

FIGURE 4.6 Laboratory results of a system step response test

about 0.72, the time constant is evaluated where the curve reaches $0.63 \times 0.72 = 0.45$, or about 0.13 second. Hence, a = 1/0.13 = 7.7.

To find K, we realize from Eq. (4.11) that the forced response reaches a steadystate value of K/a = 0.72. Substituting the value of a, we find K = 5.54. Thus, the transfer function for the system is G(s) = 5.54/(s + 7.7). It is interesting to note that the response of Figure 4.6 was generated using the transfer function G(s) = 5/(s + 7).

Skill-Assessment Exercise 4.2

PROBLEM: A system has a transfer function, $G(s) = \frac{50}{s+50}$. Find the time constant, T_c , settling time, T_s , and rise time, T_r .

ANSWER: $T_c = 0.02 \text{ s}, T_s = 0.08 \text{ s}, \text{ and } T_r = 0.044 \text{ s}.$

The complete solution is located at www.wiley.com/college/nise.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to secondorder systems. Compared to the simplicity of a first-order system, a second-order system exhibits a wide range of responses that must be analyzed and described. Whereas varying a first-order system's parameter simply changes the speed of the response, changes in the parameters of a second-order system can change the *form* of the response. For example, a second-order system can display characteristics much like a first-order system, or, depending on component values, display damped or pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our discussion in the next section, we take a look at numerical examples of the second-order system responses shown in Figure 4.7. All examples are derived from Figure 4.7(*a*), the general case, which has two finite poles and no zeros. The term in the numerator is simply a scale or input multiplying factor that can take on any value without affecting the form of the derived results. By assigning appropriate values to parameters *a* and *b*, we can show all possible second-order transient responses. The unit step response then can be found using C(s) = R(s)G(s), where R(s) = 1/s, followed by a partial-fraction expansion and the inverse Laplace transform. Details are left as an end-of-chapter problem, for which you may want to review Section 2.2.

FIGURE 4.7 Second-order systems, pole plots, and step responses

We now explain each response and show how we can use the poles to determine the nature of the response without going through the procedure of a partial-fraction expansion followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7(b)

For this response,

$$C(s) = \frac{9}{s(s^2 + 9s + 9)} = \frac{9}{s(s + 7.854)(s + 1.146)}$$
(4.12)

This function has a pole at the origin that comes from the unit step input and two real poles that come from the system. The input pole at the origin generates the constant forced response; each of the two system poles on the real axis generates an exponential natural response whose exponential frequency is equal to the pole location. Hence, the output initially could have been written as $c(t) = K_1 + K_2 e^{-7.854t} + K_3 e^{-1.146t}$. This response, shown in Figure 4.7(*b*), is called *overdamped*.³ We see that the poles tell us the form of the response without the tedious calculation of the inverse Laplace transform.

Underdamped Response, Figure 4.7 (c)

For this response,

$$C(s) = \frac{9}{s(s^2 + 2s + 9)} \tag{4.13}$$

This function has a pole at the origin that comes from the unit step input and two complex poles that come from the system. We now compare the response of the second-order system to the poles that generated it. First we will compare the pole location to the time function, and then we will compare the pole location to the plot. From Figure 4.7(c), the poles that generate the natural response are at $s = -1 \pm j\sqrt{8}$. Comparing these values to c(t) in the same figure, we see that the real part of the pole matches the exponential decay frequency of the sinusoid's amplitude, while the imaginary part of the pole matches the frequency of the sinusoidal oscillation.

FIGURE 4.8 Second-order step response components generated by complex poles

Let us now compare the pole location to the plot. Figure 4.8 shows a general, damped sinusoidal response for a secondorder system. The transient response consists of an exponentially decaying amplitude generated by the real part of the system pole times a sinusoidal waveform generated by the imaginary part of the system pole. The time constant of the exponential decay is equal to the reciprocal of the real part of the system pole. The value of the imaginary part is the actual frequency of the sinusoid, as depicted in Figure 4.8. This sinusoidal frequency is given the name *damped frequency of oscillation*, ω_d . Finally, the steady-state response (unit step) was generated by the input pole located at the origin. We call the type of response shown in Figure 4.8 an *underdamped response*, one which approaches a steady-state value via a transient response that is a damped oscillation.

The following example demonstrates how a knowledge of the relationship between the pole location and the transient response can lead rapidly to the response form without calculating the inverse Laplace transform.

³So named because *overdamped* refers to a large amount of energy absorption in the system, which inhibits the transient response from overshooting and oscillating about the steady-state value for a step input. As the energy absorption is reduced, an overdamped system will become underdamped and exhibit overshoot.

Example 4.2

Form of Underdamped Response Using Poles

We will revisit the second-order underdamped response in Sections 4.5 and 4.6, where we generalize the discussion and derive some results that relate the pole position to other parameters of the response.

Undamped Response, Figure 4.7(d)

For this response,

$$C(s) = \frac{9}{s(s^2 + 9)} \tag{4.14}$$

This function has a pole at the origin that comes from the unit step input and two imaginary poles that come from the system. The input pole at the origin generates the constant forced response, and the two system poles on the imaginary axis at $\pm j3$ generate a sinusoidal natural response whose frequency is equal to the location of the imaginary poles. Hence, the output can be estimated as $c(t) = K_1 + K_4 \cos(3t - \phi)$. This type of response, shown in Figure 4.7(*d*), is called *undamped*. Note that the absence of a real part in the pole pair corresponds to an exponential that does not decay. Mathematically, the exponential is $e^{-0t} = 1$.

Critically Damped Response, Figure 4.7 (e)

For this response,

$$C(s) = \frac{9}{s(s^2 + 6s + 9)} = \frac{9}{s(s+3)^2}$$
(4.15)

This function has a pole at the origin that comes from the unit step input and two multiple real poles that come from the system. The input pole at the origin generates the constant forced response, and the two poles on the real axis at -3 generate a natural response consisting of an exponential and an exponential multiplied by time, where the exponential frequency is equal to the location of the real poles. Hence, the output can be estimated as $c(t) = K_1 + K_2 e^{-3t} + K_3 t e^{-3t}$. This type of response, shown in Figure 4.7(*e*), is called *critically damped*. Critically damped responses are the fastest possible without the overshoot that is characteristic of the underdamped response.

We now summarize our observations. In this section we defined the following natural responses and found their characteristics:

1. Overdamped responses

Poles: Two real at $-\sigma_1$, $-\sigma_2$

Natural response: Two exponentials with time constants equal to the reciprocal of the pole locations, or $c(t) = K_1 e^{-\sigma_1 t} + K_2 e^{-\sigma_2 t}$

2. Underdamped responses

Poles: Two complex at $-\sigma_d \pm j\omega_d$

Natural response: Damped sinusoid with an exponential envelope whose time constant is equal to the reciprocal of the pole's real part. The radian frequency of the sinusoid, the damped frequency of oscillation, is equal to the imaginary part of the poles, or $c(t) = Ae^{-\sigma_d t} \cos(\omega_d t - \phi)$

3. Undamped responses

Poles: Two imaginary at $\pm j\omega_1$

Natural response: Undamped sinusoid with radian frequency equal to the imaginary part of the poles, or

$$c(t) = \operatorname{Acos}(\omega_1 t - \phi)$$

4. Critically damped responses

Poles: Two real at $-\sigma_1$

Natural response: One term is an exponential whose time constant is equal to the reciprocal of the pole location. Another term is the product of time, t, and an exponential with time constant equal to the reciprocal of the pole location, or

$$c(t) = K_1 e^{-\sigma_1 t} + K_2 t e^{-\sigma_1 t}$$

The step responses for the four cases of damping discussed in this section are superimposed in Figure 4.10. Notice that the critically damped case is the division

FIGURE 4.10 Step responses for second-order system damping cases

between the overdamped cases and the underdamped cases and is the fastest response without overshoot.

Skill-Assessment Exercise 4.3

PROBLEM: For each of the following transfer functions, write, by inspection, the general form of the step response:

a.
$$G(s) = \frac{400}{s^2 + 12s + 400}$$

b. $G(s) = \frac{900}{s^2 + 90s + 900}$
c. $G(s) = \frac{225}{s^2 + 30s + 225}$
d. $G(s) = \frac{625}{s^2 + 625}$
NSWERS:
a. $c(t) = A + Be^{-6t} \cos(19.08t)$

Α

a. $c(t) = A + Be^{-6t} \cos(19.08t + \phi)$ **b.** $c(t) = A + Be^{-78.54t} + Ce^{-11.46t}$ **c.** $c(t) = A + Be^{-15t} + Cte^{-15t}$

d. $c(t) = A + B\cos(25t + \phi)$

The complete solution is located at www.wiley.com/college/nise.

In the next section, we will formalize and generalize our discussion of secondorder responses and define two specifications used for the analysis and design of second-order systems. In Section 4.6, we will focus on the *underdamped* case and derive some specifications unique to this response that we will use later for analysis and design.

4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses, we generalize the discussion and establish quantitative specifications defined in such a way that the response of a second-order system can be described to a designer without the need for sketching the response. In this section, we define two physically meaningful specifications for second-order systems. These quantities can be used to describe the characteristics of the second-order transient response just as time constants describe the first-order system response. The two quantities are called natural frequency and damping ratio. Let us formally define them.

Natural Frequency, ω_n

The *natural frequency* of a second-order system is the frequency of oscillation of the system without damping. For example, the frequency of oscillation of a series *RLC* circuit with the resistance shorted would be the natural frequency.

WileyPLUS

WPCS

Control Solutions

Damping Ratio, ζ

Before we state our next definition, some explanation is in order. We have already seen that a second-order system's underdamped step response is characterized by damped oscillations. Our definition is derived from the need to quantitatively describe this damped oscillation regardless of the time scale. Thus, a system whose transient response goes through three cycles in a millisecond before reaching the steady state would have the same measure as a system that went through three cycles in a millennium before reaching the steady state. For example, the underdamped curve in Figure 4.10 has an associated measure that defines its shape. This measure remains the same even if we change the time base from seconds to microseconds or to millennia.

A viable definition for this quantity is one that compares the exponential decay frequency of the envelope to the natural frequency. This ratio is constant regardless of the time scale of the response. Also, the reciprocal, which is proportional to the ratio of the natural period to the exponential time constant, remains the same regardless of the time base.

We define the *damping ratio*, ζ , to be

$\zeta =$	Exponential decay frequency	_ 1	Natural period (seconds)
	Natural frequency (rad/second)	$\overline{2\pi}$	Exponential time constant

Let us now revise our description of the second-order system to reflect the new definitions. The general second-order system shown in Figure 4.7(*a*) can be transformed to show the quantities ζ and ω_n . Consider the general system

$$G(s) = \frac{b}{s^2 + as + b} \tag{4.16}$$

Without damping, the poles would be on the $j\omega$ -axis, and the response would be an undamped sinusoid. For the poles to be purely imaginary, a = 0. Hence,

$$G(s) = \frac{b}{s^2 + b} \tag{4.17}$$

By definition, the natural frequency, ω_n , is the frequency of oscillation of this system. Since the poles of this system are on the $j\omega$ -axis at $\pm j\sqrt{b}$,

$$\omega_n = \sqrt{b} \tag{4.18}$$

Hence,

$$b = \omega_n^2 \tag{4.19}$$

Now what is the term *a* in Eq. (4.16)? Assuming an underdamped system, the complex poles have a real part, σ , equal to -a/2. The magnitude of this value is then the exponential decay frequency described in Section 4.4. Hence,

$$\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency (rad/second)}} = \frac{|\sigma|}{\omega_n} = \frac{a/2}{\omega_n}$$
(4.20)

from which

$$a = 2\zeta\omega_n \tag{4.21}$$

Our general second-order transfer function finally looks like this:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(4.22)

In the following example we find numerical values for ζ and ω_n by matching the transfer function to Eq. (4.22).

Example 4.3 Finding ζ and ω_n For a Second-Order System PROBLEM: Given the transfer function of Eq. (4.23), find ζ and ω_n . $G(s) = \frac{36}{s^2 + 4.2s + 36}$ (4.23) SOLUTION: Comparing Eq. (4.23) to (4.22), $\omega_n^2 = 36$, from which $\omega_n = 6$. Also, $2\zeta\omega_n = 4.2$. Substituting the value of ω_n , $\zeta = 0.35$.

Now that we have defined ζ and ω_n , let us relate these quantities to the pole location. Solving for the poles of the transfer function in Eq. (4.22) yields

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \tag{4.24}$$

From Eq. (4.24) we see that the various cases of second-order response are a function of ζ ; they are summarized in Figure 4.11.⁴

FIGURE 4.11 Second-order response as a function of damping ratio

⁴The student should verify Figure 4.11 as an exercise.

In the following example we find the numerical value of ζ and determine the nature of the transient response.

Example 4.4

Characterizing Response from the Value of ζ

PROBLEM: For each of the systems shown in Figure 4.12, find the value of ζ and report the kind of response expected.

FIGURE 4.12 Systems for Example 4.4

SOLUTION: First match the form of these systems to the forms shown in Eqs. (4.16) and (4.22). Since $a = 2\zeta \omega_n$ and $\omega_n = \sqrt{b}$,

$$\zeta = \frac{a}{2\sqrt{b}} \tag{4.25}$$

Using the values of *a* and *b* from each of the systems of Figure 4.12, we find $\zeta = 1.155$ for system (*a*), which is thus overdamped, since $\zeta > 1$; $\zeta = 1$ for system (*b*), which is thus critically damped; and $\zeta = 0.894$ for system (*c*), which is thus underdamped, since $\zeta < 1$.

Skill-Assessment Exercise 4.4

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do the following: (1) Find the values of ζ and ω_n ; (2) characterize the nature of the response.

ANSWERS:

- **a.** $\zeta = 0.3, \omega_n = 20$; system is underdamped
- **b.** $\zeta = 1.5, \omega_n = 30$; system is overdamped
- c. $\zeta = 1, \omega_n = 15$; system is critically damped
- **d.** $\zeta = 0, \ \omega_n = 25$; system is undamped

The complete solution is located at www.wiley.com/college/nise.