for their speed. The farther the poles are from the origin, the more rapid the response.

We conclude this section with some examples that demonstrate the relationship between the pole location and the specifications of the second-order underdamped response. The first example covers analysis. The second example is a simple design problem consisting of a physical system whose component values we want to design to meet a transient response specification.

FIGURE 4.20 Pole plot for Example 4.6

Students who are using MATLAB should now run ch4p1 in Appendix B. You will learn how to generate a second-order polynomial from two complex poles as well as extract and use the coefficients of the polynomial to calculate T_p , % OS, and T_s . This exercise uses MATLAB to solve the problem in Example 4.6.

185

MATLAB

ML

Chapter 4 Time Response

Hence,

$$\frac{J}{K} = 0.052$$
 (4.56)

From the problem statement, K = 5 N-m/rad. Combining this value with Eqs. (4.53) and (4.56), D = 1.04 N-m-s/rad, and J = 0.26 kg-m².

Second-Order Transfer Functions via Testing

Just as we obtained the transfer function of a first-order system experimentally, we can do the same for a system that exhibits a typical underdamped second-order response. Again, we can measure the laboratory response curve for percent overshoot and settling time, from which we can find the poles and hence the denominator. The numerator can be found, as in the first-order system, from a knowledge of the measured and expected steady-state values. A problem at the end of the chapter illustrates the estimation of a second-order transfer function from the step response.

Skill-Assessment Exercise 4.5

TryIt 4.1

Use the following MATLAB statements to calculate the answers to Skill-Assessment Exercise 4.5. Ellipses mean code continues on next line.

```
numg=361;
deng=[1 16 361];
omegan=sqrt(deng(3)...
/deng(1))
zeta=(deng(2)/deng(1))...
/(2*omegan)
Ts=4/(zeta*omegan)
Tp=pi/(omegan*sqrt...
(1-zeta^2))
pos=100* exp(-zeta*...
pi/sqrt(1-zeta^2))
Tr=(1.768*zeta^3 -...
0.417*zeta^2+1.039*...
zeta+1)/omegan
```

WileyPLUS WPCS Control Solutions **PROBLEM:** Find ζ , ω_n , T_s , T_p , T_r , and %OS for a system whose transfer function is $G(s) = \frac{361}{s^2 + 16s + 361}$.

ANSWERS:

 $\zeta = 0.421$, $\omega_n = 19$, $T_s = 0.5$ s, $T_p = 0.182$ s, $T_r = 0.079$ s, and % OS = 23.3%.

The complete solution is located at www.wiley.com/college/nise.

Now that we have analyzed systems with two poles, how does the addition of another pole affect the response? We answer this question in the next section.

4.7 System Response with Additional Poles

In the last section, we analyzed systems with one or two poles. It must be emphasized that the formulas describing percent overshoot, settling time, and peak time were derived only for a system with two complex poles and no zeros. If a system such as that shown in Figure 4.22 has more than two poles or has zeros, we cannot use the formulas to calculate the performance specifications that we derived. However, under certain conditions, a system with more than two poles or with zeros can be