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Y skill-Assessment Exercise 2.4 D

PROBLEM: Find the differential equation corresponding to the transfer function,

25+ 1
G(S)_s2+6s+2
d*c dc dr
e — +6—+2c=2—
ANSWER: dt2+ dt+ ¢ dtJrr

The complete solution is at www.wiley.com/college/nise.

Y skill-Assessment Exercise 2.5 TS

PROBLEM: Find the ramp response for a system whose transfer function is

S
G(s) = (5+4)(s +8) WileyPLUS
. — i _ i —4t l -8 Control Solutions
ANSWER: c(t) = o 166 + 326

The complete solution is at www.wiley.com/college/nise.

In general, a physical system that can be represented by a linear, time-invariant
differential equation can be modeled as a transfer function. The rest of this chapter will
be devoted to the task of modeling i gl@ysQBFe wﬁmaﬂ ©Cr&Fesent
electrical networks, translational mechanical systems, rotational mechanical systems,
and electromechanical systems as transfer functions. As the need arises, the reader can
consult the Bibliography at the end of the chapter for discussions of other types of
systems, such as pneumatic, hydraulic, and heat-transfer systems (Cannon, 1967).

( 2.4 Electrical Network Transfer Functions

In this section, we formally apply the transfer function to the mathematical modeling
of electric circuits including passive networks and operational amplifier circuits.
Subsequent sections cover mechanical and electromechanical systems.

Equivalent circuits for the electric networks that we work with first consist of
three passive linear components: resistors, capacitors, and inductors.> Table 2.3
summarizes the components and the relationships between voltage and current and
between voltage and charge under zero initial conditions.

We now combine electrical components into circuits, decide on the input and
output, and find the transfer function. Our guiding principles are Kirchhoff’s laws.
We sum voltages around loops or sum currents at nodes, depending on which
technique involves the least effort in algebraic manipulation, and then equate the
result to zero. From these relationships we can write the differential equations for
the circuit. Then we can take the Laplace transforms of the differential equations
and finally solve for the transfer function.

2 Passive means that there is no internal source of energy.
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TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Impedance Admittance
Component Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) = I(s)/V(s)
_| F 1/t dv(t) 1 1
v(t) = = / i(de i) =C V(e = 2 q(0 L Cs
Capacitor Co dr c Cs
MAN— v =R i) = L) v(t) = R4W R 1l ¢
. R dt R
Resistor
/ 6666 \ di(t 1 2
v(t) = L% i(t) = l/ v(t)dt v(t) = Ld qgt) Ls 1
Inductor L Jo dt Ls

Note: The following set of symbols and units is used throughout this book: v(¢) — V (volts), i(f) — A (amps), g(t) — Q (coulombs), C — F (farads),
R — Q (ohms), G — Q (mhos), L — H (henries).

Simple Circuits via Mesh Analysis

Transfer functions can be obtained using Kirchhoff’s voltage law and summing
voltages around loops or meshes.®> We call this method loop or mesh analysis and
demonstrate it in the following example.

G Example 2. D

Transfer Function—Single Loop via the Differential Equation

L R pﬂﬂa@ Qinth)lDEansEInLh@cm Qﬁglg the capacitor voltage, V¢(s), to

the input voltage, V(s) in Figure 2.3.

+ SOLUTION: In any problem, the designer must first decide what the input and
V(D) ) € A~ e output should be. In this network, several variables could have been chosen to be
i) /‘\ the output—for example, the inductor voltage, the capacitor voltage, the resistor
voltage, or the current. The problem statement, however, is clear in this case: We

FIGURE 2.3 RLC network are to treat the capacitor voltage as the output and the applied voltage as the input.
Summing the voltages around the loop, assuming zero initial conditions,

yields the integro-differential equation for this network as

di(r) , 1 [, B
LW + Ri(t) + 6/0 i(t)dTr =v(t) (2.61)
Changing variables from current to charge using i(t) = dq(t)/dt yields
dq(t) | dq() 1
From the voltage-charge relationship for a capacitor in Table 2.3,
q(t) = Cve(2) (2.63)
Substituting Eq. (2.63) into Eq. (2.62) yields
d’ve(t) dvc(t)
LC a2 + RCT +ve(t) = v(1) (2.64)

3 A particular loop that resembles the spaces in a screen or fence is called a mesh.
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Taking the Laplace transform assuming zero initial conditions, rearranging terms,
and simplifying yields

1

49

(LCs* 4+ RCs +1)V¢(s) = V(s)

Solving for the transfer function, V¢(s)/V(s), we obtain

(2.65)

Vels) B 1/LC
V(s) 2 5 L
) +LS+LC

as shown in Figure 2.4.

V(s) ic Ve(s)
2 RO 1
s +-[1s + C

FIGURE 2.4 Block diagram of
(2. 6 6) series RLC electrical network

Let us now develop a technique for simplifying the solution for future
problems. First, take the Laplace transform of the equations in the voltage-current
column of Table 2.3 assuming zero initial conditions.

For the capacitor,

V(s) = é (s) (2.67)
For the resistor,

V(s) = RI(s) (2.68)
For the inductor,

V(s) = LsI(s) (2.69)

DF Enhancer

ayu
Now define the following transfer function:

(2.70)

Notice that this function is similar to the definition of resistance, that is, the ratio of
voltage to current. But, unlike resistance, this function is applicable to capacitors and
inductors and carries information on the dynamic behavior of the component, since it
represents an equivalent differential equation. We call this particular transfer function
impedance. The impedance for each of the electrical elements is shown in Table 2.3.

Let us now demonstrate how the concept of impedance simplifies the solution
for the transfer function. The Laplace transform of Eq. (2.61), assuming zero initial
conditions, is

1
<Ls +R+ —) I(s) =V(s) (2.71)
Cs
Notice that Eq. (2.71), which is in the form
[Sum of impedances|/(s) = [Sum of applied voltages] (2.72)

suggests the series circuit shown in Figure 2.5. Also notice that the circuit of
Figure 2.5 could have been obtained immediately from the circuit of Figure 2.3
simply by replacing each element with its impedance. We call this altered circuit
the transformed circuit. Finally, notice that the transformed circuit leads imme-

V(s)

(I VAP
> T~ c(s)
1(s)

diately to Eq. (2.71) if we add impedances in series as we add resistors in series.

Thus, rather than writing the differential equation first and then taking the petwork

FIGURE 2.5 Laplace-transformed
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Laplace transform, we can draw the transformed circuit and obtain the Laplace
transform of the differential equation simply by applying Kirchhoff’s voltage law to
the transformed circuit. We summarize the steps as follows:

1. Redraw the original network showing all time variables, such as v(¢), i(f), and
ve(t), as Laplace transforms V(s), I(s), and V¢ (s), respectively.

2. Replace the component values with their impedance values. This replacement is
similar to the case of dc circuits, where we represent resistors with their resistance
values.

We now redo Example 2.6 using the transform methods just described and bypass
the writing of the differential equation.

G example 2.7 D

Transfer Function—Single Loop via Transform Methods

PROBLEM: Repeat Example 2.6 using mesh analysis and transform methods
without writing a differential equation.

SOLUTION: Using Figure 2.5 and writing a mesh equation using the impedances as
we would use resistor values in a purely resistive circuit, we obtain

(Ls +R+ é) I(s) =V(s) (2.73)
SolvAryer ¢4 0V PDIF E}r(lsh ancer -
Vi) Ls+ R+ é

But the voltage across the capacitor, V¢ (s), is the product of the current and the

impedance of the capacitor. Thus,

Vels) =1(s) é (2.75)

Solving Eq. (2.75) for I(s), substituting I(s) into Eq. (2.74), and simplifying yields
the same result as Eq. (2.66).

Simple Circuits via Nodal Analysis

Transfer functions also can be obtained using Kirchhoff’s current law and summing
currents flowing from nodes. We call this method nodal analysis. We now demon-
strate this principle by redoing Example 2.6 using Kirchhoff’s current law and the
transform methods just described to bypass writing the differential equation.

Example 2.8

Transfer Function—Single Node via Transform Methods

PROBLEM: Repeat Example 2.6 using nodal analysis and without writing a
differential equation.
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SOLUTION: The transfer function can be obtained by summing currents flowing out
of the node whose voltage is V ¢ (s) in Figure 2.5. We assume that currents leaving the
node are positive and currents entering the node are negative. The currents consist of
the current through the capacitor and the current flowing through the series resistor
and inductor. From Eq. (2.70), each I(s) = V(s)/Z(s). Hence,

Ve(s)  Vels) = V(s)
1/Cs R+ Ls

=0 (2.76)

where V¢(s)/(1/Cs) is the current flowing out of the node through the capacitor,
and [V¢(s) — V(s)]/(R + Ls) is the current flowing out of the node through the
series resistor and inductor. Solving Eq. (2.76) for the transfer function, V¢(s)/V (s),
we arrive at the same result as Eq. (2.66).

Simple Circuits via Voltage Division
Example 2.6 can be solved directly by using voltage division on the transformed
network. We now demonstrate this technique.

G example 2.0 D

Transfer Function—Single Loop via Voltage Division
PROBLEM: Repeat Example 2.6 using voltage division and the transformed

circuit. Apago PDF Enhancer

SOLUTION: The voltage across the capacitor is some proportion of the input
voltage, namely the impedance of the capacitor divided by the sum of the
impedances. Thus,

1/Cs

1
Ls+R+—
( S + +Cs>

Solving for the transfer function, V¢ (s)/V (s), yields the same result as Eq. (2.66).
Review Examples 2.6 through 2.9. Which method do you think is easiest for
this circuit?

Vel(s) = V(s) (2.77)

The previous example involves a simple, single-loop electrical network. Many
electrical networks consist of multiple loops and nodes, and for these circuits we
must write and solve simultaneous differential equations in order to find the transfer
function, or solve for the output.

Complex Circuits via Mesh Analysis

To solve complex electrical networks —those with multiple loops and nodes—using
mesh analysis, we can perform the following steps:

1. Replace passive element values with their impedances.

2. Replace all sources and time variables with their Laplace transform.

3. Assume a transform current and a current direction in each mesh.
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FIGURE 2.6 a. Two-loop
electrical network;

b. transformed two-loop
electrical network;

¢. block diagram
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4. Write Kirchhoff’s voltage law around each mesh.
5. Solve the simultaneous equations for the output.
6. Form the transfer function.

Let us look at an example.

G example 2.10 D

Transfer Function—Multiple Loops

PROBLEM: Given the network of Figure 2.6(a), find the transfer function,

I(s)/V(s).

SOLUTION: The first step in the solution is to convert the network into Laplace
transforms for impedances and circuit variables, assuming zero initial conditions.
The result is shown in Figure 2.6(b). The circuit with which we are dealing requires
two simultaneous equations to solve for the transfer function. These equations can
be found by summing voltages around each mesh through which the assumed
currents, /1(s) and I(s), flow. Around Mesh 1, where 7;(s) flows,

RiI1(s) + LsIi(s) — LsIx(s) = V(s) (2.78)

Around Mesh 2, where I,(s) flows,

Apago PRk &ﬂzhﬁ%gﬁs[— LsIi(s) =0 (2.79)

R, Ry
+
v (1) L c =< vel
i1(1) ir(1)
(@)

v (1)

1;(s)

V(s) LCs? Ir(s)
(R1+ Ry)LCs*+(R R,C + L)s + R,

()
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Combining terms, Egs. (2.78) and (2.79) become simultaneous equations in /;(s)
and I(s):
(R1 + Ls)I1(s) — LsIy(s) = V(s) (2.80a)

— LsIi(s) + <Ls + Ry + é) L(s) =0 (2.80b)

We can use Cramer’s rule (or any other method for solving simultaneous
equations) to solve Eq. (2.80) for I,(s).* Hence,

(Ry +Ls) V(s)

L(s) = L5 < 0 1_ . (2.81)

where

(R] + LS) —Ls

1
—L Ls+ Ry +—-
S ( s + 2+Cs)

Forming the transfer function, G(s), yields
Ls LCs?
Gs) = [268) _ Ls _ 2.82
) =V6) "3 R T RILCE+ RRCT L £ R (2:82)

A:

as shown in Figure 2.6(c).
We have succeeded in modeling a physical network as a transfer function: The
network of Figure 2.6(a) is now modeled as the transfer function of Figure 2.6(c).

Before leaving the example, we nApagl@arn Fﬁ@lﬂust@ﬁlhﬁn CeYy. The

form that Eq. (2.80) take is

S f
Sumof ] im l:c;la?lces Sum of applied
impedances | I;(s) — comlronon to the I>(s) = | voltages around | (2.83a)
| around Mesh 1 | Mesh 1
two meshes
S f
im l;dna?lces Sum of Sum of applied
- comlr)non to the I(s)+| impedances |I,(s) = | voltagesaround | (2.83b)
around Mesh 2 Mesh 2
| twomeshes |

Recognizing the form will help us write such equations rapidly; for example, mechani-
cal equations of motion (covered in Sections 2.5 and 2.6) have the same form.

Studentswhoareperforming the MATLABexercisesandwant toexplore
the added capability of MATLAR's Symbolic Math Toolbox should now
run ch2sp4 in Appendix F at www.wiley.com/college/nise, where
Example 2.10 is solved. You will learn how to use the Symbolic
Math Toolbox to solve simultaneous equations using Cramer’s
rule. Specifically, the Symbolic Math Toolbox will be used to solve
for the transfer function in Eg. (2.82) using Eg. (2.80).

53

Symbolic Math

*See Appendix G (Section G.4) at www.wiley.com/college/nise for Cramer’s rule.
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Complex Circuits via Nodal Analysis
Often, the easiest way to find the transfer function is to use nodal analysis rather than
mesh analysis. The number of simultaneous differential equations that must be
written is equal to the number of nodes whose voltage is unknown. In the previous
example we wrote simultaneous mesh equations using Kirchhoff’s voltage law. For
multiple nodes we use Kirchhoff’s current law and sum currents flowing from each
node. Again, as a convention, currents flowing from the node are assumed to be
positive, and currents flowing into the node are assumed to be negative.

Before progressing to an example, let us first define admittance, Y(s), as the
reciprocal of impedance, or

1(s)

Y0 -7 =75

75 (2.84)

When writing nodal equations, it can be more convenient to represent circuit
elements by their admittance. Admittances for the basic electrical components
are shown in Table 2.3. Let us look at an example.

G example 2.11 D

Transfer Function—Multiple Nodes

PROBLEM: Find the transfer function, V¢(s)/V (s), for the circuit in Figure 2.6(b).
Use nodal analysis.

SOLUTION: For this problem, we sum currents at the nodes rather than sum
volt a th¢q-Ajces. ARCE@H the sum of currents flowing from
the nodes marked V. (s) and V¢(s) are, respectively,

Vis)=V(s)  Vi(s)  Vi(s)—Vcl(s)
R] + Ls + R2

Vels) = Vils)
Ry

Rearranging and expressing the resistances as conductances,” G; = 1/R; and
G, = 1/R,, we obtain,

=0

(2.85a)

CsV(s) + =0 (2.85b)

Figure 2.6

1
(G1 +Gy+ E) Vi(s) ~GaVels) = V(s)Gy (2.86a)
—GzVL(S) + (G2 + CS)Vc(S) =0 (286b)

G,G, Solving for the transfer function, V¢(s)/V (s), yields
V(s) —C s VC(S)
" , GGL+C G, =~ G st
(G + Gy)s +7LC s+1f Vc(S) B C (2 87)
FIGURE 2.7 Block diagram of the network of V(s) (G1+ Gy)s? + % %

as shown in Figure 2.7.

5In general, admittance is complex. The real part is called conductance and the imaginary part is called
susceptance. But when we take the reciprocal of resistance to obtain the admittance, a purely real quantity
results. The reciprocal of resistance is called conductance.
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Another way to write node equations is to replace voltage sources by
current sources. A voltage source presents a constant voltage to any load;
conversely, a current source delivers a constant current to any load. Practically,
a current source can be constructed from a voltage source by placing a large
resistance in series with the voltage source. Thus, variations in the load do not
appreciably change the current, because the current is determined approxi-
mately by the large series resistor and the voltage source. Theoretically, we rely
on Norton’s theorem, which states that a voltage source, V(s), in series with an
impedance, Z(s), can be replaced by a current source, I(s) = V(s)/Zs(s), in
parallel with Z(s).

In order to handle multiple-node electrical networks, we can perform the
following steps:

. Replace passive element values with their admittances.

. Replace all sources and time variables with their Laplace transform.

. Replace transformed voltage sources with transformed current sources.
. Write Kirchhoff’s current law at each node.

. Solve the simultaneous equations for the output.

A Ui A W IN =

. Form the transfer function.

Let us look at an example.

55

G example 2.12 D

PROBLEM: For the network of Figure 2.6, find the transfer function,
V(s)/V(s), using nodal analysis and a transformed circuit with current
sources.

sources in series with an impedance to current sources in parallel with
an admittance using Norton’s theorem.

Redrawing Figure 2.6(b) to reflect the changes, we obtain Fig-
ure 2.8, where Gy =1/R;, G, =1/R,, and the node voltages—the
voltages across the inductor and the capacitor—have been identified
as Vi(s) and V(s), respectively. Using the general relationship,
I(s) = Y(s)V(s), and summing currents at the node V' (s),

1
G1Vi(s)+ EVL(S) + G[VL(s) = Vel(s)] = V(s)Gy (2.88)
Summing the currents at the node V¢(s) yields
CsVe(s) + Ga[Ve(s) = Vi(s)) =0 (2.89)

Combining terms, Egs. (2.88) and (2.89) become simultaneous equations in V¢(s)
and V (s),which areidentical to Eq. (2.86) and lead to the same solution as Eq. (2.87).

An advantage of drawing this circuit lies in the form of Eq. (2.86) and its
direct relationship to Figure 2.8, namely

Transfer Function—Multiple Nodes with Current Sources

SOLUTION: Convert all impedances to admittances and all voltage V)G, <D

/1

FIGURE 2.8 Transformed network
ready for nodal analysis
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Sum of admittances
common to the two | V¢ (s) = {

currents at Node 1
nodes

Sum of admittances (s)
s
connected to Node 1 |~ ©

Sum of applied }

(2.90a)

common to the two

Sum of admittances Sum of applied
Vi + | Jvew = | a2

Sum of admittances
B connected to Node 2 currents at Node 2

nodes

(2.90b)

A Problem-Solving Technique

In all of the previous examples, we have seen a repeating pattern in the equations
that we can use to our advantage. If we recognize this pattern, we need not write the
equations component by component; we can sum impedances around a mesh in the
case of mesh equations or sum admittances at a node in the case of node equations.
Let us now look at a three-loop electrical network and write the mesh equations by
inspection to demonstrate the process.

O ool 2,13 D
1 L/ Llinl
Mesh Equations via Inspection

PROBLEM: Write, but do not solve, the mesh equations for the network shown in
Figure 2.9.

=

| (
I\
I3(s) : 45

1

AYAVAY 70000 —
v () g % 35

FIGURE 2.9 Three-loop N hs)
electrical network

SOLUTION: Each of the previous problems has illustrated that the mesh
equations and nodal equations have a predictable form. We use that knowledge
to solve this three-loop problem. The equation for Mesh 1 will have the following
form:
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Sum of
Sum of impedances
impedances |/;(s) —| commonto |/3(s)
around Mesh 1 Mesh 1 and
Mesh 2
(2.91)
Sum of
impedances Sum of applied
— | commonto |I3(s) = | voltages around
Mesh 1 and Mesh 1
Mesh 3
Similarly, Meshes 2 and 3, respectively, are
Sum of Sum of
impedances Sum of impedances Sum of appied
— | commonto |Ii(s)+ | impedances |[I,(s)— | commonto |I3(s) = | voltagesaround
Mesh 1 and around Mesh 2 Mesh 2 and Mesh 2
Mesh 2 Mesh 3
(2.92)
and Apago PDF Enhancer
Sum of Sumof |
impedances impedances
— | commonto |Ii(s) —| commonto |I(s)
Mesh 1 and Mesh 2 and
Mesh 3 Mesh3 (2.93)
Sum of Sum of applied LI
_ Use the following MATLAB
+| impedances |I3(s) = | voltagesaround and Symbolic Math Toolbox
around Mesh 3 Mesh 3 saiomens ol yousole o

Substituting the values from Figure 2.9 into Egs. (2.91) through (2.93) yields

+(2s+2)I1(s) — (25 + 1)1 (s) —I3(s) = V(s) (2.94a)
— (2s +1)I1(s) + (9s + 1) I5(s) —4sl5(s) =0 (2.94b)
—Ii(s) —4shy(s) + (4s + 1+ I3(s) =0 (2.94c)

which can be solved simultaneously for any desired transfer function, for
example, I3(s)/V (s).

(2.94).

syms s I1 I2 I3 V
A=[(2*s+2) —-(2*s+1)...
-1
—(2*s+1)
—4*s

-1 —4*s...
(4*s+1+1/s);
B=[I1;I2;1I3];
C=[Vv;0;0];
B=1inv(A)*C;
pretty (B)

(9*s+1)...
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vi(0)
—> 0

+v1(1)

+vo(1)

(b)
Zy(s)
Vi) 219y o)
- V,(s)
I, (s) l} a(s ) .

(o)
FIGURE 2.10 a. Operational amplifier; b. schematic for an inverting operational amplifier;
¢. inverting operational amplifier configured for transfer function realization. Typically, the
amplifier gain, A, is omitted.

Passive electrical circuits were the topic of discussion up to this point. We now
disc d f a]P' 'rmfﬁa‘}ﬁt Qe d to implement transfer functions.
Thegg ﬁths uiDEou éﬁt lelsﬁimplifier.

Operational Amplifiers

An operational amplifier, pictured in Figure 2.10(a), is an electronic amplifier used as
a basic building block to implement transfer functions. It has the following
characteristics:

1. Differential input, V;(¢) — vi(¢)

2. High input impedance, Z; = co (ideal)

3. Low output impedance, Z, = 0 (ideal)

4. High constant gain amplification, A = co (ideal)

The output, v, (), is given by
vo(t) = A(va(t) — vi(1)) (2.95)

Inverting Operational Amplifier
If v,(¢) is grounded, the amplifier is called an inverting operational amplifier, as
shown in Figure 2.10(b). For the inverting operational amplifier, we have

Vo(t) = —Avy(t) (2.96)

If two impedances are connected to the inverting operational amplifier as
shown in Figure 2.10(c), we can derive an interesting result if the amplifier has the
characteristics mentioned in the beginning of this subsection. If the input impedance
to the amplifier is high, then by Kirchhoff’s current law, 7,(s) = 0 and I; (s) = —I5(s).
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Also, since the gain A is large, vi(¢) = 0. Thus, I1(s) = V,(s)/Z1(s), and —I,(s) =
—Vo(s)/Z(s). Equating the two currents, V,(s)/Za(s) = —Vi(s)/Z1(s), or the transfer
function of the inverting operational amplifier configured as shown in Figure 2.10(c) is

__ (2.97)

Y example 2.14 TN

Transfer Function—Inverting Operational Amplifier Circuit

PROBLEM: Find the transfer function, V,(s)/Vi(s), for the circuit given in
Figure 2.11.

Rz = C2 =
220kQ 0.1 uF

H

v,

FIGURE 2.11 Inverting operational
amplifier circuit for Example 2.14

Apago PDF Enhancer

SOLUTION: The transfer function of the operational amplifier circuit is given by
Eq. (2.97). Since the admittances of parallel components add, Z; (s) is the recipro-
cal of the sum of the admittances, or

1 1 360 x 10°
Z1ls) = i T~ 2016s+1 (2.98)
Cis+— 56x10°%+—— -
R, 360 x 10
For Z,(s) the impedances add, or
1 5 107

Za(s) = R+ ;=220 < 10° 4+ == (2.99)

Substituting Egs. (2.98) and (2.99) into Eq. (2.97) and simplifying, we get
2
Vo(s) — 13 +45.95s + 22.55 (2.100)
Vi(s) s

The resulting circuit is called a PID controller and can be used to improve the
performance of a control system. We explore this possibility further in Chapter 9.

Noninverting Operational Amplifier
Another circuit that can be analyzed for its transfer function is the noninverting
operational amplifier circuit shown in Figure 2.12. We now derive the transfer
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function. We see that

Vol(s) = A(Vi(s) — Vi(s)) (2.101)
Vs) But, using voltage division,
Zi(s)
Vils) = =———-=V 2.102
Zy() 1s) Z1(s) + Zy(s) o(s) ( )
1 Substituting Eq. (2.102) into Eq. (2.101), rearranging, and simplifying, we obtain

FIGURE 2.12 General 174 A

noninverting operational o5) = (2.103)

Vils) 1+ AZi(s)/(Z1(s) + Z2(s))

amplifier circuit

For large A, we disregard unity in the denominator and Eq. (2.103) becomes

== (2.104)

Let us now look at an example.

N example 2.15 D

Transfer Function—Noninverting Operational Amplifier Circuit

G Wag inP@Ft-rarEm hatnc @J(s)/Vi(s), for the circuit given in
I( Figlre 213.
Ry SOLUTION: We find each of the impedance functions, Z;(s) and Z;(s), and then
AATY substitute them into Eq. (2.104). Thus,
vy(0) ~ v (D {
Vl'(t) >— Zl (S) = R] + C—ls (2105)
% R, and
Rz(l/CzS)
Zy(s) = 5—F—F~ 2.106
¢ ) Ry + (1/Cas) (2.10)
I Substituting Egs. (2.105) and (2.106) into Eq. (2.104) yields

FIGURE 2.13 Noninverting 5
operational amplifier circuit for Vo (S) = G C1RRys” + (C2R2 +CiRy + C1R1)s +1

2.107
Example 2.15 V,'(S) C,C1RyR 5% + (Csz + C1Ry )S +1 ( )

skill-Assessment Exercise 2.6

PROBLEM: Find the transfer function, G(s) = V1.(s)/V (s), for the circuit given in
Figure 2.14. Solve the problem two ways—mesh analysis and nodal analysis. Show
that the two methods yield the same result.
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O

1H

AVAVAY AVAVAY
V(1) C_“) 1H THSY v, ()

FIGURE 2.14 Electric circuit for Skill-
Assessment Exercise 2.6

ANSWER: V1 (s)/V(s) = (s* + 25+ 1)/(s* + 55 +2)

The complete solution is at www.wiley.com/college/nise.
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PROBLEM: If Z;(s) is the impedance of a 10 uF capacitor and Z,(s) is the
impedance of a 100 k() resistor, find the transfer function, G(s) = V,(s)/V(s),
if these components are used with (a) an inverting operational amplifier and (b) a
noninverting amplifier as shown in Figures 2.10(c) and 2.12, respectively.

ANSWER: G(s) = —s for an inverting operational amplifier; G(s) =s+1 for a
noninverting operational amplifier.

The complete solution is at WWVAD&Q‘]@:OHB%& En h ancer

Y skill-Assessment Exercise 2.7 D

WileyPLUS

Control Solutions

In this section, we found transfer functions for multiple-loop and multiple-node
electrical networks, as well as operational amplifier circuits. We developed mesh and
nodal equations, noted their form, and wrote them by inspection. In the next section
we begin our work with mechanical systems. We will see that many of the concepts
applied to electrical networks can also be applied to mechanical systems via analo-
gies—from basic concepts to writing the describing equations by inspection. This
revelation will give you the confidence to move beyond this textbook and study
systems not covered here, such as hydraulic or pneumatic systems.

2.5 Translational Mechanical System
Transfer Functions

We have shown that electrical networks can be modeled by a transfer function, G(s),
that algebraically relates the Laplace transform of the output to the Laplace transform
of the input. Now we will do the same for mechanical systems. In this section we
concentrate on translational mechanical systems. In the next section we extend the
concepts to rotational mechanical systems. Notice that the end product, shown in
Figure 2.2, will be mathematically indistinguishable from an electrical network.
Hence, an electrical network can be interfaced to a mechanical system by cascading
their transfer functions, provided that one system is not loaded by the other.®

The concept of loading is explained further in Chapter 5.


www.wiley.com/college/nise
www.wiley.com/college/nise
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Chapter 2 Modeling in the Frequency Domain

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

Impedence
Component Force-velocity Force-displacement Zy(s)=F(s)/X(s)
Spring
«T—» x(1)
w  TO=Kfvde £(t) = Kx(t) K
K
Viscous damper
—— x(1)
L _ _ o ax(0)
e 0= 1oy = £, fus
5
Mass
T dv(r) &x(1)
f=M ) =M—2>5 Ms®
e f0 dt dt

Note: The following set of symbols and units is used throughout this book: f(¢) = N (newtons),
x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), f, = N-s/m(newton-seconds/
meter), M = kg (kilograms = newton-seconds’/meter).

Aﬁ%gy}@l syp@ﬁargﬁﬁgrhztrgrorks to such an extent that there are
analogles een electrical and mec

anical components and variables. Mechanical
systems, like electrical networks, have three passive, linear components. Two of
them, the spring and the mass, are energy-storage elements; one of them, the viscous
damper, dissipates energy. The two energy-storage elements are analogous to the
two electrical energy-storage elements, the inductor and capacitor. The energy
dissipator is analogous to electrical resistance. Let us take a look at these mechanical
elements, which are shown in Table 2.4. In the table, K, f,,, and M are called spring
constant, coefficient of viscous friction, and mass, respectively.

We now create analogies between electrical and mechanical systems by
comparing Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4
to the voltage-current column of Table 2.3, we see that mechanical force is analogous
to electrical voltage and mechanical velocity is analogous to electrical current.
Comparing the force-displacement column of Table 2.4 with the voltage-charge
column of Table 2.3 leads to the analogy between the mechanical displacement and
electrical charge. We also see that the spring is analogous to the capacitor, the
viscous damper is analogous to the resistor, and the mass is analogous to the
inductor. Thus, summing forces written in terms of velocity is analogous to summing
voltages written in terms of current, and the resulting mechanical differential
equations are analogous to mesh equations. If the forces are written in terms of
displacement, the resulting mechanical equations resemble, but are not analogous
to, the mesh equations. We, however, will use this model for mechanical systems so
that we can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force-velocity column of
Table 2.4 to the current-voltage column of Table 2.3 in reverse order. Here the
analogy is between force and current and between velocity and voltage. Also, the
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spring is analogous to the inductor, the viscous damper is analogous to the resistor,
and the mass is analogous to the capacitor. Thus, summing forces written in terms of
velocity is analogous to summing currents written in terms of voltage and the
resulting mechanical differential equations are analogous to nodal equations. We
will discuss these analogies in more detail in Section 2.9.

We are now ready to find transfer functions for translational mechanical
systems. Our first example, shown in Figure 2.15(a), is similar to the simple RLC
network of Example 2.6 (see Figure 2.3). The mechanical system requires just one
differential equation, called the equation of motion, to describe it. We will begin by
assuming a positive direction of motion, for example, to the right. This assumed
positive direction of motion is similar to assuming a current direction in an electrical
loop. Using our assumed direction of positive motion, we first draw a free-body
diagram, placing on the body all forces that act on the body either in the direction of
motion or opposite to it. Next we use Newton’s law to form a differential equation of
motion by summing the forces and setting the sum equal to zero. Finally, assuming
zero initial conditions, we take the Laplace transform of the differential equation,
separate the variables, and arrive at the transfer function. An example follows.
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G example 2.1 D

Transfer Function—One Equation of Motion

x(1)

K
ago PDE.EN Ar)afn Cery
- B ey
5
(@) )

PROBLEM: Find the transfer function, X (s)/F(s), for the system of Figure 2.15(a).

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure
2.16(a). Place on the mass all forces felt by the mass. We assume the mass is
traveling toward the right. Thus, only the applied force points to the right; all other
forces impede the motion and act to oppose it. Hence, the spring, viscous damper,
and the force due to acceleration point to the left.

We now write the differential equation of motion using Newton’s law to sum
to zero all of the forces shown on the mass in Figure 2.16(a):

d*x(t) dx(1)
M e +f, TR Kx(t) =f(z) (2.108)
ﬂ—» x(1) ﬂ—>X(S)
Kx(t) - 1 KX(s) -1
R D) fsX©) = M FG)
% Ms2X(s) <—

(@) (®)

FIGURE 2.15 a.Mass, spring,
and damper system; b. block
diagram

FIGURE 2.16 a. Free-body
diagram of mass, spring, and
damper system; b. trans-
formed free-body diagram




64

Chapter 2 Modeling in the Frequency Domain

Taking the Laplace transform, assuming zero initial conditions,

Ms*X(s) + f,sX(s) + KX(s) = F(s) (2.109)
or
(Ms* + f,s + K)X(s) = F(s) (2.110)
Solving for the transfer function yields

X(s) 1

Gls) = F(s) :Ms2—|—fvs+K

(2.111)

which is represented in Figure 2.15(b).

Now can we parallel our work with electrical networks by circumventing the
writing of differential equations and by defining impedances for mechanical
components? If so, we can apply to mechanical systems the problem-solving
techniques learned in the previous section. Taking the Laplace transform of the
force-displacement column in Table 2.4, we obtain for the spring,

F(s) = KX(s) (2.112)

for the viscous damper,

F(s) = fusX(s) (2.113)
Apago PDF Enmancer

and for the mass,

F(s) = Ms*X (s) (2.114)

If we define impedance for mechanical components as

Zu(s) = (2.115)

and apply the definition to Egs. (2.112) through (2.114), we arrive at the impedances
of each component as summarized in Table 2.4 (Raven, 1995).”

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the
format

F(s) = Zu(s)X(s) (2.116)

we obtain Figure 2.16(b), from which we could have obtained Eq. (2.109) immedi-
ately without writing the differential equation. From now on we use this approach.

"Notice that the impedance column of Table 2.4 is not a direct analogy to the impedance column of
Table 2.3, since the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by
defining mechanical impedance in terms of velocity as F(s)/V(s). We chose Eq. (2.115) as a convenient
definition for writing the equations of motion in terms of displacement, rather than velocity. The
alternative, however, is available.
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Finally, notice that Eq. (2.110) is of the form
[Sum of impedances] X (s) = [Sum of applied forces| (2.117)

which is similar, but not analogous, to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-loop and multiple-node
electrical networks, where more than one simultaneous differential equation is
required to describe the system. In mechanical systems, the number of equations of
motion required is equal to the number of linearly independent motions. Linear
independence implies that a point of motion in a system can still move if all other
points of motion are held still. Another name for the number of linearly independent
motions is the number of degrees of freedom. This discussion is not meant to imply
that these motions are not coupled to one another; in general, they are. For example,
in a two-loop electrical network, each loop current depends on the other loop
current, but if we open-circuit just one of the loops, the other current can still exist if
there is a voltage source in that loop. Similarly, in a mechanical system with two
degrees of freedom, one point of motion can be held still while the other point of
motion moves under the influence of an applied force.

In order to work such a problem, we draw the free-body diagram for each point
of motion and then use superposition. For each free-body diagram we begin by holding
all other points of motion still and finding the forces acting on the body due only to its
own motion. Then we hold the body still and activate the other points of motion one at
a time, placing on the original body the forces created by the adjacent motion.

Using Newton’s law, we sum the forces on each body and set the sum to zero.
The result is a system of simultaneous equations of motion. As Laplace transforms,
these equations are then solved for the output variable of interest in terms of the
input variable from which the tram‘-}@a@@l iSRBEtecEﬂhan@EFmon-
strates this problem-solving technique.

G example 2.17 JD

Transfer Function—Two Degrees of Freedom  Virtual Experiment 2.1
Automobile Suspension
PROBLEM: Find the transfer function, X (s)/F(s), for the system of Figure 2.17(a).

Put theory into practice
exploring the dynamics of
another two degree of free-
dom system—an automobile

x1(2) x5(1)
fv3 ﬁ—»

A — 1 suspension system driving
Ky _|: Ks over a bumpy road demon-
M, K, M, strated with the Quanser
Active Suspension System
I\‘\‘!‘!Il‘\‘!‘!Il‘\"If‘\l‘\ll‘\‘I‘Ill‘\‘I‘IIN'/‘\\‘\‘I‘IIN‘\‘I‘IIN‘\ modeled in LabVIEW.
5, F,
(@)
FIGURE 2.17 a. Two-
F(s) , 5+K,) X, (s) degrees-of-freedom
: x = translational
mechanical system;®
® b. block diagram

Virtual experiments are found
on WileyPLUS.

8 Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, f,;
and f,, are not Coulomb friction, but arise because of a viscous interface.
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FIGURE 2.18 a. Forces on
M due only to motion of Mjy;
b. forces on M; due only to
motion of M»; c. all forces

on M1

FIGURE 2.19 a. Forces on
M, due only to motion of M5;
b. forces on M, due only to
motion of My; c. all forces

on M,

Chapter 2 Modeling in the Frequency Domain

SOLUTION: The system has two degrees of freedom, since each mass can be moved
in the horizontal direction while the other is held still. Thus, two simultaneous
equations of motion will be required to describe the system. The two equations
come from free-body diagrams of each mass. Superposition is used to draw the free-
body diagrams. For example, the forces on M, are due to (1) its own motion and
(2) the motion of M, transmitted to M; through the system. We will consider these
two sources separately.

If we hold M, still and move M; to the right, we see the forces shown in
Figure 2.18(a). If we hold M still and move M; to the right, we see the forces shown
in Figure 2.18(b). The total force on M; is the superposition, or sum, of the forces
just discussed. This result is shown in Figure 2.18(c). For M,, we proceed in a similar
fashion: First we move M, to the right while holding M still; then we move M to
the right and hold M, still. For each case we evaluate the forces on M,. The results
appear in Figure 2.19.

K1 X1(s)
fusXa(®) FosXi®) KaXafs)
M, KoXq(s) M,
o FosXo(s)
Mys*X(s)
(a) (b)
<K1 + Kz)Xl(S)
(y, + . )sX1(s) K>X5(s)
Fs) Fo5Xa(9)
2% ()
Apdg'e’"PBF Enhancer
(4
KQXz(S)
Jo,5X5(s) K>X,(s)
i M, K3X,(s) M,
fv3SX2(5) fv35X|(S)
Mys?Xo(s)
(a) b)
(K> + K3)X5(s) =—
— fu,5X1(s)
(h,+£,)5Xas) =— My
— K>X1(s)
MpsXp(s) =—

The Laplace transform of the equations of motion can now be written from
Figures 2.18(¢) and 2.19(c) as

[Mlsz(fvl + fv3)s + (Kl + Kz)}Xl (S) — (fV3S + Kz)Xz(S) = F(S) (2118&)

—(fors + K2)X1(5) + [Mas® + (fy, + fir)s + (K2 + K3)]Xa2(s) =0 (2.118b)
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From this, the transfer function, X,(s)/F(s), is

Xa(s (f,,s + K2)
Fz((s)) =Gl)="F— (2.119)
as shown in Figure 2.17(b) where
A [M1s2 + (fy, + )8 + (K1 + Kz)} —(f,,s + K2) ’

—(fi,5 + K2) [Mas® + (f,, +f,.)s + (K2 + K3)]
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Notice again, in Eq. (2.118), that the form of the equations is similar to
electrical mesh equations:

Sum of

: Sum of
impedances impedances Sum of
Xuls) = Xo(s) = | applied f 2.12
connecte.d 1(s) between 2(8) applied forces ( 0a)
to the motion at xq
x1 and x,
at xq .
Sum of . Sum of
impedances impedances Sum of
_ blz:tween Xi(s) +| connected Xa(s) = | applied forces (2.120b)
h
x1 and x; tot 9?@‘&‘90 P Eﬂha cer
B at x, ]

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept
to write the equations of motion of a three-degrees-of-freedom mechanical network
by inspection, without drawing the free-body diagram.

G example 2.13 D

Equations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical
network of Figure 2.20.

——=x3(0)
fvg\ M3 fv4
] )7—> w —— (1)
: K, K
g W A B N A I
n
£/ £,/

FIGURE 2.20 Three-
degrees-of-freedom
translational mechanical
system
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SOLUTION: The system has three degrees of freedom, since each of the three
masses can be moved independently while the others are held still. The form of the
equations will be similar to electrical mesh equations. For M,

Sum of
i Sum of
mpedances impedances
connected Xi(s) — p Xo(s)
; between
to the motion
x1 and x,
. _ ] (2.121)
S f
impzrcrllazces Sum of
" | between X;3(s) = [applled forces]
at x;
| x;and x;3 |

Similarly, for M, and M3, respectively,

Sum of
Sum of .
impedances impedances
- P X1(s) +| connected | Xa(s)
between .
to the motion
x1 and xp )
atx (2.122)
Sum of Sum of
I ag 0 P - ez(' 3(s) = | applied forces
between
at xp
X2 and X3 ]
Sum of Sum of
impedances impedances
- X - X
between 1) between 2(5)
X1 and X3 X2 and X3 |
Sum of (2.123)
impedances Sum of
+| connected | Xi(s)= [applied forces]
to the motion at x3

at x3

M1 has two springs, two viscous dampers, and mass associated with its motion.
There is one spring between M and M, and one viscous damper between M; and
M3. Thus, using Eq. (2.121),

[Mis* + (f,, +f,.)s + (K1 + K2)| X1(s) — K2 Xo(s) — f,,5X3(s) =0 (2.124)
Similarly, using Eq. (2.122) for M,,

—KoX1(s) + [Mos® + (f,, + £,,)s + K2 | Xa(s) — £,,sX3(s) = F(s) (2.125)
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and using Eq. (2.123) for M3,
— FuSX1(8) ~ fy5Xa(s) + [Mss? + (F, + £, )5] Xa(s) = 0 (2.126)

Equations (2.124) through (2.126) are the equations of motion. We can solve them
for any displacement, X (s), X2(s), or X3(s), or transfer function.
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@Y skill-Assessment Exercise 2.5 D

PROBLEM: Find the transfer function, G(s) = X,(s)/F(s), for the translational
mechanical system shown in Figure 2.21.

— x(1) —— x5(1)

[
fvl= 1 N-s/m K=1N/m
JO ————» M =1kg - M,=1kg

fV3= 1 N-s/m
fv,= 1 N-s/m |_| fv,= 1 N-s/m
L
‘Apago PDF _Enh yﬁcer

S S S S S S S S S S S S S S S S A A s s s
rrrrrrrr+rr .~ rrr -+~ rr rrrrrrrrrrrrrrrrTTT)
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

3s+1
s(s3+7s+ 55+ 1)

ANSWER: G (s) =

The complete solution is at www.wiley.com/college/nise.

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8

2.6 Rotational Mechanical System
Transfer Functions

Having covered electrical and translational mechanical systems, we now move on
to consider rotational mechanical systems. Rotational mechanical systems are
handled the same way as translational mechanical systems, except that torque
replaces force and angular displacement replaces translational displacement. The
mechanical components for rotational systems are the same as those for transla-
tional systems, except that the components undergo rotation instead of translation.
Table 2.5 shows the components along with the relationships between torque and
angular velocity, as well as angular displacement. Notice that the symbols for the
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