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about 0.72, the time constant is evaluated where the curve reaches 0:63 � 0:72 ¼
0:45, or about 0.13 second. Hence, a ¼ 1=0:13 ¼ 7:7.

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-
state value of K=a ¼ 0:72. Substituting the value of a, we find K ¼ 5:54. Thus, the
transfer function for the system is GðsÞ ¼ 5:54=ðsþ 7:7Þ. It is interesting to note that
the response of Figure 4.6 was generated using the transfer function GðsÞ ¼
5=ðsþ 7Þ.

Skill-Assessment Exercise 4.2

PROBLEM: A system has a transfer function, GðsÞ ¼ 50

sþ 50
. Find the time con-

stant, Tc, settling time, Ts, and rise time, Tr.

ANSWER: Tc ¼ 0:02 s; Ts ¼ 0:08 s; and Tr ¼ 0:044 s:

The complete solution is located at www.wiley.com/college/nise.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to second-
order systems. Compared to the simplicity of a first-order system, a second-order
system exhibits a wide range of responses that must be analyzed and described.
Whereas varying a first-order system’s parameter simply changes the speed of the
response, changes in the parameters of a second-order system can change the form of
the response. For example, a second-order system can display characteristics much
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FIGURE 4.6 Laboratory results of a system step response test
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like a first-order system, or, depending on component values, display damped or
pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our
discussion in the next section, we take a look at numerical examples of the second-
order system responses shown in Figure 4.7. All examples are derived from Figure
4.7(a), the general case, which has two finite poles and no zeros. The term in the
numerator is simply a scale or input multiplying factor that can take on any value
without affecting the form of the derived results. By assigning appropriate values to
parameters a and b, we can show all possible second-order transient responses. The
unit step response then can be found using CðsÞ ¼ RðsÞGðsÞ, where RðsÞ ¼ 1=s,
followed by a partial-fraction expansion and the inverse Laplace transform. Details
are left as an end-of-chapter problem, for which you may want to review Section 2.2.
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We now explain each response and show how we can use the poles to determine
the nature of the response without going through the procedure of a partial-fraction
expansion followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7(b)
For this response,

CðsÞ ¼ 9

sðs2 þ 9sþ 9Þ ¼
9

sðsþ 7:854Þðsþ 1:146Þ ð4:12Þ

This function has a pole at the origin that comes from the unit step input and two real
poles that come from the system. The input pole at the origin generates the constant
forced response; each of the two system poles on the real axis generates an exponential
natural response whose exponential frequency is equal to the pole location. Hence, the
output initially could have been written as cðtÞ ¼ K1 þK2e�7:854t þK3e�1:146t. This
response, shown in Figure 4.7(b), is calledoverdamped.3 We see that the poles tell us the
form of the response without the tedious calculation of the inverse Laplace transform.

Underdamped Response, Figure 4.7 (c)
For this response,

CðsÞ ¼ 9

sðs2 þ 2sþ 9Þ ð4:13Þ

This function has a pole at the origin that comes from the unit step input and two
complex poles that come from the system. We now compare the response of the
second-order system to the poles that generated it. First we will compare the pole
location to the time function, and then we will compare the pole location to the plot.
From Figure 4.7(c), the poles that generate the natural response are at s ¼ �1 � j

ffiffiffi
8

p
.

Comparing these values to c(t) in the same figure, we see that the real part of the pole
matches the exponential decay frequency of the sinusoid’s amplitude, while the
imaginary part of the pole matches the frequency of the sinusoidal oscillation.

Let us now compare the pole location to the plot. Figure
4.8 shows a general, damped sinusoidal response for a second-
order system. The transient response consists of an exponen-
tially decaying amplitude generated by the real part of the
system pole times a sinusoidal waveform generated by
the imaginary part of the system pole. The time constant of
the exponential decay is equal to the reciprocal of the real part
of the system pole. The value of the imaginary part is the
actual frequency of the sinusoid, as depicted in Figure 4.8. This
sinusoidal frequency is given the name damped frequency of
oscillation, vd. Finally, the steady-state response (unit step)
was generated by the input pole located at the origin. We call
the type of response shown in Figure 4.8 an underdamped
response, one which approaches a steady-state value via a
transient response that is a damped oscillation.

The following example demonstrates how a knowledge
of the relationship between the pole location and the transient response can lead
rapidly to the response form without calculating the inverse Laplace transform.

c(t)

Exponential decay generated by 
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

t

FIGURE 4.8 Second-order step response components
generated by complex poles

3 So named because overdamped refers to a large amount of energy absorption in the system, which
inhibits the transient response from overshooting and oscillating about the steady-state value for a step
input. As the energy absorption is reduced, an overdamped system will become underdamped and exhibit
overshoot.
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Example 4.2

Form of Underdamped Response Using Poles

PROBLEM: By inspection, write the form of the step response of the
system in Figure 4.9.

SOLUTION: First we determine that the form of the forced response is a
step. Next we find the form of the natural response. Factoring the
denominator of the transfer function in Figure 4.9, we find the poles
to be s ¼ �5 � j13:23. The real part, �5, is the exponential frequency for the
damping. It is also the reciprocal of the time constant of the decay of the
oscillations. The imaginary part, 13.23, is the radian frequency for the sinusoidal
oscillations. Using our previous discussion and Figure 4.7(c) as a guide, we ob-
tain cðtÞ ¼ K1 þ e�5tðK2 cos 13:23t þK3 sin 13:23tÞ ¼ K1 þK4e�5tðcos 13:23t � fÞ,
where f ¼ tan�1K3=K2; K4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þK2
3

q
, and c(t) is a constant plus an exponen-

tially damped sinusoid.

We will revisit the second-order underdamped response in Sections 4.5 and 4.6,
where we generalize the discussion and derive some results that relate the pole
position to other parameters of the response.

Undamped Response, Figure 4.7(d)
For this response,

CðsÞ ¼ 9

sðs2 þ 9Þ ð4:14Þ

This function has a pole at the origin that comes from the unit step input and two
imaginary poles that come from the system. The input pole at the origin generates
the constant forced response, and the two system poles on the imaginary axis
at �j3 generate a sinusoidal natural response whose frequency is equal to the
location of the imaginary poles. Hence, the output can be estimated as cðtÞ ¼ K1þ
K4 cosð3t � fÞ. This type of response, shown in Figure 4.7(d), is called undamped.
Note that the absence of a real part in the pole pair corresponds to an exponential
that does not decay. Mathematically, the exponential is e�0t ¼ 1.

Critically Damped Response, Figure 4.7 (e)
For this response,

CðsÞ ¼ 9

sðs2 þ 6sþ 9Þ ¼
9

sðsþ 3Þ2 ð4:15Þ

This function has a pole at the origin that comes from the unit step input and two
multiple real poles that come from the system. The input pole at the origin generates
the constant forced response, and the two poles on the real axis at �3 generate a
natural response consisting of an exponential and an exponential multiplied by time,
where the exponential frequency is equal to the location of the real poles. Hence, the
output can be estimated as cðtÞ ¼ K1 þK2e�3t þK3te�3t. This type of response, shown
in Figure 4.7(e), is called critically damped. Critically damped responses are the fastest
possible without the overshoot that is characteristic of the underdamped response.
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FIGURE 4.9 System for Example 4.2
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We now summarize our observations. In this section we defined the following
natural responses and found their characteristics:

1. Overdamped responses

Poles: Two real at �s1; �s2

Natural response: Two exponentials with time constants equal to the reciprocal of
the pole locations, or

cðtÞ ¼ K1e
�s1t þK2e

�s2t

2. Underdamped responses

Poles: Two complex at �sd � jvd

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole’s real part. The radian frequency of
the sinusoid, the damped frequency of oscillation, is equal to the imaginary part
of the poles, or

cðtÞ ¼ Ae�sdt cosðvdt � fÞ
3. Undamped responses

Poles: Two imaginary at �jv1

Natural response: Undamped sinusoid with radian frequency equal to the
imaginary part of the poles, or

cðtÞ ¼ Acosðv1t � fÞ
4. Critically damped responses

Poles: Two real at �s1

Natural response: One term is an exponential whose time constant is equal to the
reciprocal of the pole location. Another term is the product of time, t, and an
exponential with time constant equal to the reciprocal of the pole location, or

cðtÞ ¼ K1e
�s1t þK2te

�s1t

The step responses for the four cases of damping discussed in this section are
superimposed in Figure 4.10. Notice that the critically damped case is the division
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FIGURE 4.10 Step responses for second-order system damping cases
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between the overdamped cases and the underdamped cases and is the fastest
response without overshoot.

Skill-Assessment Exercise 4.3

PROBLEM: For each of the following transfer functions, write, by inspection, the
general form of the step response:

a. GðsÞ ¼ 400

s2 þ 12sþ 400

b. GðsÞ ¼ 900

s2 þ 90sþ 900

c. GðsÞ ¼ 225

s2 þ 30sþ 225

d. GðsÞ ¼ 625

s2 þ 625

ANSWERS:

a. cðtÞ ¼ Aþ Be�6t cosð19:08t þ fÞ
b. cðtÞ ¼ Aþ Be�78:54t þ Ce�11:46t

c. cðtÞ ¼ Aþ Be�15t þ Cte�15t

d. cðtÞ ¼ Aþ B cosð25t þ fÞ
The complete solution is located at www.wiley.com/college/nise.

In the next section, we will formalize and generalize our discussion of second-
order responses and define two specifications used for the analysis and design of
second-order systems. In Section 4.6, we will focus on the underdamped case and
derive some specifications unique to this response that we will use later for analysis
and design.

4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses,
we generalize the discussion and establish quantitative specifications defined in such
a way that the response of a second-order system can be described to a designer
without the need for sketching the response. In this section, we define two physically
meaningful specifications for second-order systems. These quantities can be used to
describe the characteristics of the second-order transient response just as time
constants describe the first-order system response. The two quantities are called
natural frequency and damping ratio. Let us formally define them.

Natural Frequency, vn
The natural frequency of a second-order system is the frequency of oscillation of the
system without damping. For example, the frequency of oscillation of a series RLC
circuit with the resistance shorted would be the natural frequency.
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Damping Ratio, z
Before we state our next definition, some explanation is in order. We have already seen
that a second-order system’s underdamped step response is characterized by damped
oscillations. Our definition is derived from the need to quantitatively describe this
dampedoscillationregardlessofthetimescale.Thus,asystemwhosetransientresponse
goes through three cycles in a millisecond before reaching the steady state would have
the same measure as a system that went through three cycles in a millennium before
reaching the steady state. For example, the underdamped curve in Figure 4.10 has an
associated measure that defines its shape. This measure remains the same even if we
change the time base from seconds to microseconds or to millennia.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless
of the time scale of the response. Also, the reciprocal, which is proportional to the
ratio of the natural period to the exponential time constant, remains the same
regardless of the time base.

We define the damping ratio, z, to be

z ¼ Exponential decay frequency

Natural frequency ðrad=secondÞ ¼
1

2p

Natural period ðsecondsÞ
Exponential time constant

Let us now revise our description of the second-order system to reflect the new
definitions. The general second-order system shown in Figure 4.7(a) can be trans-
formed to show the quantities z and vn. Consider the general system

GðsÞ ¼ b

s2 þ asþ b
ð4:16Þ

Without damping, the poles would be on the jv-axis, and the response would be an
undamped sinusoid. For the poles to be purely imaginary, a ¼ 0. Hence,

GðsÞ ¼ b

s2 þ b
ð4:17Þ

By definition, the natural frequency, vn, is the frequency of oscillation of this system.
Since the poles of this system are on the jv-axis at �j

ffiffiffi
b

p
,

vn ¼
ffiffiffi
b

p
ð4:18Þ

Hence,

b ¼ v2
n ð4:19Þ

Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the
complex poles have a real part, s, equal to �a=2. The magnitude of this value is then
the exponential decay frequency described in Section 4.4. Hence,

z ¼ Exponential decay frequency

Natural frequency ðrad=secondÞ ¼
jsj
vn

¼ a=2

vn
ð4:20Þ

from which
a ¼ 2zvn ð4:21Þ

Our general second-order transfer function finally looks like this:

GðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

ð4:22Þ
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In the following example we find numerical values for z and vn by matching the
transfer function to Eq. (4.22).

Example 4.3

Finding z and vn For a Second-Order System

PROBLEM: Given the transfer function of Eq. (4.23), find z and vn.

GðsÞ ¼ 36

s2 þ 4:2sþ 36
ð4:23Þ

SOLUTION: Comparing Eq. (4.23) to (4.22), v2
n ¼ 36, from which vn ¼ 6. Also,

2zvn ¼ 4:2. Substituting the value of vn; z ¼ 0:35.

Now that we have defined z and vn, let us relate these quantities to the pole
location. Solving for the poles of the transfer function in Eq. (4.22) yields

s1; 2 ¼ �zvn � vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
ð4:24Þ

From Eq. (4.24) we see that the various cases of second-order response are a function
of z; they are summarized in Figure 4.11.4

4 The student should verify Figure 4.11 as an exercise.

FIGURE 4.11 Second-order response as a function of damping ratio

4.5 The General Second-Order System 175

Aamir Sharif
Rectangle



Apago PDF Enhancer

E1C04 11/03/2010 12:25:24 Page 176

In the following example we find the numerical value of z and determine the
nature of the transient response.

Example 4.4

Characterizing Response from the Value of z

PROBLEM: For each of the systems shown in Figure 4.12, find the value of z and
report the kind of response expected.

SOLUTION: First match the form of these systems to the forms shown in Eqs. (4.16)
and (4.22). Since a ¼ 2zvn and vn ¼

ffiffiffi
b

p
,

z ¼ a

2
ffiffiffi
b

p ð4:25Þ

Using the values of a and b from each of the systems of Figure 4.12, we find
z ¼ 1:155 for system (a), which is thus overdamped, since z > 1; z ¼ 1 for system
(b), which is thus critically damped; and z ¼ 0:894 for system (c), which is thus
underdamped, since z < 1.

Skill-Assessment Exercise 4.4

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do
the following: (1) Find the values of z and vn; (2) characterize the nature of the
response.

ANSWERS:

a. z ¼ 0:3; vn ¼ 20; system is underdamped

b. z ¼ 1:5; vn ¼ 30; system is overdamped

c. z ¼ 1; vn ¼ 15; system is critically damped

d. z ¼ 0; vn ¼ 25; system is undamped

The complete solution is located at www.wiley.com/college/nise.
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FIGURE 4.12 Systems for Example 4.4
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