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Statistics may also be regarded as a method of dealing with data. 
This definition stresses the view that statistics is a tool concerned 
with the collection, organization, and analysis of numerical facts 

or observations. . . . The major concern of descriptive statistics is to 
present information in a convenient, usable, and understandable form.

—Richard Runyon and Audry Haber, Fundamentals of Behavioral Statistics, p. 6.

If you read a research report or article based on
quantitative data, you will probably see many charts,
graphs, and tables full of numbers. Do not be intim-
idated by them. The author provides the charts,
graphs, and tables to give you, the reader, a con-
densed picture of the data. The charts and tables
allow you to see the evidence collected by the
researcher and examine it for yourself. When you
collect your own quantitative data, you will use
similar techniques to reveal what is inside the data.
You will need to organize and manipulate the quan-
titative data to get them to disclose things of inter-
est about the social world. In this chapter, you will
be introduced to the fundamentals of organizing
and analyzing quantitative data. Its analysis is a
complex field of knowledge. This chapter cannot
substitute for a course in social statistics. It covers
only the basic statistical concepts and data-handling
techniques necessary to understand social research.

Data collected using the techniques in the past
chapters are in the form of numbers. The numbers
represent values of variables, which measure char-
acteristics of participants, respondents, or other cases.
The numbers are in a raw form on questionnaires,

note pads, recording sheets, or computer files. We
do several things to the raw data in order to see what
they can say about the hypotheses: reorganize them
into a form suitable for computer entry, present
them in charts or graphs to summarize their fea-
tures, and interpret or give theoretical meaning to
the results.

DEALING WITH DATA

Coding Data

Before we examine quantitative data to test hypothe-
ses, we must put them in a specific form. Data cod-
ing means systematically reorganizing raw data
into a format that is easy to analyze using statistics
software on computers. As with coding in content
analysis, researchers create and consistently apply
rules for transferring information from one form to
another.1

Coding can be a simple clerical task when
you have recorded the data as numbers on well-
organized recording sheets, but it is very difficult if

Analysis of Quantitative Data
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ANALYSIS OF QUANTITATIVE DATA

you want to code answers to open-ended survey
questions into numbers in a process similar to latent
content analysis. To code open-ended survey data
or other data that are not already in the form of
numbers requires a coding procedure and a code-
book. The coding procedure is a set of rules stat-
ing that you will assign certain numbers to variable
attributes. For example, you code males as 1 and
females as 2, or for a Likert scale, you code strongly
agree as 4, agree as 3, and so forth. You need a code
for each category of all variables and missing infor-
mation. The coding procedure explains in detail
how you converted non-numerical information into
numbers.

A codebook is a document (i.e., one or more
pages) describing the coding procedure and the
computer file location of data for variables in a spe-
cific format. When you code data, it is essential to
create a well-organized, detailed codebook and
make multiple copies of it. If you do not write down
the details of the coding procedure or if you mis-
place the codebook, you have lost the key to the
data and may have to recode them again.

You should begin to think about a coding pro-
cedure and codebook before you collect any data.
For example, many survey researchers precode a
questionnaire before interviewing or collecting
data. Precoding involves placing the code cate-
gories (e.g., 1 for male, 2 for female) on the ques-
tionnaire and building the features of a codebook
into it.2 If you do not precode, your first step after

collecting data is to create a codebook. You also
must assign an identification number to each case to
keep track of the cases. Next you transfer the infor-
mation from each questionnaire into a computer-
readable format.

Entering Data

Most computer programs designed for numerical
data analysis require that the data be in a grid for-
mat. In the grid, each row represents a respondent,
participant, or case. In computer terminology, these
are called data records. Each data record is for a
single case. A column or a set of columns repre-
sents specific variables. It is possible to go from a
column and row location (e.g., row 7, column 5)
back to the original source of data (e.g., a ques-
tionnaire item on marital status for respondent 8).
A column or a set of columns assigned to a vari-
able is called a data field, or simply field.

For example, you code survey data for three
respondents in a format for computers like the start
of a data file presented in Figure 1. People cannot
easily read data in this format and without the code-
book, it is worthless. The data file condenses
answers to 50 survey questions for three respon-
dents into three lines or rows. The raw data for many
research projects look like this, except that there
may be more than 1,000 rows, and the lines may
be more than 100 columns long. For example, a
15-minute telephone survey of 250 students produces
a grid of data that is 250 rows by 240 columns.

The codebook in Figure 1 states that the first
two numbers are identification numbers. Thus, the
example data are for the first (01), second (02), and
third (03) respondents. Notice that we use zeros as
placeholders to reduce confusion between 1 and 01.
The 1s are always in column 2; the 10s are in col-
umn 1. The codebook states that column 5 contains
the variable “gender”: Cases 1 and 2 are male and
Case 3 is female. Column 4 tells us that Carlos inter-
viewed Cases 1 and 2 and Sophia Case 3.

There are four ways to enter raw quantitative
data into a computer:

1. Code sheet. Gather the information, then trans-
fer it from the original source onto a grid

Data field One or more columns in data organized
for a computer representing the location of informa-
tion on a specific variable.

Coding procedure A set of rules created by a quan-
titative researcher for assigning numbers to specific
variable attributes, usually in preparation for statistical
analysis and carefully recorded in a codebook.

Data records The units or reports in computer-
based data that contain information on the variables
for a case.

Codebook A document that describes the proce-
dure for coding variables and their location in a format
that computers can use.
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F IGU RE 1 Coded Data for Three Cases and Codebook

EXCERPT FROM SURVEY QUESTIONNAIRE

Respondent ID ______________ Interviewer Name _________________

Note the Respondent’s Gender: ____ Male ____ Female

1. The first question is about the President of the United States. Do you Strongly Agree, Agree,
Disagree, Strongly Disagree, or Have No Opinion About the following statement:

The President of the United States is doing a great job.

____ Strongly Agree ____ Agree ____ Disagree ____ Strongly Disagree ____ No Opinion

2. How old are you? ________

EXCERPT OF CODED DATA

Column

000000000111111111122222222223333333333444 ... etc. (tens)
123456789012345678901234567890123456789012 ... etc. (ones)
01 212736302 182738274 10239 18.82 3947461 ... etc.
02 213334821 124988154 21242 18.21 3984123 ... etc.
03 420123982 113727263 12345 17.36 1487645 ... etc.
etc.
Raw data for first three cases, columns 1 through 42.

EXCERPT FROM CODEBOOK

Column Variable Name Description

1–2 ID Respondent identification number
3 BLANK
4 Interviewer Interviewer who collected the data:

1 = Susan
2 = Carlos
3 = Juan
4 = Sophia
5 = Clarence

5 Gender Interviewer report of respondent’s sex
1 = Male, 2 = Female

6 PresJob The President of the United States is 
doing a great job.

1 = Strongly Agree
2 = Agree
3 = No Opinion
4 = Disagree
5 = Strongly Disagree
Blank = Missing Information

format (code sheet). Next, enter what is on the
code sheet into a computer line by line.

2. Direct-entry method (including CATI). As
information is being collected, sit at a computer

keyboard (or similar recording device) while
listening to or observing the information and
enter or have a respondent/participant enter
the information him- or herself. To use the
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direct-entry method, the computer must be
preprogrammed to accept the information.

3. Optical scan. Gather the information and then
enter it onto optical scan sheets (or have a
respondent/participant enter the information)
by filling in the correct “dots.” Next use an opti-
cal scanner or reader to transfer the informa-
tion into a computer.

4. Bar code. Gather the information and convert
it into different widths of bars that are associ-
ated with specific numerical values; then use a
bar-code reader to transfer the information into
a computer.

Cleaning Data

Accuracy is extremely important when coding data
(see Example Box 1, Example of Dealing with
Data). Errors you make when coding or entering
data into a computer threaten the validity of the
measures and cause misleading results. If you have
a perfect sample, perfect measures, and no errors in
gathering data but make errors in the coding pro-
cess or in entering data into a computer, you can
ruin an entire research project.

After very careful coding, you must check the
accuracy of coding, or “clean” the data. Often you
want to code random sample of 10 to 15 percent of
the data a second time. If you discover no coding

errors in the recoded sample, you can proceed.
If you find errors, you need to recheck all of the
coding.

You can verify coding after the data are in a
computer in two ways. Possible code cleaning (or
wild code checking) involves checking the cate-
gories of all variables for impossible codes. For
example, respondent gender is coded 1 � Male,
2 � Female. A 4 for a case found in the field for
the gender variable indicates a coding error. A sec-
ond method, contingency cleaning (or consistency
checking), involves cross-classifying two variables
and looking for logically impossible combinations.
For example, you cross-classify school level by
occupation. If you find a respondent coded never
having passed the eighth grade and recorded as
being a medical doctor, you must check for a cod-
ing error.

You can modify data in some ways after they
are in a computer, but you cannot use more refined
categories than those used collecting the original
data. For example, you may group ratio-level
income data into five ordinal categories, and you
can collapse variable categories and combine infor-
mation from several indicators to create a new
index variable.

RESULTS WITH ONE VARIABLE

Frequency Distributions

The word statistics can refer to a set of collected
numbers (e.g., numbers telling how many people
live in a city) as well as a branch of applied math-
ematics we use to manipulate and summarize the
features of numbers. Social researchers use both
types of statistics. Here we focus on the second
type: ways to manipulate and summarize numbers
that represent data from a research project.

Descriptive statistics describe numerical data.
We can categorize them by the number of variables
involved: univariate, bivariate, or multivariate (for
one, two, and three or more variables). Univariate
statistics describe one variable (uni- refers to one;
-variate refers to variable). The easiest way to
describe the numerical data of one variable is with a
frequency distribution.You can use the frequency

Direct-entry method Process of entering data
directly into a computer by typing them without bar
codes or optical scan sheets.

Contingency cleaning Flushing data using a com-
puter in which the researcher reviews the combination
of categories for two variables for logically impossible
cases.

Possible code cleaning Clarifying data using a com-
puter by searching for responses or answer categories
that cannot have cases.

Descriptive statistics A general type of simple sta-
tistics used by researchers to describe basic patterns in
the data.

Frequency distribution A table that shows the dis-
persion of cases into the categories of one variable, that
is, the number or percent of cases in each category.
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EXAMPLE BOX 1
Example of Dealing with Data

distribution with nominal-, ordinal-, interval-, or
ratio-level data. For example, I have data for 400
respondents and want to summarize the informa-
tion on the gender at a glance. The easiest way is
with a raw count or a percentage frequency distri-
bution (see Figure 2). I can present the same infor-
mation in graphic form.

Some common types of graphic representa-
tions are the histogram, bar chart, and pie chart. Bar

charts or graphs are used for discrete variables.
They can have a vertical or horizontal orienta-
tion with a small space between the bars. The
terminology is not exact, but the histogram is

Histogram A graphic display of univariate frequen-
cies or percentages, usually with vertical lines indicat-
ing the amount or proportion.

There is no good substitute for getting your hands
dirty with the data. Here is an example of data prepa-
ration from a study I conducted with my students.
My university surveyed about one-third of the stu-
dents to learn their thinking about and experience
with sexual harassment on campus. A research team
drew a random sample and then developed and dis-
tributed a self-administered questionnaire. Respon-
dents put answers on optical scan sheets that were
similar to the answer sheets used for multiple-choice
exams. The story begins with the delivery of more
than 3,000 optical scan sheets.

After the sheets arrived, we visually scanned each
one for obvious errors. Despite instructions to use
pencil and fill in each circle neatly and darkly, we
found that about 200 respondents used a pen, and
another 200 were very sloppy or used very light pen-
cil marks. We cleaned up the sheets and redid them
in pencil. We also found about 25 unusable sheets
that were defaced, damaged, or too incomplete (e.g.,
only the first 2 of 70 questions answered). 

Next we read the usable optical scan sheets into a
computer. We had the computer produce the num-
ber of occurrences, or frequency, of the attributes for
each variable. Looking at them, we discovered sev-
eral kinds of errors. Some respondents had filled in
two responses for a question to which only one answer
was requested or possible. Some had filled in impos-
sible response codes (e.g., the numeral 4 for gender,
when the only legitimate codes were 1 for male and
2 for female), and some had filled in every answer in
the same way, suggesting that they did not take
the survey seriously. For each case with an error, we
returned to the optical scan sheet to see whether we
could recover any information. If we could not recover

information, we reclassified the case as a nonresponse
or recoded a response as missing information.

The questionnaire had two contingency questions.
For each, a respondent who answered “no” to one
question was to skip the next five questions. We cre-
ated a table for each question. We looked to see
whether all respondents who answered “no” to the first
question skipped or left blank the next five. We found
about 35 cases in which the respondent answered
“no” but then went on to answer the next five ques-
tions. We returned to each sheet and tried to figure
out which the respondent really intended. In most
cases, it appeared that the respondent meant the “no”
but failed to read the instructions to skip questions.

Finally, we examined the frequency of attributes
for each variable to see whether they made sense. We
were very surprised to learn that about 600 respon-
dents had marked “Native American” for the racial
heritage question. In addition, more than half of those
who had done so were freshmen. A check of official
records revealed that the university enrolled a total
of about 20 Native Americans or American Indians,
and that over 90 percent of the students were White,
non-Hispanic Caucasians. The percentage of respon-
dents marking Black, African-American, or Hispanic-
Chicano matched the official records. We concluded
that some White Caucasian respondents had been
unfamiliar with the term “Native American” for
“American Indian.” Apparently, they had mistakenly
marked it instead of “White, Caucasian.” Because we
expected about 7 Native Americans in the sample,
we recoded the “Native American” responses as
“White, Caucasian.” This meant that we reclassified
Native Americans in the sample as Caucasian. At this
point, we were ready to analyze the data.
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F IGU RE 2 Examples of Univariate Statistics

RAW COUNT FREQUENCY DISTRIBUTION PERCENTAGE FREQUENCY DISTRIBUTION

Gender Frequency Gender Percentage

Male 100 Male 25%
Female 300 Female 75%

Total 400 Total 100%

BAR CHART OF SAME INFORMATION

EXAMPLE OF GROUPED DATA FREQUENCY DISTRIBUTION

First Job Annual Income N

Under $5,000 25
$5,000 to $9,999 50
$10,000 to $15,999 100
$16,000 to $19,999 150
$20,000 to $29,999 50
$30,000 and over 25

Total 400

EXAMPLE OF FREQUENCY POLYGON

etc.
etc.

Frequency

Individual Income (in Thousands of Dollars)

50
45
40
35
30
25
20
15
10
5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Females

Males

usually a set of upright bar graphs for interval or
ratio data.3

For interval- or ratio-level data, we often group
the information into several categories. The grouped
categories must be mutually exclusive. We also can

plot interval- or ratio-level data in a frequency
polygon with the number of cases or frequency
along the vertical axis and the values of the vari-
able or scores along the horizontal axis. A polygon
appears when we connect the dots.
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Skewed distribution A dispersion of cases among
the categories of a variable that is not normal, that is,
not a bell shape; instead of an equal number of cases
on both ends, more are at one of the extremes.

ANALYSIS OF QUANTITATIVE DATA

Measures of Central Tendency

Often, we want to summarize the information about
one variable into a single number. To do this, we use
three measures of central tendency (i.e. measures
of the center of the frequency distribution: mean,
median, and mode). Many people call them averages,
a less precise or clear way of saying the same thing.

The mode is the easiest to use and we can use
it with nominal, ordinal, interval, and ratio data. It
is simply the most common or frequently occurring
number. For example, the mode of the following list
is 5: 6, 5, 7, 10, 9, 5, 3, 5. A distribution can have
more than one mode. For example, the mode of this
list is both 5 and 7: 5, 6, 1, 2, 5, 7, 4, 7. If the list gets
long, it is easy to spot the mode in a frequency
distribution; just look for the most frequent score.
There is always at least one case with a score equal
to the mode.

The median is the middle point. It is also the
50th percentile, or the point at which half the cases
are above it and half below it. We can use it with
ordinal-, interval-, or ratio-level data (but not nom-
inal level). We can “eyeball” the mode, but com-
puting a median requires a little more work. The
easiest way is first to organize the scores from high-
est to lowest and then count to the middle. If there
is an odd number of scores, it is simple. Seven
people are waiting for a bus; their ages are 12, 17,
20, 27, 30, 55, 80. The median age is 27. Note that
the median does not change easily. If the 55-year-
old and the 80-year-old both got on one bus and the
remaining people were joined by two 31-year-olds,
the median remains unchanged. If there is an even
number of scores, things are a bit more complicated.
For example, six people at a bus stop have the fol-
lowing ages: 17, 20, 26, 30, 50, 70. The median is
halfway between 26 and 30. Compute the median
by adding the two middle scores together and divid-
ing by 2 (26 � 30 � 56/2 � 28). The median age is
28, even though no person is 28 years old. Note that
there is no mode in the list of six ages because each
person has a different age.

The mean (also called the arithmetic average)
is the most widely used measure of central tendency.
We can use it only with interval- or ratio-level data.4

To compute the mean, we add up all scores and then

Frequency polygon A graph of connected points
showing how many cases fall into each category of a
variable.

Mode A measure of central tendency for one vari-
able that indicates the most frequent or common score.

Measures of central tendency A class of statistical
measures that summarizes information about the dis-
tribution of data for one variable into a single number.

Median A measure of central tendency for one vari-
able that indicates the point or score at which half of
the cases are higher and half are lower.

Mean A measure of central tendency for one vari-
able that indicates the arithmetic average, that is, the
sum of all scores divided by the total number of them.

Normal distribution A bell-shaped frequency poly-
gon for a dispersion of cases with a peak in the center
and identical curving slopes on either side of the cen-
ter; distribution of many naturally occurring phenom-
ena and a basis of much statistical theory.

divide by the number of scores. For example, the
mean age in the previous example is 17 � 20 � 26
� 30 � 50 � 70 � 213; 213/6 � 35.5. No one in
the list is 35.5 years old, and the mean does not
equal the median.

Changes in extreme values (very large or very
small) can greatly influence the mean. For example,
the 50-year-old and 70-year-old left and were
replaced with two 31-year-olds. The distribution
now looks like this: 17, 20, 26, 30, 31, 31. The
median is unchanged: 28. The mean is 17 � 20 �
26 � 30 � 31 � 31 � 155; 155/6 � 25.8. Thus, the
mean dropped a great deal when a few extreme
values were removed.

If the frequency distribution forms a normal
distribution or bell-shaped curve, the three mea-
sures of central tendency equal each other. If the dis-
tribution is a skewed distribution (i.e., more cases
are in the upper or lower scores), then the three will
not be equal. If most cases have lower scores with
a few extreme high scores, the mean will be the
highest, the median in the middle, and the mode the
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lowest. If most cases have higher scores with a few
extreme low scores, the mean will be the lowest, the
median in the middle, and the mode the highest. In
general, the median is best to use for a skewed dis-
tribution, although the mean is used in most other
statistics (see Figure 3).

Measures of Variation

The measure of central tendency is a single-number
summary of a distribution; however, the measures
give only its center. Another characteristic of a dis-
tribution is its spread, dispersion, or variability
around the center. Two distributions can have iden-
tical measures of central tendency but differ in their
spread about the center. For example, seven people
are at a bus stop in front of a bar. Their ages are 25,
26, 27, 30, 33, 34, 35. Both the median and the

mean are 30. At a bus stop in front of an ice cream
store, seven people have the identical median and
mean, but their ages are 5, 10, 20, 30, 40, 50, 55.
The ages of the group in front of the ice cream store
are spread more from the center, or the distribution
has more variability.

Variability has important social implications.
For example, in city X, the median and mean fam-
ily income is $37,600 per year, and it has zero vari-
ation. Zero variation means that every family has
an income of exactly $37,600. City Y has the same
median and mean family income, but 96 percent of
its families have incomes of $14,000 per year and
4 percent have incomes of $350,000 per year. City
X has perfect income equality whereas there is great
inequality in city Y. If we do not know the variabil-
ity of income in the two cities, we miss very impor-
tant information.

We measure variation in three ways: range, per-
centile, and standard deviation. Range is the sim-
plest. It consists of the largest and smallest scores.
For example, the range for the bus stop in front of
the bar is from 25 to 35, or 35 � 25 � 10 years. If

F IGU RE 3 Measures of Central Tendency

Skewed Distributions

Normal Distribution

ModeMedianMeanMode Median Mean

Number of
Cases Mean, Median, Mode

Lowest Values of Variables Highest

Range A measure of dispersion for one variable indi-
cating the highest and lowest scores.
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Percentile A measure of dispersion for one variable
that indicates the percentage of cases at or below a
score or point.

Standard deviation A measure of dispersion for one
variable that indicates an average distance between the
scores and the mean.

the 35-year-old got onto a bus and was replaced by
a 60-year-old, the range would change to 60 � 25
� 45 years. Range has limitations because it only
tells us the extreme high and low. For example, here
are two groups of six with a range of 35 years: 30,
30, 30, 30, 30, 65 and 20, 45, 46, 48, 50, 55.

Percentiles tell us the score at a specific place
within the distribution. One percentile you already
studied is the median, the 50th percentile. Some-
times the 25th and 75th percentiles or the 10th and
90th percentiles are used to describe a distribution.
For example, the 25th percentile is the score at
which 25 percent of cases in the distribution have
either that score or a lower one. The computation of
a percentile follows the same logic as the median.
If you have 100 people and want to find the 25th
percentile, you rank the scores (i.e. measures in
numbers of variables) and count up from the bot-
tom until you reach number 25. If the total is not
100, you simply adjust the distribution to a per-
centage basis.

Standard deviation is the most difficult to
compute measure of dispersion; it is also the most
comprehensive and widely used. The range and per-
centile are for ordinal-, interval-, and ratio-level
data, but the standard deviation requires an interval
or ratio level of measurement. It is based on the
mean and gives an “average distance” between all
scores and the mean. People rarely compute the
standard deviation by hand for more than a handful
of cases because computers do it in seconds.

Look at the calculation of the standard devia-
tion in Figure 4. If you add the absolute difference
between each score and the mean (i.e., subtract
each score from the mean), you get zero because
the mean is equally distant from all scores. Also
notice that the scores that differ the most from the
mean have the largest effect on the sum of squares
and on the standard deviation.

The standard deviation is of limited usefulness
by itself. It is used for comparison purposes. For
example, the standard deviation for the schooling
of parents of children in class A is 3.317 years; for
class B, it is 0.812; and for class C, it is 6.239. The
standard deviation tells a researcher that the par-
ents of children in class B are very similar, whereas
those for class C are very different. In fact, in class

B, the schooling of an “average” parent is less than
a year above or below the mean for all parents, so
the parents are very homogeneous. In class C, how-
ever, the “average” parent is more than six years
above or below the mean, so the parents are very
heterogeneous.

We use the standard deviation and the mean to
create z-scores, which let you compare two or more
distributions or groups. The z-score, also called a
standardized score, expresses points or scores on a
frequency distribution in terms of a number of stan-
dard deviations from the mean. Scores are in terms
of their relative position within a distribution, not as
absolute values (see Expansion Box 1, Calculating
Z-Scores). Z-scores can tell us a lot. For example,
Katy, a sales manager in firm A, earns $70,000 per
year, whereas Mike in firm B earns $60,000 per year.
Despite the $10,000 absolute income differences
between them, the managers are paid equally relative
to others in the same firm. Both Katy and Mike are
paid more than two-thirds of other employees in
each of their respective firms.

Here is another example of how to use z-scores.
Hans and Heidi are twin brother and sister, but
Hans is shorter than Heidi. Compared to other girls
her age, Heidi is at the mean height; she has a
z-score of zero. Likewise, Hans is at the mean
height among boys his age. Thus, within each com-
parison group, the twins are at the same z-score, so
they have the same relative height.

Z-scores are easy to calculate from the mean
and standard deviation. For example, an employer
interviews students from Kings College and Queens
College. She learns that the colleges are similar
and that both grade on a 4.0 scale, yet the mean
grade-point average at Kings College is 2.62 with

Z-score A standardized location of a score in a dis-
tribution of scores based on the number of standard
deviations it is above or below the mean.
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F IGU RE 4 The Standard Deviation

STEPS IN COMPUTING THE STANDARD DEVIATION

1. Compute the mean.
2. Subtract the mean from each score.
3. Square the resulting difference for each score.
4. Total up the squared differences to get the sum of squares.
5. Divide the sum of squares by the number of cases to get the variance.
6. Take the square root of the variance, which is the standard deviation.

EXAMPLE OF COMPUTING THE STANDARD DEVIATION

[8 respondents, variable = years of schooling]

Score Score – Mean Squared (Score – Mean)

15 15 –  12.5 = 2.5 6.25
12 12 – 12.5 = �0.5 .25
12 12 – 12.5 = �0.5 .25
10 10 – 12.5 = �2.5 6.25
16 16 – 12.5 = 3.5 12.25
18 18 – 12.5 = 5.5 30.25
8 8 – 12.5 = 4.5 20.25
9 9 – 12.5 = –3.5 12.25

Mean � 15 + 12 + 12 + 10 + 16 + 18 + 8 + 9 = 100, 100/8 = 12.5
Sum of squares � 6.25 + .25 + .25 + 6.25 + 12.25 + 30.25 + 20.25 + 12.25 = 88
Variance = Sum of squares/Number of cases = 88/8 = 11
Standard deviation � Square root of variance = �11  = 3.317 years.
Here is the standard deviation in the form of a formula with symbols.

Symbols:
X = SCORE of case Σ = Sigma (Greek letter) for sum, add together
X̄̄ = MEAN N = Number of cases

Formula:a

Standard deviation � �S (X – ¯̄X)
2

N–1

a There is a slight difference in the formula depending on whether one is using data for the
population or a sample to estimate the population parameter.

ANALYSIS OF QUANTITATIVE DATA

a standard deviation of .50, whereas the mean
grade-point average at Queens College is 3.24 with
a standard deviation of .40. The employer suspects
that grades at Queens College are inflated. Suzette
from Kings College has a grade-point average of
3.62; Jorge from Queens College has a grade-point
average of 3.64. Both students took the same
courses. The employer wants to adjust the grades

for the grading practices of the two colleges (i.e.,
create standardized scores). She calculates z-scores
by subtracting each student’s score from the mean
and then divides by the standard deviation. For
example, Suzette’s z-score is 3.62 � 2.62 � 1.00/.50
� 2, whereas Jorge’s z-score is 3.64 � 3.24. �
.40/.40 � 1. Thus, the employer learns that Suzette
is two standard deviations above the mean in her
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EXPANSION BOX 1
Calculating Z- Scores

Personally, I do not like the formula for z-scores,
which is:

Z-score � (Score – Mean)/Standard Deviation, or in
symbols:

z � X – ¯̄X
δ

where: X = score, ¯̄X = mean, δ = standard deviation 

I usually rely on a simple conceptual diagram that
does the same thing and that shows what z-scores
really do. Consider data on the ages of schoolchildren
with a mean of 7 years and a standard deviation of 2
years. How do I compute the z-score of 5-year-old
Miguel, or what if I know that Yashohda’s z-score is
a +2 and I need to know her age in years? First, I draw
a little chart from –3 to +3 with zero in the middle.
I will put the mean value at zero, because a z-score
of zero is the mean and z-scores measure distance
above or below it. I stop at 3 because virtually all
cases fall within 3 standard deviations of the mean in
most situations. The chart looks like this:

|_____|_____|_____|_____|_____|_____|
–3 –2 –1 0 +1 +2 +3

Now, I label the values of the mean and add or sub-
tract standard deviations from it. One standard devi-
ation above the mean (+1) when the mean is 7 and
standard deviation is 2 years is just 7 + 2, or 9 years.
For a –2 z-score, I put 3 years. This is because it is 2
standard deviations, of 2 years each (or 4 years), lower
than the mean of 7. My diagram now looks like this:

1 3 5 7 9 11 13 age in years
|_____|___|___|_____|_____|_____|
–3 –2 –1 0 +1 +2 +3

It is easy to see that Miguel, who is 5 years old,
has a z-score of –1, whereas Yashohda’s z-score of +2
corresponds to 11 years old. I can read from z-score
to age, or age to z-score. For fractions, such as a
z-score of –1.5, I just apply the same fraction to age to
get 4 years. Likewise, an age of 12 is a z-score of +2.5.
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college, whereas Jorge is only one standard deviation
above the mean for his college. Although Suzette’s
absolute grade-point average is lower than Jorge’s,
relative to the students in each of their colleges,
Suzette’s grades are much higher than Jorge’s.

RESULTS WITH TWO VARIABLES

A Bivariate Relationship

Univariate statistics describe a single variable in
isolation. Bivariate statistics are much more valu-
able. They let us consider two variables together
and describe the relationship between variables.
Even simple hypotheses require two variables.
Bivariate statistical analysis shows a statistical
relationship between variables—that is, things that
tend to appear together. For example, a relationship
exists between water pollution in a stream and the
fact that people who drink the water get sick. It is
a statistical relationship between two variables:
pollution in the water and the health of the people
who drink it.

Statistical relationships are based on two
ideas: covariation and statistical independence.
Covariation means that things go together or are
associated. To covary means to vary together; cases
with certain values on one variable are likely to
have certain values on the other one. For example,
people with higher values on the income vari-
able are likely to have higher values on the life
expectancy variable. Likewise, those with lower
incomes have lower life expectancy. This is usually

Univariate statistics Statistical measures that deal
with one variable only.

Bivariate statistics Statistical measures that involve
two variables only.

Statistical relationship Expression of whether two or
more variables affect one another based on the use of
elementary applied mathematics, that is, whether there
is an association between them or independence.

Covariation The concept that two variables vary
together, such that knowing the values on one variable
provides information about values found on another.
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Linear relationship An association between two
variables that is positive or negative across the levels of
variables; when plotted in a scattergram, the pattern
of the association forms a straight line, without a curve.

Statistical independence The absence of a statistical
relationship between two variables, that is, when know-
ing the values on one variable provides no information
about the values found on another variable; no associ-
ation between the variable.

ANALYSIS OF QUANTITATIVE DATA

stated in a shorthand way by saying that income
and life expectancy are related to each other, or
covary. We could also say that knowing one’s
income tells us one’s probable life expectancy, or
that life expectancy depends on income.

Statistical independence is the opposite of
covariation. It means there is no association or
no relationship between variables. If two variables
are independent, cases with certain values on one
variable do not have a special value on the other
variable. For example, Rita wants to know whether
number of siblings is related to life expectancy.
If the variables are independent, then people with
many brothers and sisters have the same life
expectancy as those who are only children. In other
words, knowing how many brothers or sisters
someone has tells Rita nothing about the person’s
life expectancy.

We usually state hypotheses in terms of a
causal relationship or expected covariation; if we
use the null hypothesis, it is that there is indepen-
dence. It is used in formal hypothesis testing and
is frequently found in inferential statistics (to be
discussed).

We use several techniques to decide whether a
relationship exists between two variables. Three
elementary ones are a scattergram, or a graph or
plot of the relationship; a percentaged table; and
measures of association, or statistical measures
that express the amount of covariation by a single
number (e.g., correlation coefficient). Also see
Chart 1 on graphing data.

The Scattergram

Definition of Scattergram. A scattergram (or
scatterplot) is a graph on which you plot each case
or observation. Each axis represents the value of one
variable. It is used for variables measured at the
interval or ratio level, rarely for ordinal variables,
and never if either variable is nominal. There is no
fixed rule for determining which variable (inde-
pendent or dependent) to place on the horizontal or
vertical axis, but usually the independent variable
(symbolized by the letter X) goes on the horizontal
axis and the dependent variable (symbolized by Y )
on the vertical axis. The lowest value for each
should be the lower left corner and the highest value
should be at the top or to the right.

Constructing a Scattergram. Begin with the range
of the two variables. Draw an axis with the values
of each variable marked and write numbers on each
axis (graph paper is helpful). Next label each axis
with the variable name and put a title at the top. You
are now ready to enter the data. For each case, find
the value of each variable and mark the graph at a
place corresponding to the two values. For example,
you want to make a scattergram of years of school-
ing by number of children. You look at the first case
to see years of schooling (e.g., 12) and number of
children (e.g., 3). Then you go to the place on the
graph where 12 for the “schooling” variable and 3
for the “number of children” variable intersect and
put a dot for the case. You repeat this for each case
until all are plotted on the scattergram.

The scattergram in Figure 5 is a plot of data for
33 women. It shows a negative relationship between
the years of education the woman completed and
the number of children she gave birth to.

A scattergram shows us three aspects of a
bivariate relationship: form, direction, and precision.

1. Form. Relationships can take three forms:
independence, linear, and curvilinear. Independence
or no relationship is the easiest to see. It looks like
a random scatter with no pattern, or a straight line
that is exactly parallel to the horizontal or vertical
axis. A linear relationship means that a straight
line can be visualized in the middle of a maze of
cases running from one corner to another. A

Scattergram A diagram to display the statistical rela-
tionship between two variables based on plotting each
case’s values for both of the variables.
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CHART 1 Graphing Accurately

The pattern in graph A shows drastic change. A steep
drop in 1990 is followed by rapid recovery and instability.
The pattern in graph B is much more constant. The
decline from 1989 to 1990 is smooth, and the other
years are almost level. Both graphs are for identical data,
the U.S. business failure rate from 1985 to 2002. The X
axis (bottom) for years is the same.

The scale of the Y axis is 60 to 160 in graph A and 0
to 400 in graph B. The pattern in graph A only looks
more dramatic because of the Y axis scale. When
reading graphs, be careful to check the scale. Some
people purposely choose a scale to minimize or
dramatize a pattern in the data.
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curvilinear relationship means that the center of a
maze of cases would form a U curve, right side up
or upside down, or an S curve.

2. Direction. Linear relationships can have a
positive or negative direction. The plot of a positive
relationship looks like a diagonal line from the
lower left to the upper right. Higher values on X tend
to go with higher values on Y, and vice versa. The
income and life expectancy example described a
positive linear relationship. A negative relationship
looks like a line from the upper left to the lower
right. It means that higher values on one variable go
with lower values on the other. For example, people
with more education are less likely to have been
arrested. If we look at a scattergram of data on a
group of males that plots years of schooling (X axis)
by number of arrests (Y axis), we see that most cases

(or men) with many arrests are in the lower right
because most of them completed fewer years of
school. Most cases with few arrests are in the upper
left because most have had more schooling. The
imaginary line for the relationship can have a shal-
low or a steep slope. More advanced statistics pro-
vide precise numerical measures of the line’s slope.

3. Precision. Bivariate relationships differ in
their degree of precision. Precision is the amount of
spread in the points on the graph. A high level of
precision occurs when the points hug the line that
summarizes the relationship. A low level occurs
when the points are widely spread around the line.
We can “eyeball” a highly precise relationship or
use advanced statistics to measure the precision of
a relationship in a way that is analogous to the stan-
dard deviation for univariate statistics.

Bivariate Tables

We use the bivariate contingency table in many sit-
uations. It presents the same information as a scat-
tergram in a more condensed form. One advantage
of it over the scattergram is that the data can be

F IGU RE 5 Example of a Scattergram: Years of Education by Number of Natural
Children for 33 Women
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Curvilinear relationship An association between
two variables so that as the values of one variable
increase, the values of the second show a changing pat-
tern, for example, first decrease, then increase, and
finally decrease; not a linear relationship.
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Contingency table A summary format of the cross-
tabulation of two or more variables showing bivariate
quantitative data for variables in the form of percent-
ages across rows or down columns for the categories
of one variable.

Cross-tabulation The process of placing data for
two variables in a contingency table to show the
percentage or number of cases at the intersection of
variable categories.

measured at any level of measurement, although
interval and ratio data must be grouped.

The bivarate contingency table is based on
cross-tabulation (i.e., tabulating two or more vari-
ables simultaneously). It is “contingent” because the
cases in each category of a variable are distributed
into each category of a second (or additional) vari-
able. The table distributes cases into the categories
of multiple variables at the same time and shows us
how the cases, by category of one variable, are “con-
tingent upon” the categories of other variables.

Constructing Percentaged Tables. Contingency
tables made up of the counts of a case are of limited
use because seeing patterns or variable relationships
with the counts of cases is difficult. By “standardiz-
ing” data, or turning them into percentages, we can
see patterns and relationships among variables more
easily even if the counts of cases vary greatly. It is
not difficult to construct a percentaged table, and
there are ways to make it look professional. We first
review the steps for constructing a table by hand.
The same principles apply if a computer makes the
table for you. We begin with the raw data (see data
from an imaginary survey in Example Box 2, Raw
Data and Frequency Distributions).

If you create a table by hand, you may find an
intermediate step between raw data and the table
useful (i.e., create a compound frequency distri-
bution [CFD]). It is similar to the frequency distri-
bution except that it is for each combination of the
values of two variables. For example, you want to
see the relationship between age and attitude about
the legal age to drink alcohol. Age is a ratio measure,
so you group it to treat the ratio-level variable as if
it were ordinal. In percentage tables, we group ratio-
or interval-level data to convert them into the ordi-
nal level. Otherwise, we might have 50 categories
for a variable and a table that is impossible to read.

The CFD has every combination of category.
Age has four categories and Attitude three, so there
are 3 � 4 � 12 rows. The steps to create a CFD are
as follows:

1. Determine all possible combinations of vari-
able categories.

2. Make a mark next to the combination category
into which each case falls.

3. Add the marks for the number of cases in a
combination category.

If there is no missing information problem, add the
numbers of categories (e.g., all the “Agree”s, or all
the “61 and Older”s). In the example, missing data
are an issue. The four “Agree” categories in the CFD
add to 37 (20 � 10 � 4 � 3), not 38, as in the uni-
variate frequency distribution, because one of the
38 cases has missing information for age.

The next step is to set up the parts of a table (see
Figure 6) by labeling the rows and columns. The
independent variable usually is placed in the
columns, but this convention is not always followed.
Next, each number from the CFD is placed in a cell
in the table that corresponds to the combination of
variable categories. For example, the CFD shows
that 20 of the under-30-year-olds agree (top num-
ber) as does Figure 6 (upper left cell).

Figure 6 is a raw count or frequency table. Its
cells contain a count of the cases. It is easy to make
but very difficult to interpret because the rows or
columns can have different totals. What is of real
interest is the relative size of cells compared to
others.

Raw count tables can be converted into per-
centaged tables in three ways: percent by row, by
column, and by total. The first two are often used to
show relationships. The percent by total is almost
never used and does not reveal relationships easily.

Is it best to percentage by row or column?
Either can be appropriate. Here are the mechanics
of making a percentage table. When calculating col-
umn percentages, compute each cell’s percentage
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EXAMPLE BOX 2
Raw Data and Frequency Distributions

COMPOUND FREQUENCY DISTRIBUTION: 
AGE GROUP AND ATTITUDE TOWARD CHANGING THE DRINKING AGE

Age Attitude Number of Cases

Under 30 Agree 20
Under 30 No Opinion 3
Under 30 Disagree 3
30–45 Agree 10
30–45 No Opinion 10
30–45 Disagree 5
46–60 Agree 4
46–60 No Opinion 10
46–60 Disagree 21
61 and older Agree 3
61 and older No Opinion 2
61 and older Disagree 10

Subtotal 101
Missing on either variable 8
Total 109

TWO FREQUENCY DISTRIBUTIONS: 
AGE AND ATTITUDE TOWARD CHANGING THE DRINKING AGE

Age Group Number of Cases Attitude Number of Cases

Under 30 26
30–45 30 Agree 38
46–60 35 No Opinion 26
61 and older 15 Disagree 40
Missing 3 Missing 5
Total 109 Total 109

EXAMPLE OF RAW DATA

Case Age Gender Schooling Attitude Political Party, etc. . . .

01 21 F 14 1 Democrat
02 36 M 8 1 Republican
03 77 F 12 2 Republican
04 41 F 20 2 Independent
05 29 M 22 3 Democratic Socialist
06 45 F 12 3 Democrat
07 19 M 13 2 Missing Information
08 64 M 12 3 Democrat
09 53 F 10 3 Democrat
10 44 M 21 1 Conservative

(Attitude scoring, 1 � Agree, 2 � No Opinion, 3 � Disagree)
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F IGU RE 6 Age Group by Attitude about Changing the Drinking Age, 
Raw Count Table

RAW COUNT TABLE (a)

AGE GROUP (b)

61 and
ATTITUDE (b) Under 30 30–45 46–60 Older TOTAL (c)

Agree 20 10 4 3 37
No opinion 3 (d) 10 10 2 25
Disagree 3 5 21 10 39
Total (c) 26 25 35 15 101

Missing cases (f) = 8. (e)

THE PARTS OF A TABLE

(a) Give each table a title, which names variables and provides background information.
(b) Label the row and column variable and give a name to each of the variable categories.
(c) Include the totals of the columns and rows. These are called the marginals. They

equal the univariate frequency distribution for the variable.
(d) Each number or place that corresponds to the intersection of a category for each

variable is a cell of a table.
(e) The numbers with the labeled variable categories and the totals are called the body

of a table.
(f) If there is missing information (cases in which a respondent refused to answer,

ended interview, said, “don’t know,” etc.), report the number of missing cases near
the table to account for all original cases.

Marginal In a contingency table, the row of totals or
the column of totals.

of the column total. This includes the total column
or marginal, which is the name for totals of a row
or of a column variable. For example, look at the
column marginals in Table 1. The first column total
is 26 (there are 26 people under age 30), and the first
cell of that column is 20 (there are 20 people under
age 30 who agree). The percentage is 20/26 �
0.769, or 76.9 percent. Or, for the first number in
the row marginal, which is 37, 37/101 � 0.366 �
36.6 percent. This tells you that 36.6 percent of
cases agree. Except for rounding, the total should
equal 100 percent.

Computing row percentages is similar. Com-
pute the percentage of each cell as a percentage of
the row total. For example, using the same cell with
20 in it, you now want to know what percentage 20
is of the row total of 37, or 20/37 � 0.541 � 54.1

percent. Percentaging by row or column gives dif-
ferent percentages for a cell unless the marginals
are the same.

Row and column percentages let you address
different questions. The row-percentaged table
answers the question: Among those who want to
lower the drinking age, what percentage comes
from each age group? It says of respondents who
agree, 54.1 percent are in the under-30 age group.
The column-percentaged table addresses the ques-
tion: Among those in each age group, what per-
centage holds different attitudes? It says that among
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those who are under 30, 76.9 percent agree. From
the row percentages, you learn that a little over half
of those who agree are under 30 years old. From
column percentages, you learn that among the under-
30 people, more than 75 percent agree. The first
way of percentaging tells you about people with
specific attitudes; the second tells you about people
in specific age groups and lets you compare them.

Your hypothesis often tells you to look at either
the row or column percentages. When beginning,
you may want to calculate percentages each way
and practice interpreting what each says. For
example, your hypothesis is that a person’s age
affects his or her legal alcohol age attitude, and you
are interested in the age of people most/least sup-
portive. This suggests that you look at column per-
centages because you want to compare attitudes

across the different age groups. However, if your
interest is in describing the age makeup of groups
of people with different attitudes, then row per-
centages are appropriate. Perhaps you want to buy
TV advertising about the issue and you want to
know what age group will be viewing the com-
mercials. As Zeisel (1985:34) noted, whenever
one factor in a cross-tabulation can be considered
the cause of the other, the most illuminating
percentage will be obtained by computing per-
centages in the direction of the causal factor. So, if
age is your causal variable, create the percentage
table by rows.

Unfortunately, there is no “industry standard”
for putting the independent and dependent variable
in a percentage table as row or column, or for
percentage by row and column. A majority of

TABLE 1 Age Group by Attitude about Changing the Drinking Age,
Percentaged Tables

COLUMN-PERCENTAGED TABLE

AGE GROUP

61 and 
ATTITUDE Under 30 30–45 46–60 Older TOTAL

Agree 76.9% 40.0% 11.4% 20.0% 36.6%
No opinion 11.5 40.0 28.6 13.3 24.8
Disagree 11.5 20.0 60.0 66.7 38.6
Total 99.9% 100% 100% 100% 100%
(N) (26)* (25)* (35)* (15)* (101)*
Missing cases = 8

ROW-PERCENTAGED TABLE

AGE GROUP

61 and
ATTITUDE Under 30 30–45 46–60 Older TOTAL (N)

Agree 54.1% 27% 10.8% 8.1% 100.0% (37)*
No opinion 12.0 40.0 40.0 8.0 100.0 (25)*
Disagree 7.7 12.8 53.8 25.6 99.9 (39)*
Total 25.7% 24.8% 34.7% 14.9% 100.1% (101)*
Missing cases = 8

*For percentaged tables, provide the number of cases or N on which percentages are computed in
parentheses near the total of 100%. This makes it possible to go back and forth from a percentaged
table to a raw count table and vice versa.
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researchers place the independent variable on the
column and percentage by column, but a large
minority put the independent variable as row and
percentage by row.

Reading a Percentaged Table. Once you under-
stand how to make a table, you will find it easier to
read and figure out what the table says. To read a
percentage table, first look at the title, the variable
labels, and any background information. Next, look
at the direction in which percentages have been
computed: in rows or columns. Notice that the
headings in Table 1 are the same. This is so because
the same variables are used. It would be easier if
headings included how the data are percentaged,
but this is not done. Sometimes you will see abbre-
viated tables that omit the 100 percent total or the
marginals, which adds to the confusion. When you
create a table, it is best to include all the parts of a
table and use clear labels.

When you read percentaged tables, you will
make comparisons in the opposite direction from
that in which percentages are computed. This
sounds confusing but is simple in practice. A rule
of thumb is to compare across rows if the table is
percentaged down (i.e., by column) and to compare
up and down in columns if the table is percentaged
across (i.e., by row).

For example, in row-percentaged Table 1,
compare columns or age groups. Most of those who
agree are in the youngest group. The proportion
saying they agree declines as age increases. Most
no-opinion people are in the middle-age groups
whereas those who disagree are older, especially
in the 46-to-60 group. When reading column-
percentaged Table 1, compare across rows. You can
see that a majority of the youngest group agree, and
they are the only group in which most people agree.
Only 11.5 percent disagree, compared to a major-
ity in the two oldest groups.

Seeing a relationship in a percentaged table
takes practice. If there is no relationship in a table,
the cell percentages look approximately equal across
rows or columns. A linear relationship appears like
larger percentages in the diagonal cells. If there is
a curvilinear relationship, the largest percentages
form a pattern across cells. For example, the largest

cells might be the upper right, the bottom middle,
and the upper left. It is easiest to see a relationship
in a moderate-size table (9 to 16 cells) in which most
cells have some cases (at least five are recom-
mended) and the relationship is strong and precise.

Principles of reading a scattergram can help
you see a relationship in a percentage table. Imag-
ine a scattergram divided into 12 equal-size sec-
tions. The cases in each section correspond to the
number of cases in the cells of a table that is super-
imposed onto the scattergram. You can think of the
table as a condensed form of the scattergram. The
bivariate relationship line in a scattergram corre-
sponds to the diagonal cells in a percentaged table.
Thus, a simple way to see strong relationships is
to circle the largest percentage in each row (for
row-percentaged tables) or column (for column-
percentaged tables) and see whether a line appears.

The circle-the-largest-cell rule works—with
one important caveat. The categories in the per-
centages table must be ordinal or interval and in the
same order as in a scattergram. In scattergrams the
lowest variable categories begin at the bottom left.
If the categories in a table are not ordered the same
way, the rule does not work.

For example, Table 2a looks like a positive
relationship and Table 2b like a negative relation-
ship. Both use the same data and are percentaged
by row. The actual relationship is negative. Look
closely: Table 2b has age categories ordered as in
a scattergram. When in doubt, return to the basic
difference between positive and negative relation-
ships. A positive relationship means that as one
variable increases, so does the other. A negative
relationship means that as one variable increases,
the other decreases.

Bivariate Tables without Percentages. Another
kind of bivariate table condenses information—a
measure of central tendency (usually the mean).
You can use it when one variable is nominal or ordi-
nal and another is measured at the interval or
ratio level. The mean (or a similar measure) of the
interval or ratio variable is presented for each cat-
egory of the nominal or ordinal variable. Do not
construct the measure of central tendency from the
CFD. Instead, divide the cases into the ordinal or
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nominal variable categories; then calculate the
mean for the cases in each variable category from
the raw data. Table 3 shows the mean age of people
in each of the attitude categories. The results sug-
gest that the mean age of those who disagree is
much higher than for those who agree or have no
opinion.

Measures of Association

A measure of association is a single number that
expresses the strength, and often the direction, of a
relationship. It condenses information about a bivari-
ate relationship into a single number. There are many
measures of association. The correct one to use
depends on the level of measurement of the data and
specific research purposes. Many measures are

identified by letters of the Greek alphabet. Lambda,
gamma, tau, chi (squared), and rho are commonly
used measures. The emphasis here is on interpret-
ing the measures, not on their calculation. To under-
stand each measure, you will need to complete at
least one statistics course. Some measures of asso-
ciation, such as gamma, are for data measured at the
ordinal level (see Expansion Box 2, Gamma). Other
measures, such as the correlation coefficient,
assume data measured at the ratio-level (see Expan-
sion Box 3, Correlation).

Most of the elementary measures discussed
here follow a proportionate reduction in error
logic. The logic asks how much does knowledge
of one variable reduce the errors that are made
when guessing the values of the other variable.
Independence means that knowledge of one vari-
able does not reduce the chance of errors on the
other variable. Measures of association equal zero
if the variables are independent.

If there is a strong association or relationship
between the independent and dependent variable,
we make few errors in predicting a dependent vari-
able based on knowledge of the independent vari-
able, or the proportion of errors reduced is large. A
large number of correct guesses suggests that the
measure of association is a nonzero number if an
association exists between the variables. Table 4
describes five commonly used bivariate measures
of association. Notice that most range from –1 to
�1, with negative numbers indicating a negative
relationship and positive numbers a positive rela-
tionship. A measure of 1.0 means a 100 percent
reduction in errors, or perfect prediction.

TABLE 3 Attitude about Changing the
Drinking Age by Mean Age of Respondent

DRINKING AGE
ATTITUDE MEAN AGE (N)

Agree 26.2 (37)
No opinion 44.5 (25)
Disagree 61.9 (39)

Missing cases � 8

Proportionate reduction in error A logic in many
statistics that measures the strength of association
between two variables. A strong association reduces
most errors in predicting the dependent variable using
information from the independent variable.

TABLE 2A Age by Schooling

YEARS OF SCHOOLING

AGE 0–11 12 13–14 16+ TOTAL

Under 30 5% 25 30 40 100
30–45 15 25 40 20 100
46–60 35 45 12 8 100
61+ 45 35 15 5 100

TABLE 2B Age by Schooling

YEARS OF SCHOOLING

AGE 0–11 12 13–14 16+ TOTAL

61+ 45% 35 15 5 100
46–60 35 45 12 8 100
30–45 15 25 40 20 100
Under 30 5 25 30 40 100
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EXPANSION BOX 2
Gamma

Gamma is a comparatively simple statistic that mea-
sures the strength of an association between two
ordinal-level variables. This bivariate measure re-
quires you to specify which variable is indepen-
dent and which is dependent in a hypothesis. It
illustrates the basic logic of other measures of
association.

Gamma allows you to predict the rank of one vari-
able based on knowledge of the rank of another vari-
able. Essentially, it answers this question: If you know
how I rank on variable 1, how good is your prediction
of my rank on variable 2? For example, if you know
my letter grade in mathematics, how accurately can
you predict my grade in literature? Perfect prediction
or the highest possible gamma is +1 or –1, depend-
ing on whether the ranks are the same (positive) or
the opposite on another (negative). Perfect statistical
independence of the two variables is a gamma of
zero. The formula for calculating gamma uses data in
the cells in the body of a cross-tabulation.

Let us look at a simple example using real data
from a national sample of adults in United States in
2008 (the GSS). A total of 672 people were asked
questions about their happiness and health. Many
health care professionals and social scientists noted
that emotional happiness is associated with being
healthier, so we can test the hypothesis that happy
people are healthier.

By looking at the raw count or frequency table,
we see from the marginals that most people are
pretty happy and more say they are in good health.

Gamma is based on the idea of “paired observa-
tions” (i.e., observations compared in terms of their
relative rankings on the independent and dependent
variables). Concordant (same-order) paired observa-
tions show a positive association, that is, when the
member of the pair ranked higher on the indepen-
dent variable is also ranked higher on the dependent
variable. Discordant (inverse-order) paired observa-
tions show a negative association. The member of
the pair ranked higher on the independent variable
is ranked lower on the dependent variable

The formula for gamma is 
Gamma = [(P-Q)/(P + Q)]

Where P = concordant and Q = discordant pairs.
Gamma ranges from –1.0 to zero to +1.0 and is a

proportionate reduction in error statistic. If Gamma
= 0 means the extra information provided by the
independent variable does not help prediction. The
higher the gamma, the more strength there is in pre-
dicting the dependent variable. Gamma can be pos-
itive or negative, giving a direction of the association
between the variables. When there are more con-
cordant pairs, gamma will be positive; when there are
more discordant pairs, gamma will be negative.

Gamma compares cells that are concordant (i.e.,
same ranked) on the independent and dependent
variables to those that are discordant (i.e., opposite
ranked) and ignores tied cells (i.e., cells where the
independent and dependent variable are ranked the
same). The table shown on the left has nine cells. First,
let us identify all “concordant” pairs of cells (each cell
has a letter).

Cell A in the upper left and Cell F are concordant.
Because they are along a diagonal from upper left to
lower right, this is predicted in the hypothesis (i.e.,
very happy people have excellent health, pretty
happy have good health, etc.). Other concordant
pairs are E:I, B:F, and D:H for the same reason. In the
opposite direction are discordant pairs center, G:E,
E:C, D:B, and H:F. We multiply the number of cases
in each pair. In the formula these are (A x (E + F + H
+ I)) + (D x (H + I)) + (B x (F + I)) + (E x I) for con-
cordant pairs and (G x (B + E + C + F) + (D x (B + C))
+ (H x (C + F)) + (E x C) for discordant pairs. Substi-
tuting the number of cases for each cell, this becomes
(63 x (190 + 77 + 53 + 50)) + (100 x (53 + 50)) + (93 x

Would You 
Say Your 
Own Health 
in General Is:

Taking All Things Together, 
How Would You Say Things 
Are these Days?

Very 
Happy

Pretty 
Happy

Not Too 
Happy Total

Excellent 63 A 100 D 19 G 182
Good 93 B 190 E 53 H 336
Fair or poor 27 C 77 F 50 I 154
Total 183 327 122 672

(continued)
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(77 + 50)) + (190 x 50) = 23310 + 10300 +11811 +
9500 = 54921 concordant pairs. Also (19 x (93 + 190
+ 27 + 77) + (100 x (93 + 27)) + (53 x (77 + 27)) +
(190 x 27) = 7353 + 5512 + 12000 + 5130 = 29995
discordant pairs. Putting this into the formula, (54921
– 29995)/( 54921 + 29995) = 0.2935. Computers
usually do the calculations for us. A gamma of .2935
suggests a weak positive relationship or that health
and happiness tend to go together somewhat.

Interpreting gamma (+ means positive relation,
– means negative relation):

GAMMA MEANING
0.00 to 0.24 No relationship
0.25 to 0.49 Weak relationship (positive or 

negative)
0.50 to 0.74 Moderate relationship (positive 

or negative)
0.75 to 1.00 Strong relationship (positive or 

negative)

EXPANSION BOX 3
Correlation

The formula for a correlation coefficient (rho) looks
awesome to most people. Calculating it by hand,
especially if the data have multiple digits, can be a
very long and arduous task. Nowadays, computers do
the calculation. However, the problem with relying on
computers to do the work is that a researcher may
not understand what the coefficient means. Here is a
short, simplified example to show how it is done.

The purpose of a correlation coefficient is to show
how much two variables “go together” or covary. Ide-
ally, the variables have a ratio level of measurement
(some use variables at the interval level). To calculate
the coefficient, we first convert each score on a vari-
able into its z-score. This “standardizes” the variable
based on its mean and standard deviation. Next we
multiply the z-scores for each case together. This tells
us how much the variables for a case vary together—
cases with high z-scores on both variables are much
larger, while those low on both are much smaller.
Finally, we divide the sum of the multiplied z-scores

by the number of cases. It yields a type of “average”
covariation that has been standardized. In short, a
correlation coefficient is the product of z-scores
added together and then divided by the number of
cases. It is always between +1.0 and –1.0 and sum-
marizes scattergram information about a relationship
into a single number.

Let us look at the correlation between the age and
price for five small bottles of red wine. First, anyone
who is brave or lacks math-symbol phobia can look
at one of the frequently used formulas for a correla-
tion coefficient:

(Σ [z-score1][z-score2])/N

where: Σ = sum, z-score1 = z-score for 1st variable
(see Expansion Box 12.1), z- score2 = z-score for 2nd
variable, N = number of cases

Here is how to calculate a correlation coefficient
without directly using the formula:

(DIFFERENCE) SQUARED DIFF. Z-SCORES Z-SCORE

WINE AGE PRICE Age Price Age Price Age Price Product

A 2 $10 –2 –5 4 25 –1.43 –0.70 1.00
B 3 5 –1 –10 1 100 –1.41 1.00
C 5 20 +1 +5 1 25 0.71 +0.70 0.50
D 6 25 +2 +10 4 100 +1.43 +1.41 2.00
E 4 15 0 0 0 0 0.00 0.00 0.00
Total 20 $75 10 250 4.50

EXPANSION BOX 2
(continued) 

(continued)
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TABLE 4 Five Measures of Association

Step 1: Calculate the mean and standard deviation for each variable. (For the standard devi-
ation, first subtract each score from its mean, next square the difference, sum squared differ-
ences, and then divide the sum by the number of cases for the variance. Then take the square
root of the variance.)
Step 2: Convert each score for the variables into their z-scores. (Just subtract each score from
its mean and divide by its standard deviation.)
Step 3: Multiply the z-scores together for each case.
Step 4: Sum the products of z-scores and then divide by the number of cases.

Mean: Age = 4; Price = $15
Variance: Age = 10/5 = 2; Price = 250/5 = 50.
Stnd. Dev.: Age = square root of 2 = 1.4; Price = square root of 50 = 7.1
Correlation: 4.50/5 = .90

Lambda is used for nominal-level data. It is based on a reduction in errors based on the mode
and ranges between zero (independence) and 1.0 (perfect prediction or the strongest possible
relationship).

Gamma is used for ordinal-level data. It is based on comparing pairs of variable categories and
seeing whether a case has the same rank on each. Gamma ranges from –1.0 to +1.0 with zero
meaning no association.

Tau is also used for ordinal-level data. It is based on a different approach than gamma and
takes care of a few problems that can occur with gamma. Actually, there are several statistics
named tau (it is a popular Greek letter), and the one here is Kendall’s tau. Kendall’s tau ranges
from –1.0 to +1.0, with zero meaning no association.

Rho is also called Pearson’s product moment correlation coefficient (named after the famous
statistician Karl Pearson and based on a product moment statistical procedure). It is the most
commonly used measure of correlation, the correlation statistic people mean if they use the
term correlation without identifying it further. It can be used only for data measured at the
interval or ratio level. Rho is used for the mean and standard deviation of the variables and tells
how far cases are from a relationship (or regression) line in a scatterplot. Rho ranges from –1.0
to +1.0 with zero meaning no association. If the value of rho is squared, sometimes called
R-squared (R2), it has a unique proportion reduction in error meaning. R-squared tells how the
percentage in one variable (e.g., the dependent) is accounted for, or explained by, the other
variable (e.g., the independent). Rho measures linear relationships only. It cannot measure
nonlinear or curvilinear relationships. For example, a rho of zero can indicate either no
relationship or a curvilinear relationship (see Expansion Box 3).

Chi-square has two different uses. It can be used as a measure of association in descriptive
statistics like the others listed here or in inferential statistics. As a measure of association, chi-
square can be used for nominal and ordinal data. It has an upper limit of infinity and a lower
limit of zero, meaning no association (see Expansion Box 3).

(continued)

EXPANSION BOX 3
(continued) 
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MORE THAN TWO VARIABLES

Statistical Control

Demonstrating an association between two vari-
ables is an important first step for understanding
the data. However, it is not sufficient for you to say
that an independent variable causes a dependent
variable. In addition to temporal order and associa-
tion, we must eliminate alternative explanations that
can make the hypothesized relationship spurious.
Experimental researchers do this by choosing a
research design that physically controls potential
alternative explanations for results (i.e., that threaten
internal validity).

In nonexperimental research, we can statisti-
cally control for alternative explanations with con-
trol variables (discussed shortly). We examine the
control variables with multivariate tables and sta-
tistics that help us decide whether a bivariate rela-
tionship might be spurious. We can also show the
relative size of the effect of multiple independent
variables on a dependent variable.

A control variable is a third (or fourth or fifth)
variable that represents an alternative explanation
for a two-variable relationship. It is a “control” in
that is adjusts for, or takes into account, the effects
of variables other than the primary independent and
dependent variable of a hypothesis. For example,

your bivariate table shows that taller teenagers like
baseball more than shorter ones do. But the bivari-
ate relationship between height and attitude toward
baseball might be spurious. Why is this; because
you suspect that teenage males are taller than
females and you suspect that males like baseball
more than females do? To test whether the rela-
tionship is actually due to height, you must control
for gender. By controlling for gender, you are sta-
tistically removing their effect. Once you do this,
you can see whether the bivariate relationship
between height and attitude toward baseball
remains or whether the association between height
and baseball attitude was really due to gender.

You can “control for” a third variable by seeing
whether the bivariate relationship persists within
categories of the control variable. For example, you
control for gender, and the relationship between
height and baseball attitude persists. This means that
tall males and tall females both like baseball more
than short males and short females do. In other
words, the control variable has no effect. When this
is so, the bivariate relationship is not spurious, and
the control variable (suspected alternative explana-
tion) has no effect.

What if the bivariate relationship weakens or
disappears after you control for gender? It means
that tall males are no more likely than short males
to like baseball, and tall females are no more likely
to like baseball than short females. It indicates that
the initial bivariate relationship is spurious and sug-
gests that the third variable (in this case gender),
not height, is the true cause of differences in atti-
tudes toward baseball.

Control variable A “third” factor that shows whether
a bivariate relationship holds up to alternative expla-
nations; can occur before or between other variables.

SUMMARY OF MEASURES OF ASSOCIATION

Greek High
Measure Symbol Type of Data Association Independence

Lambda λ Nominal 1.0 0
Gamma γ Ordinal +1.0, –1.0 0
Tau (Kendall’s) τ Ordinal +1.0, –1.0 0
Rho ρ Interval, ratio +1.0, –1.0 0
Chi-square χ2 Nominal, ordinal Infinity 0

TABLE 4 continued
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Statistical control is a central idea used in
many advanced statistical techniques. A measure of
association such as the correlation coefficient only
suggests a relationship. Until you consider control
variables, the bivariate relationship might be spuri-
ous. This is why researchers are cautious in inter-
preting bivariate relationships until they have
considered control variables.

After you introduce control variables, you see
the net effect of an independent variable, that is, the
effect of the independent variable “net of,” or in
spite of, the control variable. We briefly look at two
ways to introduce control variables: trivariate per-
centaged tables and multiple regression analysis.

The Elaboration Model of 
Percentaged Tables

Constructing Trivariate Tables. To meet the con-
ditions needed for causality, we want to “control
for” or see whether an alternative explanation elim-
inates a causal relationship. If an alternative expla-
nation accounts for a relationship, then the bivariate
relationship may be spurious. We operationalize
alternative explanations as third or control variables.

You can consider such third variables by sta-
tistically introducing control variables in trivariate
or three-variable tables. Trivariate tables differ only
slightly from bivariate tables. In a sense, they con-
sist of multiple bivariate tables. A trivariate table
consists of a separate bivariate table of the inde-
pendent and dependent variables created for each
category of the control variable. The multiple tables
of your independent and dependent variable, one
for each control variable category, are its partials.
The tables partial out the effects based on the con-
trol variable. The number of partials depends on the
number of categories in the control variable. Partial
tables look just like bivariate tables, but they use a
subset of the cases. Only cases with a specific value
on the control variable are in the partial. Thus, you
can combine the partials to restore the initial bivari-
ate table without a control variable.

Trivariate tables have three limitations. First,
they are difficult to interpret if a control variable has
more than four categories. Second, control variables
can be at any level of measurement, but you must

group interval-level or ratio-level control variables
(i.e., convert them to the ordinal level). Finally, the
total number of cases is a limiting factor because
the cases are divided among cells in partials. The
number of cells in the partials equals the number of
cells in the bivariate relationship multiplied by the
number of categories in the control variable. For
example, a control variable has three categories, and
a bivariate table has 12 cells, so the partials have
3 � 12 � 36 cells. An average of five cases per cell
is recommended, so 5 � 36 � 180 cases at mini-
mum are required.

Like bivariate table construction, a trivariate
table begins with a CFD but a three-way instead of
a two-way CFD. An example of a trivariate table
with “gender” as a control variable for the bivari-
ate relation in Table 1 is shown in Table 5.

As with the bivariate tables, each combination
in the CFD represents a cell in the final (here the
partial) table. Each partial table has the variables in
an initial bivariate table. For three variables, three
bivariate tables are logically possible. In the
example of Table 5, the combinations are (1) gen-
der by attitude, (2) age group by attitude, and (3)
gender by age group. The partials are set up on the
basis of the initial bivariate relationship. The inde-
pendent variable in each is age group, the depen-
dent variable is attitude, and gender is the control
variable. Thus, the trivariate table consists of a pair
of partials, each showing the age/attitude relation-
ship for a given gender.

Your theory and understanding of the social
world suggest both the hypothesis in the initial
bivariate relationship and which variables might be
alternative explanations (i.e., the control variables).

As with bivariate tables, the CFD provides the
raw count for cells (partials here). You convert them

Partials In contingency tables for three variables,
tables between the independent and dependent vari-
ables for each category of a control variable.

Net effect The result of one variable (usually inde-
pendent) on another (usually dependent) after the
impact of control variables that affects both has been
statistically removed.
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TABLE 5 CFD and Tables for a Trivariate Analysis

COMPOUND FREQUENCY DISTRIBUTION FOR TRIVARIATE TABLE

MALES FEMALES

Number Number
Age Attitude of Cases Age Attitude of Cases

Under 30 Agree 10 Under 30 Agree 10
Under 30 No opinion 1 Under 30 No opinion 2
Under 30 Disagree 2 Under 30 Disagree 1
30–45 Agree 5 30–45 Agree 5
30–45 No opinion 5 30–45 No opinion 5
30–45 Disagree 2 30–45 Disagree 3
46–60 Agree 2 46–60 Agree 2
46–60 No opinion 5 46–60 No opinion 5
46–60 Disagree 11 46–60 Disagree 10
61 and older Agree 3 61 and older Agree 0
61 and older No opinion 0 61 and older No opinion 2
61 and older Disagree 5 61 and older Disagree 5

Subtotal 51 Subtotal 50
Missing on either variable 4 Missing on either variable 4
Number of males 55 Number of females 54

PARTIAL TABLE FOR MALES

AGE GROUP

ATTITUDE Under 30 30–45 46–60 61 and Older TOTAL

Agree 10 5 2 3 20
No Opinion 1 5 5 0 11
Disagree 2 2 11 5 20
Total 13 12 18 8 51
Missing cases = 4

PARTIAL TABLE FOR FEMALES

AGE GROUP

ATTITUDE Under 30 30–45 46–60 61 and Older TOTAL

Agree 10 5 2 0 17
No Opinion 2 5 5 2 14
Disagree 1 3 10 5 19
Total 13 13 17 7 50
Missing cases = 4
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into percentages in the same way as for a bivariate
table (i.e., divide cells by the row or column total).
For example, in the partial table for females, the
upper left cell has a 10. The row percentage for that
cell is 10/17 � 58 percent.

The elaboration paradigm is a system for
reading percentaged trivariate tables.5 It describes
five possible patterns that might emerge after you
add a control variable. The patterns describe how
the partial tables compare to the initial bivariate
table, or how the original bivariate relationship
changes after you add the control variable (see
Example Box 3, Summary of Elaboration Para-
digm). The examples of patterns presented here
show strong cases. You will need to use advanced
statistics when the differences are not as obvious.

Of the five patterns, the replication pattern is
the easiest to understand. It occurs when the partials
replicate or reproduce the same relationship that
existed in the bivariate table before considering the
control variable, and means that the control variable
has no effect. The specification pattern is the next
easiest pattern. It occurs when one partial replicates
the initial bivariate relationship but other partials do
not. For example, you find a strong (negative) bivari-
ate relationship between automobile accidents and
college grades. You control for gender and discover
that the relationship holds only for males (i.e., the
strong negative relationship was in the partial for
males, not for females). This is the specification
because you specify the category of the control vari-
able in which the initial relationship persists.

The control variable has a large effect in both
the interpretation and explanation patterns. In both,
the bivariate table shows a relationship that disap-
pears or greatly weakens in the partials. In other
words, you saw a relationship between the inde-
pendent and dependent variables in a bivariate
table, but the relationship disappears and the vari-
ables appear to be independent in the partial tables.
You cannot distinguish between the two patterns
by looking at the tables alone. The difference
between the patterns depends on the location of the
control variable in the causal order of variables.
Theoretically, a control variable can be in one of
two places, either between the original independent
and dependent variables (i.e., the control variable

is intervening), or before the original independent
variable.

The interpretation pattern describes the situ-
ation in which the control variable intervenes
between the original independent and dependent
variables. For example, you examine a relationship
between religious upbringing and abortion attitude.
Political ideology is a control variable. You reason
that religious upbringing affects current political ide-
ology and abortion attitude. You theorize that polit-
ical ideology is logically prior to an attitude about a
specific issue, such as abortion. Thus, religious
upbringing causes political ideology, which in turn
has an impact on abortion attitude. The control vari-
able is an intervening variable, which helps you
interpret the meaning of the complete relationship.

The explanation pattern looks the same as the
interpretation pattern. The difference is the tempo-
ral order of the control variable. In the explanation
pattern, a control variable comes before the inde-
pendent variable in the initial bivariate relationship.
For example, the original relationship is between
religious upbringing and abortion attitude, but now
gender is the control variable. Gender comes before

Interpretation pattern An arrangement in the elab-
oration paradigm in which the bivariate contingency
table shows a relationship, but the partials show no
relationship and the control variable is intervening in
the causal explanation.

Explanation pattern A pattern in the elaboration
paradigm in which the bivariate contingency table
shows a relationship, but the partials show no relation-
ship, and the control variable occurs prior to the inde-
pendent variable.

Specification pattern An arrangement in the elab-
oration paradigm in which the bivariate contingency
table shows a relationship; one of the partial tables but
others do not.

Replication pattern An arrangement in the elabo-
ration paradigm in which the partials show the same
relationship as in a bivariate contingency table of the
independent and dependent variable alone.

Elaboration paradigm A system for describing pat-
terns evident among tables when the bivariate contin-
gency table is compared with partials after the control
variable has been added.
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EXAMPLE BOX 3
Summary of the Elaboration Paradigm

Pattern Name Pattern Seen When Comparing Partials to the Original Bivariate Table

Replication Relationship in both partials is same as in bivariate table.

Specification Bivariate relationship is seen only in one of the partial tables.

Interpretation Bivariate relationship weakens greatly or disappears in the partial tables (control
variable is intervening).

Explanation Bivariate relationship weakens greatly or disappears in the partial tables (control
variable is before independent variable).

Suppressor variable No bivariate relationship exists; relationship appears in partial tables only.

EXAMPLES OF ELABORATION PATTERNS

Replication (percentages)

BIVARIATE TABLE PARTIALS
Control = Low Control = High

Low High Low High Low High

Low 85% 15% Low 84% 16% 86% 14%
High 15% 85% High 16% 84% 14% 86%

Interpretation or Explanation (percentages)

BIVARIATE TABLE PARTIALS
Control = Low Control = High

Low High Low High Low High

Low 85% 15% Low 45% 55% 55% 45%
High 15% 85% High 55% 45% 45% 55%

Specification (percentages)

BIVARIATE TABLE PARTIALS
Control = Low Control = High

Low High Low High Low High

Low 85% 85% Low 95% 5% 50% 50%
High 15% 15% High 5% 95% 50% 50%

Suppressor Variable (percentages)

BIVARIATE TABLE PARTIALS
Control = Low Control = High

Low High Low High Low High

Low 54% 46% Low 84% 16% 14% 86%
High 46% 54% High 16% 84% 86% 14%

420



ANALYSIS OF QUANTITATIVE DATA

religious upbringing because one’s gender is fixed
at birth. The explanation pattern changes how a
researcher explains the results. It implies that the
initial bivariate relationship is spurious.

The suppressor variable pattern occurs when
the bivariate tables suggest independence but a rela-
tionship appears in one or both of the partials. For
example, religious upbringing and abortion attitude
are independent in a bivariate table. Once you intro-
duce the control variable region of the country, you
see that religious upbringing is associated with
abortion attitude in the partial tables. The control
variable suppressed the true relationship, and the
true relationship appears in the partials.

Multiple Regression Analysis

Multiple regression is a popular statistical tech-
nique whose calculation is beyond the level of this
book. Although by using appropriate statistics soft-
ware you can compute multiple regression quickly,
a background in statistics is needed to prevent you
from making errors in its calculation and interpre-
tation. Multiple regression requires interval- or
ratio-level data.

Multiple regression’s great advantage is its
ability to adjust for several control variables (i.e.,
alternative explanations) simultaneously. With per-
centaged tables, you can rarely use more than one
control variable at a time. In addition, multiple
regression is widely used, and you are likely to
encounter it when reading research reports or
articles. Multiple regression results tell the reader
two things. First, it tells the overall predictive
power of the set of independent and control variable
on the dependent variable. A statistic, R-squared
(R2), tells us how well a set of variables “explains”
a dependent variable. Explain here means making
fewer errors when predicting the dependent vari-
able scores on the basis of information about the
independent variables. A good model with several
variables might account for, or explain, a large per-
centage of variation in a dependent variable. For
example, an R2 of 0.50 means that knowing the
independent and control variables improves the
accuracy of predicting the dependent variable by
50 percent and that you would make one-half as

many errors in predicting the dependent variable
with the variable as you would not knowing about
the independent and control variables.

Second, multiple regression results give the
direction and size of the effect of each variable on a
dependent variable. The effect is measured precisely
with a numerical value. The higher the value, the
larger the effect of a variable on predicting the
dependent variable. The sign (positive or negative)
of the effect tells you the direction of the impact on
the dependent variable. For example, you can see
how five independent or control variables simulta-
neously affect a dependent variable with all vari-
ables controlling for the effects of one another. This
is especially valuable for testing theories that state
that multiple independent variables cause one
dependent variable.

We measure effect of an independent or control
variable on the dependent variable by using a stan-
dardized regression coefficient or the Greek letter
beta (ß). It is similar to a correlation coefficient, and
ranges from zero to �0.99 or –0.99 with zero mean-
ing no effect. We can perform statistical tests to deter-
mine the statistical significance (discussed later in
this chapter) of a coefficient. The beta coefficient for
two variables equals the correlation coefficient.

We use the beta regression coefficient to deter-
mine whether control variables have an effect. For
example, the bivariate correlation between X and Y is
0.75. Next, we statistically add four control variables.
If the beta remains at 0.75, the four control variables
have no effect. However, if the beta for X and Y
becomes smaller (e.g., drops to 0.20), the control
variables have an effect on the dependent variable.

Consider an example of regression analysis with
age, income, education, and region as independent
variables. The dependent variable is a score on a polit-
ical ideology index. The multiple regression results
show that income and religious attendance have large
effects, education and region minor effects, and age
no effect. All independent variables together have a
38 percent accuracy in predicting a person’s political

Supressor variable pattern Occurs when the bivari-
ate tables suggest independence but a relationship
appears in one or both partials.
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ideology (see Example Box 4, Example of Multiple
Regression Results).6 The example suggests that high
income, frequent religious attendance, and a south-
ern residence are positively associated with conser-
vative opinions, whereas having more education is
associated with liberal opinions. The impact of
income is more than twice the size of the impact of
living in a southern region.

Chart 2 summarizes the types and techniques
of descriptive statistics. Next we turn our attention
to inferential statistics.

INFERENTIAL STATISTICS

The Purpose of Inferential Statistics

The statistics discussed so far in this chapter are
descriptive statistics. But we often want to do more
than just describe; we want to test hypotheses, to

find out whether sample results hold true in a pop-
ulation, and decide whether results (e.g., between
the mean scores of two groups) are big enough to
indicate that a relationship truly exists and is not
due to chance alone. Inferential statistics build
on probability theory to test hypotheses formally,
permit inferences from a sample to a population,
and test whether descriptive results are likely to
be due to random factors or to a real relationship.
This section explains the basic ideas of inferential
statistics but does not deal with inferential statis-
tics in any detail. This area is more complex than
descriptive statistics and requires a background
in statistics.

Inferential statistics rely on principles from
probability sampling by which we use a random
process (e.g., a random-number table, random com-
puter process) to select cases from the entire popu-
lation. Inferential statistics are a precise way to talk
about how confident we can be when inferring from
the results in a sample to the population.

You have already encountered inferential sta-
tistics if you have read or heard about “statistical
significance” or results “significant at the 0.05
level.” We use them to conduct various statistical
tests (e.g., a t-test or an F-test). We use statistical
significance in formal hypothesis testing, which is
a precise way to decide whether to accept or to reject
a null hypothesis.7

Statistical Significance

The term statistically significant results means that
the results are not likely to be due to chance fac-
tors. Statistical significance indicates the proba-
bility of finding a relationship in the sample when
there is none in the population. Because probabil-
ity samples involve a random process, it is always
possible that sample results will differ from a pop-
ulation parameter. We want to estimate the odds
that sample results are due to a true population
parameter or to chance factors of random sampling.
With some probability theory from mathematics
and specific statistical tests, we can tell whether the
results (e.g., an association, a difference between
two means, a regression coefficient) are likely to
be produced by random error in random sampling

EXAMPLE BOX 4
Example of Multiple Regression Results

DEPENDENT VARIABLE IS POLITICAL IDEOLOGY
INDEX (HIGH SCORE MEANS VERY LIBERAL)

Standardized 
Regression 

Independent Variable Coefficients

Region � South �.19
Age .01
Income �.44
Years of education .23
Religious attendance �.39

R2 � .38

Statistical significance The likelihood that a finding
or statistical relationship in a sample’s results is due to
random factors rather than to the existence of an actual
relationship in the entire population.

Inferential statistics A branch of applied mathe-
matics based on random sampling that allows
researchers to make precise statements about the level
of confidence they can have that measures in a sample
are the same as a population parameter.
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or are likely to show effects actually occurring in
the social world.

Statistical significance tells us only what is
likely. It cannot prove anything with absolute cer-
tainty. It states that particular outcomes are more or
less probable. Statistical significance is not the same
as practical, substantive, or theoretical significance.
Results can be statistically significant but theoreti-
cally meaningless or trivial. For example, two vari-
ables can have a statistically significant association
due to coincidence with no logical connection
between them (e.g., length of fingernails and abil-
ity to speak French).

Levels of Significance

We usually express statistical significance in terms
of levels (e.g., a test is statistically significant at a
specific level) rather than giving the specific prob-
ability. The level of statistical significance (usu-
ally .05, .01, or .001) is an easy way of talking about
the likelihood that results are due to chance factors,
that is, that a relationship appears in the sample
when there is none in the population. When we say
that results are significant at the .05 level, we mean
the following:

Results like these are due to chance factors only
5 in 100 times.
There is a 95 percent chance that the sample
results are not due to chance factors alone but
reflect the population accurately.

The odds of such results based on chance alone
are .05, or 5 percent.
One can be 95 percent confident that the results
are due to a real relationship in the population,
not chance factors.

These all say the same thing in different ways. This
may sound a bit like the discussion of sampling dis-
tributions and the central limit theorem in the chap-
ter on sampling. It is no accident! Both are based on
probability theory, which we use to link sample data
to a population. Probability theory lets us predict
what happens in the long run over many events
when a random process is used. In other words, it
allows us to make precise predictions over many sit-
uations in the long run but not for a specific situa-
tion. Because we have just one sample and we want
to infer to the population, probability theory helps
us estimate the odds that our particular sample rep-
resents the population. We cannot know for certain
unless we have the whole population, but probabil-
ity theory lets us state our confidence: how likely it
is that the sample shows one thing while something
else is true in the population.

CHART 2 Summary of Major Types of Descriptive Statistics

TYPE OF TECHNIQUE STATISTICAL TECHNIQUE PURPOSE

Univariate Frequency distribution, Describe one variable.
measures of central tendency, 
standard deviation, z-score

Bivariate Correlation, percentage table, Describe a relationship or the association between
chi-square two variables

Multivariate Elaboration paradigm, multiple Describe relationships among several variables, 
regression or see how several independent variables have an

effect on a dependent variable.

Level of statistical significance A set of numbers
that researchers use as a simple way to measure the
degree to which a statistical relationship results from
random factors rather than the existence of a true rela-
tionship among variables.
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For example, a sample shows that college men
and women differ in how many hours they study. Is
the result due to having an unusual sample, and in
reality there is no difference in the population, or
does it reflect a true difference between the men and
women? (See Example Box 5, Chi-Square.)

Type I and Type II Errors

The logic of statistical significance rests on whether
chance factors might have produced the results. You
may ask, why use the .05 level? We use it to mean
a 5 percent chance that randomness could cause the
results. Why not use a more certain standard—for
example, a 1 in 1,000 probability of random chance?
This gives a smaller chance that randomness ver-
sus a true relationship caused the results.

There are two answers to this way of thinking.
The simple answer is that the scientific community
has informally agreed to use .05 as a rule of thumb
for most purposes. Being 95 percent confident of
results is the accepted standard for explaining the
social world. A second, more complex answer
involves a trade-off between making Type I and
Type II errors. We can make two kinds of logical
mistakes. A Type I error occurs when we say that
a relationship exists when in fact none exists. It
means falsely rejecting a null hypothesis. A Type
II error occurs when we say that a relationship does
not exist, when in fact it does. It means falsely
accepting a null hypothesis (see Table 6). Of course,
we want to avoid both errors and say a relationship
is in the data only when it does indeed exist and
there is no relationship only when there really is
none. However, we face a dilemma: As the odds of
making one type of error decline, the odds of mak-
ing the opposite error increase.

You may find the ideas of Type I and Type II
errors difficult at first, but the same logical dilemma
appears outside research settings. For example, a
jury can err by deciding that an accused person is
guilty when in fact he or she is innocent, or the jury

Type I Error The mistake made in saying that a rela-
tionship exists when in fact none exists; a false rejec-
tion of a null hypothesis.

Type II Error The mistake made in saying that a rela-
tionship does not exist when in fact it does; false accept-
ance of a null hypothesis.

EXAMPLE BOX 5
Chi-Square

The chi-square (X2) is used in two ways. This creates confusion. As a descriptive statistic,
it tells us the strength of the association between two variables; as an inferential statistic,
it tells us the probability that any association we find is likely to be due to chance factors.
The chi-square is a widely used and powerful way to look at variables measured at the
nominal or ordinal level. It is a more precise way to tell whether there is an association in
a bivariate percentaged table than by just “eyeballing” it.

Logically, we first determine “expected values” in a table. We do this based on infor-
mation from the marginals alone. Recall that marginals are frequency distributions of each
variable alone. An expected value can be thought of as our “best guess” without exam-
ining the body of the table. Next we consider the data to see how much differs from the
“expected value.” If they differ a lot, then there may be an association between the vari-
ables. If the data in a table are identical or very close to the expected values, then the vari-
ables are not associated; they are independent. In other words, independence means
“what is going on” in a table is what we would expect based on the marginals alone. Chi-
square is zero if there is independence increases as the association gets stronger. If the
data in the table greatly differ from the expected values, then we know something is
“going on” beyond what we would expect from the marginals alone (i.e., an association
between the variables). See the example of an association between height and grade.
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Raw or Observed Data Table

STUDENT GRADE IN RESEARCH METHODS
HEIGHT C B A TOTAL

Tall 30 10 10 50
Medium 10 30 10 50
Short 30 20 50 100

Total 70 60 70 200

Expected Values Table

Expected value = (Column total � Row total)/Grand total). EXAMPLE (70 � 50)/200 = 17.5

STUDENT GRADE IN RESEARCH METHODS
HEIGHT C B A TOTAL

Tall 17.5 15.0 17.5 50.0
Medium 17.5 15.0 17.5 50.0
Short 35.0 30.0 35.0 100.0

Total 70.0 60.0 70.0 200.0

Difference Table

Difference = (Observed – Expected). EXAMPLE (30 – 17.5) = 12.5

STUDENT GRADE IN RESEARCH METHODS
HEIGHT C B A TOTAL

Tall 12.5 –5.0 –7.5 0.0
Medium –7.5 15.0 –7.5 0.0
Short –5.0 –10.0 15.0 0.0

Total 0.0 0.0 0.0 0.0 

Chi-square = Sum of each difference squared, then divided by the expected value of
the cell. Example: 12.5 squared = 156.25, divided by 17.5 = 8.93.

Chi-square = 1st row (8.93 + 1.67 + 3.21) +
2nd row (3.21 + 15 + 3.21) +
3rd row (.71 + 3.33 + 6.43) = 45.7

Because chi-square is not zero, the data are not independent; there is an association.
The chi-square coefficient cannot tell us the direction (e.g., negative) of the association.
For inferential statistics, we need to use a chi-square table or computer program to eval-
uate the association (i.e., to see how likely such a large chi-square is to occur by chance
alone). Without going into all the details about the chi-square table, this association is rare;
it occurs by chance less than 1 in 1,000 times. For a table with nine cells, a chi-square of
45.7 is significant at the .001 level.

EXAMPLE BOX 5
(continued) 
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TABLE 6 Type I and Type II Errors

WHAT THE RESEARCHER SAYS TRUE SITUATION IN THE WORLD

No Relationship Causal Relationship

No relationship No error Type II error
Causal relationship Type I error No error

can err by deciding that a person is innocent when
in fact she or he is guilty. The jury does not want
to make either error. It does not want to jail the in-
nocent or to free the guilty, but it must make a
judgment using limited information. Likewise, a
pharmaceutical company has to decide whether to
sell a new drug. The company can err by stating that
the drug has no side effects when, in fact, it has the
side effect of causing blindness, or it can err by hold-
ing back a drug because of fear of serious side
effects when in fact there are none. The company
does not want to make either error. If it makes the
first error, the company will face lawsuits and injure
people. The second error will prevent the company
from selling a drug that may cure illness and pro-
duce profits.

Combining the ideas of statistical significance
and the two types of error together: If you are overly
cautious and set a very high level of significance,
you are likely to make one type of error. For
example, you use the .0001 level. You attribute the
results to chance only if they are so rare that they
would occur by chance only 1 in 10,000 times. Such
a high standard means that you are most likely to
err by saying results are due to chance when in fact
they are not. You may falsely accept the null hypoth-
esis when there is a causal relationship (a Type II
error). By contrast, if you are a risk-taking re-
searcher and set a low level of significance, such as
.10, your results indicate that a relationship would
occur by chance 1 in 10 times. You are likely to err
by saying that a causal relationship exists, when in
fact random factors (e.g., random sampling error)
actually cause the results. You are likely to falsely
reject the null hypothesis (Type I error). In sum, the
.05 level is a compromise between Type I and Type
II errors.

This section has outlined the basics of inferen-
tial statistics. The statistical techniques are precise
and rely on the relationship between sampling error,
sample size, and central limit theorem. The power
of inferential statistics is their ability to let us state,
with specific degrees of certainty, that specific
sample results are likely to be true in a population.
For example, you conduct statistical tests and learn
that a relationship is statistically significant at the
.05 level. You can state that the sample results are
probably not due to chance factors. Indeed, there is
a 95 percent chance that a true relationship exists in
the social world. Tests for inferential statistics are
useful but limited. The data must come from a ran-
dom sample, and tests consider only sampling
errors. Nonsampling errors (e.g., a poor sampling
frame or a poorly designed measure) are not con-
sidered. Do not be fooled into thinking that such
tests offer easy, final answers. See the discussion
presented in Expansion Box 4, Statistical Programs
on Computers.

CONCLUSION

This chapter discussed organizing quantitative data
to prepare them for analysis and then analyzing
them (organizing data into charts or tables, or sum-
marizing them with statistical measures). We use
statistical analysis to test hypotheses and answer
research questions. You saw how data must first be
coded and then analyzed using univariate or bivari-
ate statistics. Bivariate relationships might be spu-
rious, so control variables and multivariate analyses
are often necessary. You also saw some basics about
inferential statistics.

Beginning researchers sometimes believe they
have done something wrong if their results do not
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EXPANSION BOX 4
Statistical Programs on Computers

Almost every social researcher who needs to calcu-
late many statistics does so with a computer program.
One can calculate some statistics using a basic spread-
sheet program, such as Excel. Unfortunately, spread-
sheets are designed for accounting and bookkeeping
functions; they include statistical functions but are
clumsy and limited for that purpose. There are many
computer programs designed for calculating general
statistics. The marketplace can be confusing to a
beginner for products rapidly evolve with changing
computer technology. One or two decades ago, one
had to know a computer language or do simple pro-
gramming to have a computer calculate statistics.

In recent years, the software has become less
demanding for a user. The most popular programs in
the social sciences are Minitab, Microcase, and Stas-
tical Package for the Social Sciences (SPSS). Others
include Statistical Analysis System (SAS), BMPD
(bought by SPSS, Inc.), STATISTICA by StratSoft, and
Strata. Many began as simple, low-cost programs for
research purposes. Today private corporations own

many of these and are interested in selling a sophis-
ticated set of software products to many diverse cor-
porate and government users.

The most widely used program for statistics in the
social sciences is SPSS. Its advantages are that social
researchers have used it extensively for more than
three decades, it includes many ways to manipulate
quantitative data, and it contains most statistical mea-
sures. Its disadvantage is that it can take a long time
to learn because of its many options and complex
statistics. Also, it is expensive to purchase except for
an inexpensive, “stripped down” student version
included with a textbook or workbook.

As computer technology makes using statistics
programs easier, the danger increases that some
people will use the programs but not understand sta-
tistics or what the programs are doing. These people
can easily violate basic assumptions required by a
statistical procedure, use the statistics improperly,
and produce results that are pure nonsense yet look
very technically sophisticated.

support a hypothesis. There is nothing wrong with
rejecting a hypothesis. The goal of scientific
research is to produce knowledge that truly reflects
the social world, not to defend pet ideas or hypothe-
ses. Hypotheses are theoretical guesses based
on limited knowledge; they need to be tested.
Excellent-quality research can find that a hypoth-
esis is wrong, and poor-quality research can sup-
port a hypothesis. Good research depends on
high-quality methodology, not on supporting a spe-
cific hypothesis.

Good research means guarding against pos-
sible errors or obstacles to true inferences from data
to the social world. Errors can enter into the research
process and affect results at many places: research
design, measurement, data collection, coding, cal-
culating statistics and constructing tables, or inter-
preting results. Even if you can design, measure,
collect, code, and calculate without error, you must
also complete another step in the research process:
interpret the tables, charts, and statistics, and answer

the question: What does it all mean? The only way
to assign meaning to facts, charts, tables, or statis-
tics is to use theory, insight, and understanding.

Data, tables, or computer output alone cannot
answer research questions. The facts do not speak
for themselves. As a researcher, you must return to
your theory (i.e., concepts, relationships among
concepts, assumptions, theoretical definitions) and
give the results meaning. Do not lock yourself into
the ideas with which you began. There is room for
creativity, and new ideas are generated by trying to
figure out what results really say. It is important to
be careful in designing and conducting research so
that you can look at the results as a reflection of
something in the social world and not worry about
whether they are due to an error or an artifact of the
research process itself.

Before we leave quantitative research, we must
present one last issue. Journalists, politicians, and
others increasingly use statistical results to make a
point or bolster an argument. This has not produced
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increased accuracy or clarity in public debate. More
often, it has increased confusion; this makes know-
ing what statistics can and cannot do essential. The
cliché that you can prove anything with statistics is
false; however, some people can and do misuse sta-
tistics to pretend to prove anything. Through igno-
rance or conscious deceit, some people use statistics
to fool others. The best way to protect yourself from
being misled by statistics is not to ignore them or

hide from the numbers but to understand the
research process and statistics, think about what you
hear, and ask questions.

We turn next to qualitative research. The logic
and purpose of qualitative research differ from those
of the quantitative, positivist approach of the past
chapters. It is less concerned with numbers, hypothe-
ses, and causality and more concerned with words,
norms and values, and meaning.

KEY TERMS

bivariate statistics
codebook
coding procedure
contingency cleaning
contingency table
control variable
covariation
cross-tabulation
curvilinear relationship
data field
data records
descriptive statistics
direct-entry method
elaboration paradigm
explanation pattern
frequency distribution

frequency polygon
histogram
inferential statistics
interpretation pattern
level of statistical 

significance
linear relationship
marginal
mean
measures of central tendency
median
mode
net effect
normal distribution
partials
percentile

possible code cleaning
proportionate reduction in error
range
replication pattern
scattergram
skewed distribution
specification pattern
standard deviation
statistical independence
statistical relationship
statistical significance
suppressor variable pattern
Type I error
Type II error
univariate statistics
z-score

REVIEW QUESTIONS

1. What is a codebook, and how is it used in research?

2. How do researchers clean data and check their coding?

3. Describe how researchers use optical scan sheets.

4. In what ways can a researcher display frequency distribution information?

5. Describe the differences between mean, median, and mode.

6. What three features of a relationship can be seen from a scattergram?

7. What is a covariation, and how is it used?

8. When can a researcher generalize from a scattergram to a percentaged table to
find a relationship among variables?

9. Discuss the concept of control as it is used in trivariate analysis.

10. What does it mean to say “statistically significant at the .001 level,” and what type
of error is more likely, Type I or Type II?
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NOTES

1. Practical advice on coding and handling quantitative
data comes from survey research. See discussions in
Babbie (1998:366–372), Backstrom and Hursh-Cesar
(1981:309–400), Fowler (1984:127–133), Sonquist and
Dunkelberg (1977:210–215), and Warwick and Lininger
(1975:234–291).
2. Note that coding gender as 1 � Male, 2 � Female, or
as 0 � Male, 1 � Female, or reversing the gender for
numbers is arbitrary. The only reason one uses numbers
instead of letters (e.g., M and F) is that many computer
programs work best with all numbers. Sometimes cod-
ing data as a zero can create confusion, so the number 1
is usually the lowest value.
3. For discussions of many different ways to display
quantitative data, see Fox (1992), Henry (1995), Tufte
(1983, 1991), and Zeisel (1985:14–33).
4. Other statistics measure special types of means for
ordinal data and for other special situations, which are
beyond the level of discussion in this book.
5. On the elaboration paradigm and its history, see Bab-
bie (1998:400–409) and Rosenberg (1968).

6. Beginning students and people outside the social sci-
ences are sometimes surprised at the low (10 to 50 per-
cent) predictive accuracy in multiple regression results.
There are three responses to this. First, a 10 to 50 per-
cent reduction in errors is really not bad compared to
purely random guessing. Second, positivist social sci-
ence is still developing. Although the levels of accuracy
may not be as high as those of the physical sciences, they
are much higher than for any explanation of the social
world possible 10 or 20 years ago. Finally, the theoreti-
cally important issue in most multiple regression mod-
els is less the accuracy of overall prediction than the
effects of specific variables. Most hypotheses involve the
effects of specific independent variables on dependent
variables.
7. In formal hypothesis testing, we test the null hypoth-
esis and usually want to reject the null because rejection
of the null indirectly supports the alternative hypothesis
to the null, the one we deduce from theory as a tentative
explanation. The null hypothesis was discussed in
Chapter 6.

429


	Analysis of Quantitative Data

