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Example 2.23

Transfer Function—DC Motor and Load

PROBLEM: Given the system and torque-speed curve of Figure 2.39(a) and (b),
find the transfer function, uLðsÞ=EaðsÞ.
SOLUTION: Begin by finding the mechanical constants, Jm and Dm, in Eq. (2.153).
From Eq. (2.155), the total inertia at the armature of the motor is

Jm ¼ Ja þ JL
N1

N2

	 
2

¼ 5 þ 700
1

10

	 
2

¼ 12 ð2:164Þ

and the total damping at the armature of the motor is

Dm ¼ Da þDL
N1

N2

	 
2

¼ 2 þ 800
1

10

	 
2

¼ 10 ð2:165Þ

Now we will find the electrical constants, Kt=Ra and Kb. From the torque-
speed curve of Figure 2.39(b),

Tstall ¼ 500 ð2:166Þ
vno-load ¼ 50 ð2:167Þ

ea ¼ 100 ð2:168Þ

Hence the electrical constants are

Kt

Ra
¼ Tstall

ea
¼ 500

100
¼ 5 ð2:169Þ

Virtual Experiment 2.2
Open-Loop
Servo Motor

Put theory into practice explor-
ing the dynamics of the Quanser
Rotary Servo System modeled
in LabVIEW. It is particularly
important to know how a servo
motor behaveswhenusingthem
in high-precision applications
such as hard disk drives.

Virtual experiments are found
on WileyPLUS.
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FIGURE 2.39 a. DC motor and load; b. torque-speed curve; c. block diagram
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and

Kb ¼ ea
vno-load

¼ 100

50
¼ 2 ð2:170Þ

Substituting Eqs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yield

umðsÞ
EaðsÞ ¼

5=12

s sþ 1

12
10 þ ð5Þð2Þ½ �

� � ¼ 0:417

sðsþ 1:667Þ ð2:171Þ

In order to find uLðsÞ=EaðsÞ, we use the gear ratio, N1=N2 ¼ 1=10, and find

uLðsÞ
EaðsÞ ¼

0:0417

sðsþ 1:667Þ ð2:172Þ

as shown in Figure 2.39(c).

Skill-Assessment Exercise 2.11

PROBLEM: Find the transfer function, GðsÞ ¼ uLðsÞ=EaðsÞ, for the motor and load
shown in Figure 2.40. The torque-speed curve is given by Tm ¼ �8vm þ 200 when
the input voltage is 100 volts.

ANSWER: GðsÞ ¼ 1=20

s sþ ð15=2Þ½ �
The complete solution is at www.wiley.com/college/nise.

2.9 Electric Circuit Analogs

In this section, we show the commonality of systems from the various disciplines
by demonstrating that the mechanical systems with which we worked can be
represented by equivalent electric circuits. We have pointed out the similarity
between the equations resulting from Kirchhoff’s laws for electrical systems and
the equations of motion of mechanical systems. We now show this commonality
even more convincingly by producing electric circuit equivalents for mechanical
systems. The variables of the electric circuits behave exactly as the analogous

FIGURE 2.40 Electro-
mechanical system for
Skill-Assessment Exercise
2.11

+

–
ea(t)

Ja = 1 kg-m2

Da = 5 N-m-s/rad DL = 800 N-m-s/rad
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variables of the mechanical systems. In fact, converting mechanical systems to
electrical networks before writing the describing equations is a problem-solving
approach that you may want to pursue.

An electric circuit that is analogous to a system from another discipline is
called an electric circuit analog. Analogs can be obtained by comparing the
describing equations, such as the equations of motion of a mechanical system,
with either electrical mesh or nodal equations. When compared with mesh
equations, the resulting electrical circuit is called a series analog. When com-
pared with nodal equations, the resulting electrical circuit is called a parallel
analog.

Series Analog
Consider the translational mechanical system shown in Figure 2.41(a), whose
equation of motion is

ðMs2 þ fvsþKÞXðsÞ ¼ FðsÞ ð2:173Þ
Kirchhoff’s mesh equation for the simple series RLC network shown in
Figure 2.41(b) is

Lsþ Rþ 1

Cs

	 

IðsÞ ¼ EðsÞ ð2:174Þ

As we previously pointed out, Eq. (2.173) is not directly analogous to
Eq. (2.174) because displacement and current are not analogous. We can create
a direct analogy by operating on Eq. (2.173) to convert displacement to velocity by
dividing and multiplying the left-hand side by s, yielding

Ms2 þ fvsþK

s
sXðsÞ ¼ Msþ fv þK

s

	 

VðsÞ ¼ FðsÞ ð2:175Þ

Comparing Eqs. 2.174 and 2.175, we recognize the sum of impedances and
draw the circuit shown in Figure 2.41(c). The conversions are summarized in
Figure 2.41(d).

When we have more than one degree of freedom, the impedances
associated with a motion appear as series electrical elements in a mesh, but

+

fvM
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fv
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(d)

mass = M

viscous damper = fv

spring = K

applied force =  f(t)

velocity = v(t)
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–

+
–

–
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FIGURE 2.41 Development
of series analog: a. mechanical
system; b. desired
electrical representation;
c. series analog; d. parameters
for series analog
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the impedances between adjacent motions are drawn as series electrical
impedances between the two corresponding meshes. We demonstrate with
an example.

Example 2.24

Converting a Mechanical System to a Series Analog

PROBLEM: Draw a series analog for the mechanical system of Figure 2.17(a).

SOLUTION: Equations (2.118) are analogous to electrical mesh equations after
conversion to velocity. Thus,

M1sþ ðfv1
þ fv3

Þ þ ðK1 þK2Þ
s

� �
V1ðsÞ � fv3

þK2

s

	 

V2ðsÞ ¼ FðsÞ ð2:176aÞ

� fv3
þK2

s

	 

V1ðsÞ þ M2sþ ðfv2

þ fv3
Þ þ ðK2 þK3Þ

s

� �
V2ðsÞ ¼ 0 ð2:176bÞ

Coefficients represent sums of electrical impedance. Mechanical impedances
associated with M1 form the first mesh, where impedances between the two masses
are common to the two loops. Impedances associated with M2 form the second
mesh. The result is shown in Figure 2.42, where v1ðtÞ and v2ðtÞ are the velocities of
M1 and M2, respectively.

Parallel Analog
A system can also be converted to an equivalent parallel analog. Consider the
translational mechanical system shown in Figure 2.43(a), whose equation of motion
is given by Eq. (2.175). Kirchhoff’s nodal equation for the simple parallel RLC
network shown in Figure 2.43(b) is

Csþ 1

R
þ 1

Ls

	 

EðsÞ ¼ IðsÞ ð2:177Þ

Comparing Eqs. (2.175) and (2.177), we identify the sum of admittances and draw the
circuit shown in Figure 2.43(c). The conversions are summarized in Figure 2.43(d).

FIGURE 2.42 Series analog of
mechanical system of
Figure 2.17(a)
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When we have more than one degree of freedom, the components associated
with a motion appear as parallel electrical elements connected to a node, but the
components of adjacent motions are drawn as parallel electrical elements between
two corresponding nodes. We demonstrate with an example.

Example 2.25

Converting a Mechanical System to a Parallel Analog

PROBLEM: Draw a parallel analog for the mechanical system of Figure 2.17(a).

SOLUTION: Equation (2.176) is also analogous to electrical node equations. Coeffi-
cients represent sums of electrical admittances. Admittances associated with M1 form
the elements connected to the first node, where mechanical admittances between the
two masses are common to the two nodes. Mechanical admittances associated with M2

form the elements connected to the second node. The result is shown in Figure 2.44,
where v1ðtÞ and v2ðtÞ are the velocities of M1 and M2, respectively.

Skill-Assessment Exercise 2.12

PROBLEM: Draw a series and parallel analog for the rotational mechanical system
of Figure 2.22.

ANSWER: The complete solution is at www.wiley.com/college/nise.
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FIGURE 2.43 Development of
parallel analog: a. mechanical
system; b. desired electrical
representation; c. parallel
analog; d. parameters for
parallel analog
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(2) describe quantitatively the transient response of the open-loop system;
(3) derive the expression for the open-loop angular velocity output for a step
voltage input; (4) obtain the open-loop state-space representation; (5) plot the
open-loop velocity step response using a computer simulation.

� Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch control system shown on the back endpapers, you will be able to
predict, find, and plot the response of the vehicle dynamics to a step input
command. Further, you will be able to evaluate the effect of system zeros and
higher-order poles on the response. You also will be able to evaluate the roll
response of a ship at sea.

4.1 Introduction

In Chapter 2, we saw how transfer functions can represent linear, time-invariant
systems. In Chapter 3, systems were represented directly in the time domain via the
state and output equations. After the engineer obtains a mathematical representa-
tion of a subsystem, the subsystem is analyzed for its transient and steady-state
responses to see if these characteristics yield the desired behavior. This chapter is
devoted to the analysis of system transient response.

It may appear more logical to continue with Chapter 5, which covers the
modeling of closed-loop systems, rather than to break the modeling sequence with
the analysis presented here in Chapter 4. However, the student should not continue
too far into system representation without knowing the application for the effort
expended. Thus, this chapter demonstrates applications of the system representation
by evaluating the transient response from the system model. Logically, this approach
is not far from reality, since the engineer may indeed want to evaluate the response
of a subsystem prior to inserting it into the closed-loop system.

After describing a valuable analysis and design tool, poles and zeros, we begin
analyzing our models to find the step response of first- and second-order systems.
The order refers to the order of the equivalent differential equation representing the
system—the order of the denominator of the transfer function after cancellation of
common factors in the numerator or the number of simultaneous first-order
equations required for the state-space representation.

4.2 Poles, Zeros, and System Response

The output response of a system is the sum of two responses: the forced response and
the natural response.1 Although many techniques, such as solving a differential
equation or taking the inverse Laplace transform, enable us to evaluate this output
response, these techniques are laborious and time-consuming. Productivity is aided
by analysis and design techniques that yield results in a minimum of time. If the
technique is so rapid that we feel we derive the desired result by inspection, we
sometimes use the attribute qualitative to describe the method. The use of poles and

1 The forced response is also called the steady-state response or particular solution. The natural response is
also called the homogeneous solution.
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zeros and their relationship to the time response of a system is such a technique.
Learning this relationship gives us a qualitative ‘‘handle’’ on problems. The concept
of poles and zeros, fundamental to the analysis and design of control systems,
simplifies the evaluation of a system’s response. The reader is encouraged to master
the concepts of poles and zeros and their application to problems throughout this
book. Let us begin with two definitions.

Poles of a Transfer Function
The poles of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become infinite or (2) any roots of the
denominator of the transfer function that are common to roots of the numerator.

Strictly speaking, the poles of a transfer function satisfy part (1) of the
definition. For example, the roots of the characteristic polynomial in the denomina-
tor are values of s that make the transfer function infinite, so they are thus poles.
However, if a factor of the denominator can be canceled by the same factor in the
numerator, the root of this factor no longer causes the transfer function to become
infinite. In control systems, we often refer to the root of the canceled factor in the
denominator as a pole even though the transfer function will not be infinite at this
value. Hence, we include part (2) of the definition.

Zeros of a Transfer Function
The zeros of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become zero, or (2) any roots of the numerator
of the transfer function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this
definition. For example, the roots of the numerator are values of s that make the
transfer function zero and are thus zeros. However, if a factor of the numerator can
be canceled by the same factor in the denominator, the root of this factor no longer
causes the transfer function to become zero. In control systems, we often refer to the
root of the canceled factor in the numerator as a zero even though the transfer
function will not be zero at this value. Hence, we include part (2) of the definition.

Poles and Zeros of a First-Order System: An Example
Given the transfer function G(s) in Figure 4.1(a), a pole exists at s ¼ �5, and a zero
exists at �2. These values are plotted on the complex s-plane in Figure 4.1(b), using
an� for the pole and a � for the zero. To show the properties of the poles and zeros,
let us find the unit step response of the system. Multiplying the transfer function of
Figure 4.1(a) by a step function yields

CðsÞ ¼ ðsþ 2Þ
sðsþ 5Þ ¼

A

s
þ B

sþ 5
¼ 2=5

s
þ 3=5

sþ 5
ð4:1Þ

where

A ¼ ðsþ 2Þ
ðsþ 5Þ

����
s!0

¼ 2

5

B ¼ ðsþ 2Þ
s

����
s!�5

¼ 3

5

Thus,

cðtÞ ¼ 2

5
þ 3

5
e�5t ð4:2Þ
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From the development summarized in Figure 4.1(c), we draw the following
conclusions:

1. A pole of the input function generates the form of the forced response (that is, the
pole at the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response (that is,
the pole at �5 generated e�5t).

3. A pole on the real axis generates an exponential response of the form e�at, where
�a is the pole location on the real axis. Thus, the farther to the left a pole is on the
negative real axis, the faster the exponential transient response will decay to
zero (again, the pole at �5 generated e�5t; see Figure 4.2 for the general case).

4. The zeros and poles generate the amplitudes for both the forced and natural
responses (this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles
to obtain the form of the system response. We will learn to write the form of the
response by inspection. Each pole of the system transfer function that is on the real
axis generates an exponential response that is a component of the natural response.
The input pole generates the forced response.

G(s) 
C(s)

1
s

(b)(a)

j

s-plane

1
s

s + 2

j j j

Input pole System zero System pole

Output
transform

2/5 + 3/5
s + 5

2
5

3
5

e–5t
Output
time

response
+

Forced response Natural response
(c)

–5

R(s) = s + 2

ω

1
s + 5

ω ω ω

C(s) =

c(t) =

s

–2 –5

s-planes-planes-plane

s + 5 –2
σ

σ σ σ

FIGURE 4.1 a. System showing input and output; b. pole-zero plot of the system; c. evolution
of a system response. Follow blue arrows to see the evolution of the response component
generated by the pole or zero.
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Example 4.1

Evaluating Response Using Poles

PROBLEM: Given the system of Figure 4.3, write the output, c(t), in general terms.
Specify the forced and natural parts of the solution.

SOLUTION: By inspection, each system pole generates an exponen-
tial as part of the natural response. The input’s pole generates the
forced response. Thus,

C sð Þ � K1

s

Forced

response

þ K2

sþ 2
þ K3

sþ 4
þ K4

sþ 5

Natural

response

ð4:3Þ

Taking the inverse Laplace transform, we get

cðtÞ � K1

Forced

response

þK2e�2t þK3e�4t þK4e�5t

Natural

response

ð4:4Þ

Skill-Assessment Exercise 4.1

PROBLEM: A system has a transfer function, GðsÞ ¼ 10ðsþ 4Þðsþ 6Þ
ðsþ 1Þðsþ 7Þðsþ 8Þðsþ 10Þ.

Write, by inspection, the output, c(t), in general terms if the input is a unit step.

ANSWER: cðtÞ � Aþ Be�t þ Ce�7t þDe�8t þ Ee�10t

In this section, we learned that poles determine the nature of the time
response: Poles of the input function determine the form of the forced response,
and poles of the transfer function determine the form of the natural response.
Zeros and poles of the input or transfer function contribute to the amplitudes of the
component parts of the total response. Finally, poles on the real axis generate
exponential responses.

j
Pole at −    generatesα

response Ke−      

σ

ω

s-plane
α

α−

t

FIGURE 4.2 Effect of a real-axis pole upon transient response.

(s + 2)(s + 4)(s + 5)

C(s)
1
sR(s) = (s + 3)

FIGURE 4.3 System for Example 4.1
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4.3 First-Order Systems

We now discuss first-order systems without zeros to define a
performance specification for such a system. A first-order system
without zeros can be described by the transfer function shown in
Figure 4.4(a). If the input is a unit step, where RðsÞ ¼ 1=s, the Laplace
transform of the step response is C(s), where

CðsÞ ¼ RðsÞGðsÞ ¼ a

sðsþ aÞ ð4:5Þ

Taking the inverse transform, the step response is given by

cðtÞ ¼ cf ðtÞ þ cnðtÞ ¼ 1 � e�at ð4:6Þ

where the input pole at the origin generated the forced response cf ðtÞ ¼ 1, and the
system pole at �a, as shown in Figure 4.4(b), generated the natural response
cnðtÞ ¼ �e�at. Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter a, the only parameter needed to
describe the transient response. When t ¼ 1=a,

e�atjt¼1=a ¼ e�1 ¼ 0:37 ð4:7Þ
or

cðtÞjt¼1=a ¼ 1 � e�atjt¼1=a ¼ 1 � 0:37 ¼ 0:63 ð4:8Þ
We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response

performance specifications.

Time Constant
We call 1=a the time constant of the response. From Eq. (4.7), the time constant can
be described as the time for e�at to decay to 37% of its initial value. Alternately, from
Eq. (4.8) the time constant is the time it takes for the step response to rise to 63% of
its final value (see Figure 4.5).

σaR(s)  

(a)

jω

–a

(b)

s + a

G(s)

C(s)
s-plane

ω

FIGURE 4.4 a. First-order system; b. pole plot

FIGURE 4.5 First-order system
response to a unit step
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Virtual Experiment 4.1
First-Order

Open-Loop Systems

Put theory into practice and find
a first-order transfer function
representing the Quanser Rotary
Servo. Then validate the model
by simulating it in LabVIEW.
Such a servo motor is used in
mechatronic gadgets such as
cameras.

Virtual experiments are found
on WileyPLUS.
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The reciprocal of the time constant has the units (1/seconds), or frequency.
Thus, we can call the parameter a the exponential frequency. Since the derivative of
e�at is �a when t ¼ 0, a is the initial rate of change of the exponential at t ¼ 0. Thus,
the time constant can be considered a transient response specification for a first-
order system, since it is related to the speed at which the system responds to a
step input.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)).
Since the pole of the transfer function is at �a, we can say the pole is located at the
reciprocal of the time constant, and the farther the pole from the imaginary axis, the
faster the transient response.

Let us look at other transient response specifications, such as rise time, Tr, and
settling time, Ts, as shown in Figure 4.5.

Rise Time, Tr
Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final
value. Rise time is found by solving Eq. (4.6) for the difference in time at cðtÞ ¼ 0:9
and cðtÞ ¼ 0:1. Hence,

Tr ¼ 2:31

a
� 0:11

a
¼ 2:2

a
ð4:9Þ

Settling Time, Ts
Settling time is defined as the time for the response to reach, and stay within, 2% of
its final value.2 Letting cðtÞ ¼ 0:98 in Eq. (4.6) and solving for time, t, we find the
settling time to be

Ts ¼ 4

a
ð4:10Þ

First-Order Transfer Functions via Testing
Often it is not possible or practical to obtain a system’s transfer function analytically.
Perhaps the system is closed, and the component parts are not easily identifiable.
Since the transfer function is a representation of the system from input to output, the
system’s step response can lead to a representation even though the inner construc-
tion is not known. With a step input, we can measure the time constant and the
steady-state value, from which the transfer function can be calculated.

Consider a simple first-order system, GðsÞ ¼ K=ðsþ aÞ, whose step response is

CðsÞ ¼ K

sðsþ aÞ ¼
K=a

s
� K=a

ðsþ aÞ ð4:11Þ

If we can identify K and a from laboratory testing, we can obtain the transfer
function of the system.

For example, assume the unit step response given in Figure 4.6. We determine
that it has the first-order characteristics we have seen thus far, such as no overshoot
and nonzero initial slope. From the response, we measure the time constant, that is,
the time for the amplitude to reach 63% of its final value. Since the final value is

2 Strictly speaking, this is the definition of the 2% setting time. Other percentages, for example 5%, also can
be used. We will use settling time throughout the book to mean 2% settling time.
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about 0.72, the time constant is evaluated where the curve reaches 0:63 � 0:72 ¼
0:45, or about 0.13 second. Hence, a ¼ 1=0:13 ¼ 7:7.

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-
state value of K=a ¼ 0:72. Substituting the value of a, we find K ¼ 5:54. Thus, the
transfer function for the system is GðsÞ ¼ 5:54=ðsþ 7:7Þ. It is interesting to note that
the response of Figure 4.6 was generated using the transfer function GðsÞ ¼
5=ðsþ 7Þ.

Skill-Assessment Exercise 4.2

PROBLEM: A system has a transfer function, GðsÞ ¼ 50

sþ 50
. Find the time con-

stant, Tc, settling time, Ts, and rise time, Tr.

ANSWER: Tc ¼ 0:02 s; Ts ¼ 0:08 s; and Tr ¼ 0:044 s:

The complete solution is located at www.wiley.com/college/nise.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to second-
order systems. Compared to the simplicity of a first-order system, a second-order
system exhibits a wide range of responses that must be analyzed and described.
Whereas varying a first-order system’s parameter simply changes the speed of the
response, changes in the parameters of a second-order system can change the form of
the response. For example, a second-order system can display characteristics much
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FIGURE 4.6 Laboratory results of a system step response test
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