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Sampling is a major problem for any type of research. We can’t study every case of
whatever we’re interested in, nor should we want to. Every scientific enterprise tries

to find out something that will apply to everything of a certain kind by studying
a few examples, the results of the study being, as we say, “generalizable.”

—Howard Becker, Tricks of the Trade, p. 67

REASONS FOR SAMPLING

When we sample, we select some cases to examine
in detail, and then we use what we learn from them
to understand a much larger set of cases. Most, but

not all, empirical studies use sampling. Depending
on the study, the method we use for sampling
can differ. Most books on sampling emphasize its
use in quantitative research and contain applied
mathematics and quantitative examples. The pri-
mary use of sampling in quantitative studies is to
create a representative sample (i.e., a sample, a
selected small collection of cases or units) that

In Promises I Can Keep, an in-depth study of low-income mothers, Edin and Kefalas
(2005) first identified eight low-income neighborhoods in the Philadelphia, Pennsylvania,
area through extensive qualitative fieldwork and quantitative analysis of census data.
Each neighborhood met three selection criteria: at least 20 percent of householders were
below the poverty line, at least 20 percent of all households had a single parent, and each
had a large number of Black, White, and Hispanic residents. In each neighborhood, Edin
and Kefalas recruited half of the mothers to interview through referrals from local experts
(teachers, social workers, public nurses, clergy, business owners, and public housing
officials) and half by posting fliers on public phone booths or personally contacting
mothers on street corners. All mothers had incomes putting them below the poverty
line in the previous year. Edin and Kefalas tried to get a mixture: 50 Whites, 50 African
Americans, and 50 Puerto Ricans, and tried to get one-half over 25 and one-half under
25 years old. They eventually had 162 mothers, 52 whites, 63 African American, and 47
Puerto Rican. Only 40 were over 25 years old, but ages ranged from 15 to 56. They say,
“The resulting sample is not random or representative but is quite heterogeneous” (238).

Sample A small set of cases a researcher selects from
a large pool and generalizes to the population.

246



QUALITATIVE AND QUANTITATIVE SAMPLING

closely reproduces or represents features of interest
in a larger collection of cases, called the population.

We examine data in a sample in detail, and if
we sampled correctly, we can generalize its results
to the entire population. We need to use very pre-
cise sampling procedures to create representative
samples in quantitative research. These procedures
rely on the mathematics of probabilities and hence,
are called probability sampling.

In most quantitative studies, we want to see how
many cases of a population fall into various cate-
gories of interest. For example, we might ask how
many in the population of all of Chicago’s high
school students fit into various categories (e.g., high-
income family, single-parent family, illegal drug
user, delinquent behavior arrestee, musically tal-
ented person). We use probability samples in quan-
titative research because they are very efficient. They
save a lot of time and cost for the accuracy they
deliver. A properly conducted probability sample
may cost 1/1000 the cost and time of gathering infor-
mation on an entire population, yet it will yield vir-
tually identical results. Let us say we are interested
in gathering data on the 18 million people in the
United States diagnosed with diabetes. From a well-
designed probability sample of 1,800, we can take
what we learned and generalize it to all 18 million.
It is more efficient to study 1,800 people to learn
about 18 million than to study all 18 million people.

Probability samples can be highly accurate. For
large populations, data from a well-designed, care-
fully executed probability sample are often equally
if not more accurate than trying to reach every case
in the population, but this fact confuses many people.
Actually, when the U.S. government planned its
2000 census, all of the social researchers and sta-
tistically trained scientists agreed that probability
sampling would produce more accurate data than
the traditional census method of trying to count
every person. A careful probability sample of 30,000
has a very tiny and known error rate. If we try to
locate every single person of 300,000,000, system-
atic errors will slip in unless we take extraordinary
efforts and expend huge amounts of time and
money. By the way, the government actually con-

ducted the census in the traditional way, but it was
for political, not scientific, reasons.

Sampling proceeds differently in qualitative
studies and often has a different purpose from quan-
titative studies. In fact, using the word sampling cre-
ates confusion in qualitative research because the
term is closely associated with quantitative studies
(see Luker, 2008:101). In qualitative studies, to allow
us to make statements about categories in the popu-
lation, we rarely sample to gather a small set of cases
that is a mathematically accurate reproduction of the
entire population. Instead, we sample to identify rel-
evant categories at work in a few cases. In quantita-
tive sampling, we select cases/units. We then treat
them as carriers of aspects/features of the social
world. A sample of cases/units “stands in” for the
much larger population of cases/units. We pick a few
to “stand in” for the many. In contrast, the logic of
the qualitative sample is to sample aspects/features of
the social world. The aspects/features of our sample
highlight or “shine light into” key dimensions or pro-
cesses in a complex social life. We pick a few to pro-
vide clarity, insight, and understanding about issues
or relationships in the social world. In qualitative
sampling, our goal is to deepen understanding about
a larger process, relationship, or social scene. A
sample gives us valuable information or new aspects.
The aspects accentuate, enhance, or enrich key fea-
tures or situations. We sample to open up new
theoretical insights, reveal distinctive aspects of
people or social settings, or deepen understanding of
complex situations, events, or relationships. In qual-
itative research, “it is their relevance to the research
topic rather than their representativeness which deter-
mines the way in which the people to be studied are
selected” (Flick, 1998: 41).

We should not overdo the quantitative-qualita-
tive distinction. In a few situations, a study that is pri-
marily quantitative will use the qualitative-sampling

Population The abstract idea of a large group of
many cases from which a researcher draws a sample
and to which results from a sample are generalized.
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strategy and vice versa. Nonetheless, most quantita-
tive studies use probability or probability-like samples
while most qualitative studies use a nonprobability
method and nonrepresentative strategy.

SAMPLING STRATEGIES

We want to avoid two types of possible sampling
mistakes. The first is to conduct sampling in a sloppy
or improper manner; the second is to choose a type
of sample inappropriate for a study’s purpose. The
first mistake reminds us to be very meticulous and
systematic when we sample. To avoid the second
mistake, we need a sampling strategy that matches
our specific study’s purpose and data. Sampling
strategies fall into two broad types: a sample that will
accurately represent the population of cases, and all
others. We primarily use the first strategy in quanti-
tative studies and the latter in qualitative studies.

Strategies When the Goal Is to Create
a Representative Sample

In a representative sample, our goal is to create
sample data that mirror or represent many other
cases that we cannot directly examine. We can do
this in two ways. The first is the preferred method
and considered the “gold standard” for representa-
tive samples, the probability sample. It builds on
more than a century of careful reasoning and applied
mathematics plus thousands of studies in natural sci-
ence and quantitative social science. With a proba-
bility sampling strategy, we try to create an accurate
representative sample that has mathematically pre-
dictable errors (i.e., precisely known chances of
being “off target”). This sampling approach is com-
plex with several subtypes. Before we examine it,
let us look at the second, simpler way to produce 
a representative sample: to use a nonprobability

technique. It is a less accurate substitute when we
want a representative sample; however, it is accept-
able when probability sampling is impossible, too
costly, time consuming, or impractical.

Nonprobability Sampling Techniques. Ideally, we
would prefer probability samples when we want to
create a representative sample, as a less demand-
ing alternative there are two nonprobability alter-
natives: convenience and quota samples. In
convenience sampling (also called accidental,
availability, or haphazard sampling), our primary
criteria for selecting cases are that they are easy to
reach, convenient, or readily available. This sample
type may be legitimate for a few exploratory pre-
liminary studies and some qualitative research
studies when our purpose is something other than
creating a representative sample. Unfortunately, it
often produces very nonrepresentative samples, so
it is not recommended for creating an accurate
sample to represent the population.

When we select cases based on convenience,
our sample can seriously misrepresent features in the
entire population.1You may ask why, if this method
is so bad and samples can be seriously nonrepre-
sentative, anyone would use it. The reason is simple:
convenience samples are easy, cheap, and quick to
obtain. Another reason might be that people are
ignorant about how to create a good representative
sample. An example of such sampling is the 
person-on-the-street interview conducted by televi-
sion programs. Television interviewers go out on
the street with camera and microphone to talk to a
few people who are convenient to interview. The
people walking past a television studio in the middle
of the day do not represent everyone. Likewise, tel-
evision interviewers tend to pick people who look
“normal” to them and avoid people who are unat-
tractive, disabled, impoverished, elderly, or inartic-
ulate. Another example is a newspaper that asks
readers to clip a questionnaire and mail it in, a Web
site that asks users to click on a choice, or a televi-
sion program that asks viewers to call in their
choices. Such samples may have entertainment
value, but they easily yield highly misleading data

Convenience sampling A nonrandom sample in
which the researcher selects anyone he or she happens
to come across.
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that do not represent the population even when a
large number of people respond.

Maybe you wonder what makes such a sample
nonrepresentative. If you want to know about
everyone in city XYZ that has a population of
1 million, only some read the newspaper, visit a
Web site, or tuned into a program. Also, not every-
one who is reading the newspaper, visiting the Web
site, or has tuned in is equally interested in an issue.
Some people will respond, and there may be many
of them (e.g., 50,000), but they are self-selected.
We cannot generalize accurately from self-selected
people to the entire population. Many in the popu-
lation do not read the newspaper, visit specific Web
sites, or tune into certain television programs, and
even if they did, they may lack the interest and
motivation to participate. Two key ideas to remem-
ber about representative samples are that: (1) self-
selection yields a nonrepresentative sample and (2) a
big sample size alone is not enough to make a
sample representative.

For many purposes, well-designed quota
sampling is an acceptable nonprobability substitute
method for producing a quasi-representative sample.2

In quota sampling, we first identify relevant cate-
gories among the population we are sampling to
capture diversity among units (e.g., male and female;
or under age 30, ages 30 to 60, over age 60). Next
we determine how many cases to get for each
category—this is our “quota.” Thus, we fix a num-
ber of cases in various categories of the sample at
the start.

Let us return to the example of sampling resi-
dents from city XYZ. You select twenty-five males
and twenty-five females under age 30 years of age,
fifty males and fifty females aged 30 to 60, and fif-
teen males and fifteen females over age 60 for a
180-person sample. While this is a start as a popu-
lation’s diversity, it is difficult to represent all pos-
sible population characteristics accurately (see
Figure 1). Nonetheless, quota sampling ensures
that a sample has some diversity. In contrast, in
convenience sampling, everyone in a sample might
be of the same age, gender, or background. The
description of sampling in the Promises I Can Keep

study at the opening of this chapter used quota
sampling (also see Example Box 1, Quota
Samples).

Quota sampling is relatively easy. My students
conducted an opinion survey of the undergraduate
student body using quota sampling. We used three
quota categories—gender, class, and minority/
majority group status—and a convenience selec-
tion method (i.e., a student interviewer approached
anyone in the library, a classroom, the cafeteria).
We set the numbers to be interviewed in each quota
category in advance: 50 percent males and 50 per-
cent females; 35 percent freshman, 25 percent
sophomores, 20 percent juniors, and 20 percent
seniors; and 10 percent minority and 90 percent
majority racially. We picked the proportions based
on approximate representation in the student body
according to university official records. In the
study, a student interviewer approached a person,
confirmed that he or she was a student, and veri-
fied his or her gender, class, and minority/majority
status. If the person fit an unfilled quota (e.g., locate
five freshman males who are racial-ethnic minori-
ties), the person was included in the sample and the
interviewer proceeded to ask survey questions. If
the person did not fit the quota, the interviewer
quickly thanked the person without asking survey
questions and moved on to someone else.

Quota samples have three weaknesses. First,
they capture only a few aspects (e.g., gender and
age) of all population diversity and ignore others
(e.g., race-ethnicity, area of residence in the city,
income level). Second, the fixed number of cases in
each category may not accurately reflect the pro-
portion of cases in the total population for the cate-
gory. Perhaps 20 percent of city residents are over
60 years old but are 10 percent of a quota. Lastly,
we use convenience sampling selection for each

Quota sampling A nonrandom sample in which
the researcher first identifies general categories
into which cases or people will be placed and then
selects cases to reach a predetermined number in
each category.
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that may make it difficult to understand until
you learn it, so next we will review some of its
vocabulary.

The Language of Probability Sampling. You
draw a sample from a large collection of
cases/units. Each case/unit is your sampling
element. It is the unit of analysis or a case in a
population. It could be a person, a family, a neigh-
borhood, a nation, an organization, a written 
document, a symbolic message (television com-
mercial, display of a flag), or a social action (e.g.,
an arrest, a divorce, or a kiss).

The large collection is the population, but
sometimes the word universe is used. To define the
population, you specify the elements and identify

Sampling element The name for a case or single
unit to be sampled.

quota category. For example, we include the first
twenty-five males under age 30 we encounter—
even if all twenty-five are high-income White
lawyers who just returned from a seminar on
financial investments. Nothing prevents us from
sampling only “friendly”-acting people who want
us to pick them.

Probability Sampling Techniques. Probability
sampling is the “gold standard” for creating a rep-
resentative sample. It has a specialized vocabulary

Of 32 adults and children in the street scene, select 10 for the sample:

4 Adult Males 4 Adult Females

1 Female Child1 Male Child

Note: Shading indicates various skin tones.

F IGU RE 1 Quota Sampling
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EXAMPLE BOX 1
Quota Samples

friends, family) among people in different social
classes in major Chinese cities. They selected house-
holds in four of China’s largest metropolitan areas
(Shanghai, Shenzhen, Tianjin, and Wuhan), identified
a set of neighborhoods in each, and then sampled
100 people per city. They had a list of thirteen occu-
pational titles that represented the full range of the
class system in China and 88 percent of all working
people in the four cities. Their quota was to get an
equal number in each city and a sufficient number of
households in each of the thirteen occupational cate-
gories for careful analysis. Thus, only 4 percent of the
people held the position as manager, but nearly 10
percent of the sample were managers, and 40 percent
of people held an industrial worker occupation, but
close to 10 percent of people in the sample were indus-
trial workers. The study goal was to test hypotheses
about whether a household’s social ties are with others
of similar or different social classes. They asked house-
holds to maintain a written log of social visits (in per-
son or via phone) with other people and recorded the
occupation of visitors. This process lasted a year, and
researchers interviewed people every three months.
The primary interest in the study was to compare pat-
terns of social networks across the various social
classes. For example, did managers socialize only with
other managers or with people from a wide range of
classes? Did industrial workers socialize with industrial
workers as well as people in various lower occupations
but not in higher occupations? Because the study goal
was to compare social network patterns across the var-
ious classes, not to have a representative sample that
described the Chinese population, it was a highly effec-
tive use of quota sampling.

Two studies illustrate different uses of quota sampling
in quantitative research. In a study, McMahon,
McAlaney, and Edgar (2007) wanted to examine
public views of binge drinking in the United King-
dom. They noted that most past research was on
young adults and campaigns to curb binge drinking
had been ineffective. The authors wanted to learn
about public perceptions of binge drinking among
the entire adult population. They developed a survey
that asked how people defined binge drinking, the
extent to which they saw it as a concern, and reasons
for and solutions to it. They combined quota
sampling with another sampling method to interview
586 people in one city (Inverclyde, Scotland). For
quota sampling, interviewers approached potential
participants in the streets surrounding a shopping
center and invited them to take part in the survey.
The quota was based on getting a balance of gender
and six age categories. The other method was to go
door-to-door in several low-income neighborhoods.
The authors learned useful information about views
on binge drinking across age groups in both genders
in one city. They found wide variation in definitions
of binge drinking and support for a “false consensus
effect” in which a small number of the heaviest
drinkers see their behavior as normal and socially
accepted. Nonetheless, the sample is not represen-
tative, so findings on the extent of binge drinking in
the public and views about it may not reflect the
behaviors or views within the city’s overall population. 

A second study in China by Bian, Breiger, Davis,
and Galaskiewicz (2005) employed a targeted use of
quota sampling. Their interest was in the difference
between the social networks and social ties (e.g.,

its geographical and temporal boundaries as well
as any other relevant boundaries.

Most probability studies with large samples of
the entire U.S. population have several boundaries.
They include adults over 18 who are residents of
the forty-eight continental states and exclude the
institutionalized population (i.e., people in hospi-
tals, assisted living and nursing homes, military

housing, prisons and jails, homeless and battered
women’s shelters, college dormitories). Ignoring
people in Alaska, Hawaii, and Puerto Rico and
excluding the institutionalized population can throw
off statistics—for example, the unemployment rate
would be higher if the millions of people in prison
were included in calculations (see Western and
Pettit, 2005). Many studies include only English
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speakers, yet as of 2007, roughly 5 percent of U.S.
households were “linguistically isolated” (no one
over 14 spoke English very well (U.S. Census
Bureau, 2007).

To draw a probability sample we start with a
population, but population is an abstract concept.
We must conceptualize and define it more precisely
in a process similar to conceptualization in the mea-
surement process, for example, all people in Tampa,
Florida, or all college students in the state of
Nevada. A target population is the specific collec-
tion of elements we will study (e.g., noninstitution-
alized persons 18 years of age and older with legal
residences with the city limits of Tampa on May 15,
2011; students enrolled full-time in an accredited
two- or four-year postsecondary educational facil-
ity in the state of Nevada in October 2010). In some
ways, the target population is analogous to our use
of a conceptual definition of the measurement pro-
cess.

Populations are in constant motion, so we need
a temporal boundary. For example, in a city at any
given moment, people are dying, boarding or get-
ting off airplanes, and driving across city bound-
aries in cars. Whom should we count? Do we
exclude a long-time city resident who happens to be
on vacation when the time is fixed? A population
(e.g., persons over the age of 18 who are in the city
limits of Milwaukee, Wisconsin, at 12:01 A.M. on
March 1, 2011), is an abstract idea. It exists in the
mind but is difficult to pinpoint concretely (see
Example Box 2, Examples of Populations).

After we conceptualize our population, we
need to create an operational definition for the
abstract population idea in a way that is analogous
to operationalization in the measurement process.
We turn the abstract idea into an empirically

concrete specific list that closely approximates all
population elements. This is our sampling frame.

There are many types of sampling frames: tele-
phone directories, tax records, driver’s license
records, and so on. Listing the elements in a popu-
lation sounds simple, but it is often difficult because
often there is no accurate, up-to-date list of all
elements in a population.

A good sampling frame is crucial for accu-
rate sampling. Any mismatch between a sampling
frame and the conceptually defined population
can create errors. Just as a mismatch between our
theoretical and operational definitions of a variable
weakens measurement validity, a mismatch between
the abstract population and the sampling frame
weakens our sampling validity. The most famous
case in the history of sampling involved an issue
of sampling frames.3 (See Expansion Box 1,
Sampling Frames and the History of Sampling.)

Let us say that our population is all adult resi-
dents in the Pacific coast region of the United States
in 2010. We contact state departments of trans-
portation to obtain lists of everyone with a driver’s

Sampling frame A list of cases in a population, or
the best approximation of them.

Target population The concretely specified large
group of many cases from which a researcher draws
a sample and to which results from the sample are
generalized.

EXAMPLE BOX 2
Examples of Populations

1. All persons ages 16 or older living in Australia on
December 2, 2009, who were not incarcerated in
prison, asylums, and similar institutions

2. All business establishments employing more than
100 persons in Ontario Province, Canada, that oper-
ated in the month of July 2005

3. All admissions to public or private hospitals in the
state of New Jersey between August 1, 1988, and
July 31, 1993

4. All television commercials aired between 7:00 A.M.
and 11:00 P.M. Eastern Standard Time on three
major U.S. networks between November 1 and
November 25, 2004

5. All currently practicing physicians in the United States
who received medical degrees between January 1,
1960, and the present

6. All African American male heroin addicts in the
Vancouver, British Columbia, or Seattle, Washington,
metropolitan areas during 2004
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license in California, Oregon, and Washington. We
know some people do not have driver’s licenses,
although some people drive illegally without them
or do not drive. The lists of people with licenses,
even if updated regularly, quickly goes out of date
as people move into or out of a state. This example
shows that before we use official records, such as
driver’s licenses, as a sampling frame, we must
know how officials produce such records. When the
state of Oregon instituted a requirement that people
show a social security number to obtain a driver’s
license, the number applying for licenses dropped
by 10 percent (from 105,000 issued over three
months of 2007 to 93,000 in the same three months
of 2008). Thus, thousands disappeared from official
records. We could try income tax records, but not
everyone pays taxes. Some people cheat and do not
pay, others have no income and do not have to file,
others have died or have not begun to pay taxes, and
still others have entered or left the area since taxes
were due. Voter registration records exclude as
much as half of the population. In the United States

between 53 and 77 percent of eligible voters are reg-
istered (Table 401, Statistical Abstract of the United
States, 2009). Telephone directories are worse.
Many people are not listed in a telephone directory,
some people have unlisted numbers, and others
have recently moved. With a few exceptions (e.g.,
a list of all students enrolled at a university), it is
difficult to get a perfectly accurate sampling frame.
A sampling frame can include those outside the tar-
get population (e.g., a telephone directory that lists
people who have moved away) or it may omit those
within it (e.g., those without telephones). (See
Example Box 3, Sampling Frame.)

The ratio of a sample size to the size of the tar-
get population is the sampling ratio. If the target

magazine sampled a very large number of people, its
sampling frame did not accurately represent the target
population (i.e., all voters). It excluded people without
telephones or automobiles, a sizable percentage of the
population in 1936. The frame excluded as much as
65 percent of the population, particularly a section of
the voting population (lower income) that tended to
favor Roosevelt. The magazine had been accurate in
earlier elections because people with higher and lower
incomes did not differ in the way they voted. Also,
during earlier elections before the Great Depression,
more low-income people could afford to have tele-
phones and automobiles.

The Literary Digest mistake teaches us two lessons.
First, an accurate sampling frame is crucial. Second,
the size of a sample is less important than how accu-
rately it represents the population. A representative
sample of 50,000 can give more accurate predictions
about the U.S. population than a nonrepresentative
sample of 10 million or 50 million.

EXPANSION BOX 1
Sampling Frames and the History of Sampling

A famous case in the history of sampling illustrates
the limitations of quota sampling and of sampling
frames. The Literary Digest, a major U.S. magazine,
sent postcards to people before the 1920, 1924, 1928,
and 1932 U.S. presidential elections. The magazine
took the names for its sample from automobile reg-
istrations and telephone directories. People returned
the postcards indicating for whom they would vote.
The magazine correctly predicted all four election out-
comes. The magazine’s success with predictions
was well known, and in 1936, it increased the sample
from about 1 million to 10 million. 2.4 million peo-
ple returned postcards they were sent. The magazine
predicted a huge victory for Alf Landon over Franklin
D. Roosevelt. But the Literary Digest was wrong;
Roosevelt won by a landslide. Another random
sample of 50,000 by George Gallup was accurate
within 1percent of the result.

The prediction was wrong for several reasons, but
the sampling mistakes were central. Although the

Sampling ratio The number of cases in the sample
divided by the number of cases in the population or the
sampling frame, or the proportion of the population in
a sample.
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or 20 percent. Usually, we use the number of
elements in a sampling frame as our best estimate
of the size of the target population.

Except for small specialized populations
(e.g., all students in a classroom), when we do not
need to sample, we use data from a sample to
estimate features in the larger population. Any
characteristic of a population (e.g., the percentage
of city residents who smoke cigarettes, the average
height of all women over the age of 21, the percent
of people who believe in UFOs) is a population
parameter. It is the true characteristic of the
population. We do not know the parameter with
absolute certainty for large populations (e.g., an
entire nation), so we can estimate it by using sample
data. Information in the sample used to estimate a
population parameter is called a statistic. (See
Figure 2.)

Random Sampling

In applied mathematics, probability theory relies
on random processes. The word random has sev-
eral meanings. In daily life, it can mean unpre-
dictable, unusual, unexpected, or haphazard. In
mathematics, random has a specific meaning: a
selection process without any pattern. In mathe-
matics, random processes mean that each element
will have an equal probability of being selected. We
can mathematically calculate the probability of out-
comes over many cases with great precision for true
random processes.

EXAMPLE BOX 3
Sampling Frame

A study by Smith, Mitchell, Attebo, and Leeder
(1997) in Australia shows how different sampling
frames can influence a sample. The authors exam-
ined 2,557 people aged 49 and over living in a
defined post code area recruited from a door-to-door
census. Of all addresses, people in 80.9 percent were
contacted and 87.9 percent of the people responded.
The authors searched the telephone directory and
the electoral roll for each person. The telephone
directory listed 82.2 percent and the electoral roll
contained 84.3 percent. Younger people, those who
did not own their own homes, and those born out-
side of Australia were significantly less likely to be
included in either sampling frame. The telephone
directory was also likely to exclude people with
higher occupational prestige while the electoral roll
was likely to exclude unmarried persons and males.

Statistic A word with several meanings including a
numerical estimate of a population parameter com-
puted from a sample.

Parameter A characteristic of the entire population
that is estimated from a sample.

F IGU RE 2 A Model of the Logic of Sampling

Sampling
Frame

Sampling Process

Population What You Actually
Observe in the Data

What You
 Would Like to

Talk About
Sample

Parameter

Statistic

population has 50,000 people and the sample has
150, then the sampling ratio is 150/50,000 � 0.003,
or 0.3 percent. For a target population of 500 and
sample of 100, the sampling ratio is 100/500 � 0.20,
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Random samples yield samples most likely
to truly represent the entire population. They also
allow us to calculate statistically the relationship
between the sample and the population—that is,
the size of the sampling error. The sampling error
is the deviation between what is in the sample data
and an ideal population parameter due to random
processes.

Probability samples rely on random selec-
tion processes. Random selection for sampling
requires more precision, time, and effort than
samples with nonrandom selection. The formal
mathematical procedure specifies exactly which
person to pick for the sample, and it may be very
difficult to locate that specific person! In sampling,
random is not anyone, nor does it mean thought-
less or haphazard. For example, if we are using true
random sampling in a telephone survey, we might
have to call back six or seven times at different
times of the days and on different days, trying to
get a specific person whom the mathematically ran-
dom process identified.4

This chapter does not cover all technical and
statistical details of random sampling. Instead,
we discuss the fundamentals of how probability
sampling works, the difference between good and
bad samples, how to draw a sample, and basic prin-
ciples of sampling in social research. If you plan to
pursue a career in quantitative research, you will
need more mathematical and statistical background
on probability and sampling than space permits here.

Five Ways to Sample Randomly

Simple Random. All probability samples are mod-
eled on the simple random sample that first spec-
ifies the population and target population and
identifies its specific sampling elements (e.g., all
households in Prescott, Arizona, in March 2011).
Next we create an accurate sampling frame and we
then use a true random process (discussed later) to
pick elements from the sampling frame. Beyond cre-
ating an accurate sampling frame, the next difficulty
is that we must locate the specific sampled element
selected by a random process. If the sampled element
is a household, we may have to revisit or call back
five times to contact that specific selected household.

To select elements from a sampling frame, we
will need to create a list of random numbers that will
tell us which elements on it to select. We will need
as many random numbers as there are elements to
be sampled. The random numbers should range
from 1 (the first element on the sampling frame) to
the highest number in our sampling frame. If the
sampling frame lists 15,000 households, and we
want to sample 150 from it, we need a list of 150
random numbers (i.e., numbers generated by a true
random process, from 1 to 15,000).

There are two main ways to obtain a list of ran-
dom numbers. The “old-fashioned” way is to use
a random-number table. Such tables are available
in most statistics and research methods books
including this one (see Appendix). The numbers are
generated by a pure random process so that any
number has an equal probability of appearing in any
position. Today most people use computer pro-
grams to produce lists of random numbers. Such
programs are readily available and often free.

You may ask, once we select an element from
the sampling frame, do we then return it to the
sampling frame, or do we keep it separate? Un-
restricted random sampling is called “random
sampling with replacement”—that is, replacing an
element after sampling it so it has a chance to be
selected again. In simple random sampling with-
out replacement, we “toss out” or ignore elements

Sampling error How much a sample deviates from
being representative of the population.

Random sample A sample using a mathermatically
random method, such as a random-number table or
computer program, so that each sampling element of
a population has an equal probablity of being selected
into the sample.

Random-number table A list of numbers that has
no pattern and that researchers use to create a random
process for selecting cases and other randomization
purposes.

Simple random sample A random sample in which
a researcher creates a sampling frame and uses a pure
random process to select cases so that each sampling
element in the population will have an equal probabil-
ity of being selected.
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already selected for the sample. For almost all prac-
tical purposes in social science, random sampling
is without replacement.

We can see the logic of simple random sampling
with an elementary example: sampling marbles
from a jar. Let us say I have a large jar full of 5,000
marbles, some red and some white. The marble is
my sampling element, the 5,000 marbles are my
population (both target and ideal), and my sample
size is 100. I do not need a sampling frame because
I am dealing with small physical objects. The pop-
ulation parameter I want to estimate is the percent-
age of red marbles in the jar.

I need a random process to select 100 marbles.
For small objects, this is easy; I close my eyes, shake
the jar, pick one marble, and repeat the procedure
100 times. I now have a random sample of marbles.
I count the number of red marbles in my sample to
estimate the percentage of red versus white marbles
in the population. This is a lot easier than counting
all 5,000 marbles. My sample has 52 white and
48 red marbles.

Does this mean that the population parameter
is exactly 48 percent red marbles? Maybe or maybe
not; because of random chance, my specific sample
might be off. I can check my results by dumping the
100 marbles back in the jar, mixing the marbles, and
drawing a second random sample of 100 marbles.
On the second try, my sample has 49 white marbles
and 51 red ones. Now I have a problem. Which is
correct? You might ask how good this random
sampling business is if different samples from the
same population can yield different results. I repeat
the procedure over and over until I have drawn
130 different samples of 100 marbles each (see
Chart 1 for results). Most people might find it eas-
ier to empty the jar and count all 5,000 marbles, but

I want to understand the process of sampling. The
results of my 130 different samples reveal a clear
pattern. The most common mix of red and white
marbles is 50/50. Samples that are close to that split
are more frequent than those with more uneven
splits. The population parameter appears to be 50
percent white and 50 percent red marbles.

Mathematical proofs and empirical tests
demonstrate that the pattern found in Chart 1
always appears. The set of many different samples
is my sampling distribution. It is a distribution of
different samples. It reveals the frequency of dif-
ferent sample outcomes from many separate ran-
dom samples. This pattern appears if the sample
size is 1,000 instead of 100, if there are 10 colors
of marbles instead of 2, if the population has 100
marbles or 10 million marbles instead of 5,000,
and if the sample elements are people, automobiles,
or colleges instead of marbles. In fact, the “bell-
shaped” sampling distribution pattern becomes
clearer as I draw more and more independent ran-
dom samples from a population.

The sampling distribution pattern tells us that
over many separate samples, the true population
parameter (i.e., the 50/50 split in the preceding
example) is more common than any other outcome.
Some samples may deviate from the population
parameter, but they are less common. When we plot
many random samples as in the graph in Chart 1,
the sampling distribution always looks like a nor-
mal or bell-shaped curve. Such a curve is theoreti-
cally important and is used throughout statistics.
The area under a bell-shaped curve is well known
or, in this example, we can quickly figure out the
odds that we will get a specific number of marbles.
If the true population parameter is 50/50, standard
statistical charts tell what the odds of getting 50/50
or a 40/50 or any other split in a random sample are.

The central limit theorem from mathematics
tells us that as the number of different random
samples in a sampling distribution increases toward
infinity, the pattern of samples and of the popula-
tion parameter becomes increasingly predictable.
For a huge number of random samples, the sampling
distribution always forms a normal curve, and
the midpoint of the curve will be the population
parameter.

Sampling distribution A distribution created by
drawing many random samples from the same
population.

Central limit theorem A mathematical relationship
that states when many random samples are drawn
from a population, a normal distribution is formed, and
the center of the distribution for a variable equals the
population parameter.
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CHART 1 Example of Sampling Distribution

RED WHITE NUMBER OF SAMPLES

42 58 1
43 57 1
45 55 2
46 54 4
47 53 8
48 52 12 Number of red and white marbles that were
49 51 21 randomly drawn from a jar of 5,000 marbles
50 50 31 with 100 drawn each time, repeated 130
51 49 20 times for 130 independent random samples.
52 48 13
53 47 9
54 46 5
55 45 2
57 43 1

Total 130

NUMBER OF SAMPLES

31 *
30 *
29 *
28 *
27 *
26 *
25 *
24 *
23 *
22 *
21 * *
20 * * *
19 * * *
18 * * *
17 * * *
16 * * *
15 * * *
14 * * *
13 * * * *
12 * * * * *
11 * * * * *
10 * * * * *
9 * * * * * *
8 * * * * * * *
7 * * * * * * *
6 * * * * * * *
5 * * * * * * * *
4 * * * * * * * * *
3 * * * * * * * * *
2 * * * * * * * * * * *
1 * * * * * * * * * * * * * *

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

NUMBER OF RED MARBLES IN A SAMPLE
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You probably do not have the time or energy to
draw many different samples and just want to draw
one sample. You are not alone. We rarely draw many
random samples except to verify the central limit
theorem. We draw only one random sample, but the
central limit theorem lets us generalize from one
sample to the population. The theorem is about
many samples, but it allows us to calculate the
probability that a particular sample is off from the
population parameter. We will not go into the cal-
culations here.

The important point is that random sampling
does not guarantee that every random sample per-
fectly represents the population. Instead, it means
that most random samples will be close to the pop-
ulation parameter most of the time. In addition, we
can calculate the precise probability that a particu-
lar sample is inaccurate. The central limit theorem
lets us estimate the chance that a particular sample
is unrepresentative or how much it deviates from the
population parameter. It lets us estimate the size of
the sampling error. We do this by using information
from one sample to estimate the sampling distri-
bution and then combine this information with
knowledge of the central limit theorem and area
under a normal curve. This lets us create something
very important, confidence intervals.

The confidence interval is a simple but very
powerful idea. When television or newspaper polls
are reported, you may hear about what journalists
call the “margin of error” being plus or minus 2 per-
centage points. This is a version of confidence inter-
val, which is a range around a specific point that we
use to estimate a population parameter.

We use a range because the statistics of ran-
dom processes are based on probability. They do
not let us predict an exact point. They do allow us
to say with a high level of confidence (e.g., 95 per-
cent) that the true population parameter lies within
a certain range (i.e., the confidence interval). The
calculations for sampling errors or confidence
intervals are beyond the level of the discussion
here. Nonetheless, the sampling distribution is the
key idea that tells us the sampling error and confi-
dence interval. Thus, we cannot say, “This sample
gives a perfect measure of the population parame-
ter,” but we can say, “We are 95 percent certain that
the true population parameter is no more than 2 per-
cent different from what was have found in the
sample.” (See Expansion Box 2, Confidence Inter-
vals.)

Going back to the marble example, I cannot
say, “There are precisely 2,500 red marbles in the
jar based on a random sample.” However, I can say,
“I am 95 percent certain that the population param-
eter lies between 2,450 and 2,550.” I combine the
characteristics of my sample (e.g., its size, the vari-
ation in it) with the central limit theorem to predict
specific ranges around the population parameter
with a specific degree of confidence.

Systematic Sampling. Systematic sampling is
a simple random sampling with a shortcut selection
procedure. Everything is the same except that
instead of using a list of random numbers, we first
calculate a sampling interval to create a quasi-
random selection method. The sampling interval
(i.e., 1 in k, where k is some number) tells us how to
select elements from a sampling frame by skipping
elements in the frame before selecting one for the
sample.

For instance, we want to sample 300 names
from 900. After a random starting point, we select
every third name of the 900 to get a sample of 300.
The sampling interval is 3. Sampling intervals are
easy to compute. We need the sample size and the
population size (or sampling frame size as a best
estimate). We can think of the sampling interval as
the inverse of the sampling ratio. The sampling ratio
for 300 names out of 900 is 300/900 � .333 � 33.3
percent. The sampling interval is 900/300 � 3.

Sampling interval The inverse of the sampling ratio
that is used when selecting cases in systematic
sampling.

Systematic sampling A random sample in which a
researcher selects every kth (e.g., third or twelfth) case
in the sampling frame using a sampling interval.

Confidence intervals A range of values, usually
a little higher and lower than a specific value found in
a sample, within which a researcher has a specified
and high degree of confidence that the population
parameter lies.
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Let us say you draw a sample of nine 12-year-old
children. You weigh them and find that their average
weight, the mean, is 90 pounds with a standard devi-
ation of 36 pounds. You want to create a confidence
interval around your best estimate of the population
parameter (the mean weight for the population of all
12-year-olds). You symbolize the population param-
eter with the Greek letter µ.

Here is how to figure out a confidence interval for
the population mean based on a simple random
sample. You estimate a confidence level around µ by
adding and subtracting a range above and below the
sample mean, your best estimate of µ.

To calculate the confidence interval around the
sample mean, you first calculate something called
the standard error of the mean. Call it standard error
for short. It is your estimate of variability in the
sampling distribution. You use another Greek letter,

σ, to symbolize the standard deviation and add the
letter m as a subscript to it, indicating that it is your
estimate of the standard deviation in the sampling
distribution. Thus, the standard error comes from the
standard deviation in the sampling distribution of all
possible random samples from the population.

You estimate the standard deviation of the
sampling distribution by getting the standard devia-
tion of your sample and adjusting it slightly. To sim-
plify this example, you skip the adjustment and
assume that it equals the sample standard deviation.
To get the standard error, you adjust it for your sample
size symbolized by the letter N. The formula for it is:

Let us make the example more concrete. For the
example, let us look at weight among nine 12-year-
olds. For the sampling distribution of the mean you
use a mean of 90 pounds and a standard deviation
of 36/3 � 12 (note the square root of 9 � 3). The con-
fidence interval has a low and upper limit. Here are
formulas for them.

Lower limit M � Z.95σm
Upper limit M � Z.95σm

In addition to the σm there are two other symbols
now:

M in the formula stands for mean in your sample.
Z.95 stands for the z-score under a bell-shaped or
normal curve at a 95 percent level of confidence (the
most typical level). The z-score for a normal curve is
a standard number (i.e., it is always the same for 95
percent level of confidence, and it happens to be
1.96). We could pick some confidence level other
than 95 percent, but it is the most typical one used.

You now have everything you need to calculate
upper and lower limits of the confidence interval. You
compute them by adding and subtracting 1.96 stan-
dard deviations to/from the mean of 90 as follows:

Lower limit 90 � (1.96)(12) � 66.48
Upper limit 90 � (1.96)(12) � 113.52

sm =

s

2N

EXPANSION BOX 2
Confidence Intervals

The confidence interval is a simple and very powerful
idea; it has excellent mathematics behind it and some
nice formulas. If you have a good mathematics back-
ground, this concept could be helpful. If you are ner-
vous about complex mathematical formulas with
many Greek symbols, here is a simple example with
a simple formula (a minimum of Greek). The interval
is a range that goes above and below an estimate of
some characteristic of the population (i.e., population
parameters), such as its average or statistical mean.
The interval has an upper and lower limit. The
example illustrates a simplified way to calculate a
confidence interval and shows how sample size and
sample homogeneity affect it.

Lower Limit
of Interval

Upper Limit
of Interval

SAMPLE
MEAN

Confidence Interval

(continued)

N
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In most cases, a simple random sample and a
systematic sample yield equivalent results. One
important situation in which systematic sampling
cannot be substituted for simple random sampling
occurs when the elements in a sample are organized
in some kind of cycle or pattern. For example, our
sampling frame is organized as a list of married
couples with the male first and the female second
(see Table 1). Such a pattern gives us an unrepre-
sentative sample if systematic sampling is used. Our
systematic sample can be nonrepresentative and
include only wives because of the organization of
the cases. When our sample frame is organized as
couples, even-numbered sampling intervals result
in samples with all husbands or all wives.

Figure 3 illustrates simple random sampling
and systematic sampling. Notice that different
names were drawn in each sample. For example,
H. Adams appears in both samples, but C. Droullard

This says you can be 95 percent confident that the
population parameter lies somewhere between 66.48
and 113.52 pounds. You determined the upper and
lower limits by adding and subtracting an amount to
the sample mean (90 pounds in your example). You
use 1.96 because it is the z-score when you want to
be 95 percent confident. You calculated 12 as the
standard error of the mean based on your sample size
and the standard deviation of your sample.

You might see the wide range of 66 to 113 pounds
and think it is large, and you might ask why is the
sample small, with just nine children?

Here is how increasing the sample size affects the
confidence interval. Let us say that instead of a
sample of nine children you had 900 12-year-olds
(luckily the square root of 900 is easy to figure out:
30). If everything remained the same, your σm with
a sample of 900 is 36/30 � 1.2. Now your confidence
interval is as follows

Lower limit 90 � (1.96)(1.2) � 87.765
Upper limit 90 � (1.96)(1.2) � 92.352

With the much larger sample size, you can be 95 per-
cent confident that the population parameter of

average weight is somewhere between 87.765 and
92.352 pounds.

Here is how having a very homogeneous sample
affects the confidence interval. Let us say that you
had a standard deviation of 3.6 pounds, not 36
pounds. If everything else remained the same, your
σm with a standard deviation of 3.6 is 3.6/9 � 0.4

Now your confidence interval is as follows

Lower limit 90 � (1.96)(0.4) � 89.215
Upper limit 90 � (1.96)(0.4) � 90.784

With the very homogeneous sample, you can be
95 percent confident that the population parameter
of average weight is somewhere between 89.215 and
90.784 pounds.

Let us review the confidence intervals as sample
size and standard deviation change:

Sample size � 9, standard deviation � 36. Confi-
dence interval is 66 to 113 pounds.
Sample size � 900, standard deviation � 36. Confi-
dence interval is 87.765 to 92.352 pounds.
Sample size � 9, standard deviation � 3.6 pounds.
Confidence interval is 89.215 to 90.784 pounds.

EXPANSION BOX 2
(continued)

TABLE 1 Problems with Systematic Sampling
of Cyclical Data

CASE

1 Husband
2a Wife
3 Husband
4 Wife
5 Husband
6a Wife
7 Husband
8 Wife
9 Husband

10a Wife
11 Husband
12 Wife

Random start = 2; Sampling interval = 4.
aSelected into sample.
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FIGURE 3 How to Draw Simple Random and Systematic Samples

1. Number each case in the sampling frame in
sequence. The list of 40 names is in alphabetical
order, numbered from 1 to 40.

2. Decide on a sample size. We will draw two 25 per-
cent (10-name) samples.

3. For a simple random sample, locate a random-
number table (see excerpt to this figure). Before
using the random-number table, count the largest
number of digits needed for the sample (e.g., with
40 names, two digits are needed; for 100 to 999,
three digits; for 1,000 to 9,999, four digits). Begin
anywhere on the random-number table (we will
begin in the upper left) and take a set of digits (we
will take the last two). Mark the number on the
sampling frame that corresponds to the chosen
random number to indicate that the case is in the
sample. If the number is too large (over 40), ignore
it. If the number appears more than once (10 and

21 occurred twice in the example), ignore the sec-
ond occurrence. Continue until the number of
cases in the sample (10 in our example) is reached.

4. For a systematic sample, begin with a random start.
The easiest way to do this is to point blindly at the
random-number table, then take the closest num-
ber that appears on the sampling frame. In the
example, 18 was chosen. Start with the random
number and then count the sampling interval, or 4
in our example, to come to the first number. Mark
it, and then count the sampling interval for the next
number. Continue to the end of the list. Continue
counting the sampling interval as if the beginning
of the list were attached to the end of the list (like a
circle). Keep counting until ending close to the start,
or on the start if the sampling interval divides evenly
into the total of the sampling frame.

Simple Simple
No. Name (Gender) Random Systematic No. Name (Gender) Random Systematic

01 Abrams, J. (M) 21 Hjelmhaug, N. (M) Yes*
02 Adams, H. (F) Yes Yes (6) 22 Huang, J. (F) Yes Yes (1)
03 Anderson, H. (M) 23 Ivono, V. (F)
04 Arminond, L. (M) 24 Jaquees, J. (M)
05 Boorstein, A. (M) 25 Johnson, A. (F)
06 Breitsprecher, P. (M) Yes Yes (7) 26 Kennedy, M. (F) Yes (2)
07 Brown, D. (F) 27 Koschoreck, L. (F)
08 Cattelino, J. (F) 28 Koykkar, J. (M)
09 Cidoni, S. (M) 29 Kozlowski, C. (F) Yes
10 Davis, L. (F) Yes* Yes (8) 30 Laurent, J. (M) Yes (3)
11 Droullard, C. (M) Yes 31 Lee, R. (F)
12 Durette, R. (F) 32 Ling, C. (M)
13 Elsnau, K. (F) Yes 33 McKinnon, K. (F)
14 Falconer, T. (M) Yes (9) 34 Min, H. (F) Yes Yes (4)
15 Fuerstenberg, J. (M) 35 Moini, A. (F)
16 Fulton, P. (F) 36 Navarre, H. (M)
17 Gnewuch, S. (F) 37 O’Sullivan, C. (M)
18 Green, C. (M) START, 38 Oh, J. (M) Yes (5)

Yes (10) 39 Olson, J. (M)
19 Goodwanda, T. (F) Yes 40 Ortiz y Garcia, L. (F)
20 Harris, B. (M)

Excerpt from a Random-Number Table (for Simple Random Sample)

15010 18590 00102 42210 94174 22099
90122 38221 21529 00013 04734 60457
67256 13887 94119 11077 01061 27779
13761 23390 12947 21280 44506 36457
81994 66611 16597 44457 07621 51949
79180 25992 46178 23992 62108 43232
07984 47169 88094 82752 15318 11921

*Numbers that appeared twice in random numbers selected.
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is in only the simple random sample. This is because
it is rare for any two random samples to be identical.

The sampling frame contains twenty males
and twenty females (gender is in parentheses after
each name). The simple random sample yielded
three males and seven females, and the systematic
sample yielded five males and five females. Does
this mean that systematic sampling is more accu-
rate? No. To check this, we draw a new sample
using different random numbers, taking the first
two digits and beginning at the end (e.g., 11 from
11921 and then 43 from 43232). Also, we draw a
new systematic sample with a different random
start. The last time the random start was 18, but we
now try a random start of 11. What did we find?
How many of each gender?5

Stratified Sampling. When we use stratified
sampling, we first divide the population into sub-
populations (strata) on the basis of supplementary
information.6 After dividing the population into
strata, we draw a random sample from each sub-
population. In stratified sampling, we control the
relative size of each stratum rather than letting ran-
dom processes control it. This guarantees represen-
tativeness or fixes the proportion of different strata
within a sample. Of course, the necessary informa-
tion about strata is not always available.

In general, if the stratum information is accu-
rate, stratified sampling produces samples that are
more representative of the population than those
of simple random sampling. A simple example illus-
trates why this is so. Imagine a population that is
51 percent female and 49 percent male; the popula-
tion parameter is a gender ratio of 51 to 49. With
stratified sampling, we draw random samples among
females and among males so that the sample con-
tains a 51 to 49 percent gender ratio. If we had used
simple random sampling, it would be possible for a
random sample to be off from the true gender ratio

in the population. Thus, we have fewer errors rep-
resenting the population and a smaller sampling
error with stratified sampling.

We use stratified sampling when a stratum of
interest is a small percentage of a population and
random processes could miss the stratum by
chance. For example, we draw a sample of 200
from 20,000 college students using information
from the college registrar’s office. It indicates that
2 percent of the 20,000 students, or 400, are divorced
women with children under the age of 5. For our
study, this group is important to include in the
sample. There would be four such students (2 per-
cent of 200) in a representative sample, but we
could miss them by chance in one simple random
sample. With stratified sampling, we obtain a list of
the 400 such students from the registrar and ran-
domly select four from it. This guarantees that the
sample represents the population with regard to the
important strata (see Example Box 4, Illustration
of Stratified Sampling).

In special situations, we may want the propor-
tion of a stratum in a sample to differ from its true
proportion in the population. For example, the pop-
ulation contains 0.5 percent Aleuts, but we want to
examine Aleuts in particular. We oversample so that
Aleuts make up 10 percent of the sample. With this
type of disproportionate stratified sample, we can-
not generalize directly from the sample to the pop-
ulation without special adjustments.

In some situations, we want the proportion of
a stratum or subgroup to differ from its true pro-
portion in the population. For example, Davis
and Smith (1992) reported that the 1987 General
Social Survey oversampled African Americans. A
random sample of the U.S. population yielded 191
Blacks. Davis and Smith conducted a separate
sample of African Americans to increase it to 544.
The 191 Black respondents are about 13 percent of
the random sample, roughly equal to the percent-
age of Blacks in the U.S. population. The 544
Blacks are 30 percent of the disproportionate
sample. The researcher who wants to use the entire
sample must adjust it to reduce the number of
sampled African Americans before generalizing to
the U.S. population. Disproportionate sampling
helps the researcher who wants to focus on issues

Stratified sampling A random sample in which the
researcher first identifies a set of mutually exclusive and
exhaustive categories, divides the sampling frame by
the categories, and then uses random selection to
select cases from each category.
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EXAMPLE BOX 4
Illustration of Stratified Sampling

Sample of 100 Staff of General Hospital, Stratified by Position

POPULATION
SIMPLE RANDOM
SAMPLE

STRATIFIED
SAMPLE

ERRORS COMPARED 
POSITION N Percent n n TO THE POPULATION

Administrators 15 2.88 1 3 –2
Staff physicians 25 4.81 2 5 –3
Intern physicians 25 4.81 6 5 +1
Registered nurses 100 19.23 22 19 +3
Nurse assistants 100 19.23 21 19 +2
Medical technicians 75 14.42 9 14 +5
Orderlies 50 9.62 8 10 –2
Clerks 75 14.42 5 14 +1
Maintenance staff 30 5.77 3 6 –3
Cleaning staff 25 4.81 3 5 –2

Total 520 100.00 100 100

Randomly select 3 of 15 administrators, 5 of 25 staff physicians, and so on.
Note: Traditionally, N symbolizes the number in the population and n represents the number in the sample.
The simple random sample overrepresents nurses, nursing assistants, and medical technicians but underrepresents
administrators, staff physicians, maintenance staff, and cleaning staff. The stratified sample gives an accurate representation of
each position.

most relevant to a subpopulation. In this case, he or
she can more accurately generalize to African
Americans using the 544 respondents instead of a
sample of only 191. The larger sample is more likely
to reflect the full diversity of the African American
subpopulation.

Cluster Sampling. We use cluster sampling to
address two problems: the lack of a good sampling
frame for a dispersed population and the high cost
to reach a sampled element.7 For example, there is
no single list of all automobile mechanics in North
America. Even if we had an accurate sampling
frame, it would cost too much to reach the sampled
mechanics who are geographically spread out.
Instead of using a single sampling frame, we use a
sampling design that involves multiple stages and
clusters.

A cluster is a unit that contains final sampling
elements but can be treated temporarily as a
sampling element itself. First we sample clusters,

and then we draw a second sample from within the
clusters selected in the first stage of sampling. We
randomly sample clusters and then randomly
sample elements from within the selected clusters.
This has a significant practical advantage when we
can create a good sampling frame of clusters even
if it is impossible to create one for sampling ele-
ments. Once we have a sample of clusters, creating
a sampling frame for elements within each cluster
becomes manageable. A second advantage for geo-
graphically dispersed populations is that elements
within each cluster are physically closer to one
another, which can produce a savings in locating or
reaching each element.

Cluster sampling A type of random sample that uses
multiple stages and is often used to cover wide geo-
graphic areas in which aggregated units are randomly
selected and then samples are drawn from the
sampled aggregated units or clusters.
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We draw several samples in stages in cluster
sampling. In a three-stage sample, stage 1 is a ran-
dom sampling of large clusters; stage 2 is a random
sampling of small clusters within each selected
large cluster; and the last stage is a sampling of ele-
ments from within the sampled small clusters. For
example, we want a sample of individuals from
Mapleville. First, we randomly sample city blocks,
then households within blocks, and then individu-
als within households (see Chart 2). Although there
is no accurate list of all residents of Mapleville, there
is an accurate list of blocks in the city. After select-
ing a random sample of blocks, we count all house-
holds on the selected blocks to create a sample
frame for each block. Then we use the list of house-
holds to draw a random sample at the stage of
sampling households. Finally, we choose a specific
individual within each sampled household.

Cluster sampling is usually less expensive than
simple random sampling, but it is less accurate.
Each stage in cluster sampling introduces sampling
errors, so a multistage cluster sample has more
sampling errors than a one-stage random sample.8

When we use cluster sampling, we must decide
the number of clusters and the number of elements
within clusters. For example, in a two-stage cluster
sample of 240 people from Mapleville, we could
randomly select 120 clusters and select 2 elements
from each or randomly select two clusters and select
120 elements in each. Which is better? A design
with more clusters is better because elements within
clusters (e.g., people living on the same block) tend
to be similar to each other (e.g., people on the same
block tend to be more alike than those on different
blocks). If few clusters are chosen, many similar
elements could be selected, which would be less
representative of the total population. For example,
we could select two blocks with relatively wealthy
people and draw 120 people from each block. This
would be less representative than a sample with 120
different city blocks and 2 individuals chosen from
each.

When we sample from a large geographical
area and must travel to each element, cluster
sampling significantly reduces travel costs. As
usual, there is a trade-off between accuracy and cost.
For example, Alan, Ricardo, and Barbara each

personally interview a sample of 1,500 students
who represent the population of all college stu-
dents in North America. Alan obtains an accurate
sampling frame of all students and uses simple
random sampling. He travels to 1,000 different
locations to interview one or two students at each.
Ricardo draws a random sample of three colleges
from a list of all 3,000 colleges and then visits the
three and selects 500 students from each. Barbara
draws a random sample of 300 colleges. She visits
the 300 and selects 5 students at each. If travel costs
average $250 per location, Alan’s travel bill is
$250,000, Ricardo’s is $750, and Barbara’s is
$75,000. Alan’s sample is highly accurate, but
Barbara’s is only slightly less accurate for one-third
the cost. Ricardo’s sample is the cheapest, but it is
not representative.

Within-Household Sampling. Once we sample a
household or similar unit (e.g., family or dwelling
unit) in cluster sampling, the question arises as to
whom we should choose. A potential source of bias
is introduced if the first person who answers the
telephone, the door, or the mail is used in the
sample. The first person who answers should be
selected only if his or her answering is the result of
a truly random process. This is rarely the case. Cer-
tain people are unlikely to be at home, and in some
households one person (e.g., a husband) is more
likely than another to answer the telephone or door.
Researchers use within-household sampling to
ensure that after a random household is chosen, the
individual within the household is also selected
randomly.

We can randomly select a person within a
household in several ways.9 The most common
method is to use a selection table specifying whom
you should pick (e.g., oldest male, youngest female)
after determining the size and composition of the
household (see Table 2). This removes any bias that
might arise from choosing the first person to answer
the door or telephone or from the interviewer’s
selection of the person who appears to be friend-
liest.

Probability Proportionate to Size (PPS). There are
two ways we can draw cluster samples. The method
just described is proportionate or unweighted
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CHART 2 Illustration of Cluster Sampling

Goal: Draw a random sample of 240 people in Mapleville.

Step 1: Mapleville has 55 districts. Randomly select 6 districts.

1 2 3* 4 5 6 7 8 9 10 11 12 13 14 15* 16 17 18 19 20 21 22 23 24 25 26 
27* 28 29 30 31* 32 33 34 35 36 37 38 39 40* 41 42 43 44 45 46 47 48 
49 50 51 52 53 54* 55

* = Randomly selected.

Step 2: Divide the selected districts into blocks. Each district contains 20 blocks. Randomly select
4 blocks from the district.

Example of District 3 (selected in step 1):

1 2 3 4* 5 6 7 8 9 10* 11 12 13* 14 15 16 17* 18 19 20

* = Randomly selected.

Step 3: Divide blocks into households. Randomly select households.

Example of Block 4 of District 3 (selected in step 2):

Block 4 contains a mix of single-family homes, duplexes, and four-unit apartment buildings. It is
bounded by Oak Street, River Road, South Avenue, and Greenview Drive. There are 45 households
on the block. Randomly select 10 households from the 45.

1 #1 Oak Street 16 " 31* "
2 #3 Oak Street 17* #154 River Road 32* "
3* #5 Oak Street 18 #156 River Road 33 "
4 " 19* #158 River Road 34 #156 Greenview Drive
5 " 20* " 35* "
6 " 21 #13 South Avenue 36 "
7 #7 Oak Street 22 " 37 "
8 " 23 #11 South Avenue 38 "
9* #150 River Road 24 #9 South Avenue 39 #158 Greenview Drive

10* " 25 #7 South Avenue 40 "
11 " 26 #5 South Avenue 41 "
12 " 27 #3 South Avenue 42 "
13 #152 River Road 28 #1 South Avenue 43 #160 Greenview Drive
14 " 29* " 44 "
15 " 30 #152 Greenview Drive 45 "

* = Randomly selected.

Step 4: Select a respondent within each household.

Summary of cluster sampling:
1 person randomly selected per household

10 households randomly selected per block
4 blocks randomly selected per district
6 districts randomly selected in the city
1 x 10 x 4 x 6 = 240 people in sample
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TABLE 2 Within-Household Sampling

Selecting individuals within sampled households. Number selected is the household chosen in Chart 2.

NUMBER LAST NAME ADULTS (OVER AGE 18) SELECTED RESPONDENT

3 Able 1 male, 1 female Female
9 Bharadwaj 2 females Youngest female

10 DiPiazza 1 male, 2 females Oldest female
17 Wucivic 2 males, 1 female Youngest male
19 Cseri 2 females Youngest female
20 Taylor 1 male, 3 females Second oldest female
29 Velu 2 males, 2 females Oldest male
31 Wong 1 male, 1 female Female
32 Gray 1 male Male
35 Mall-Krinke 1 male, 2 females Oldest female

EXAMPLE SELECTION TABLE (ONLY ADULTS COUNTED)

MALES FEMALES WHOM TO SELECT MALES FEMALES WHOM TO SELECT

1 0 Male 2 2 Oldest male
2 0 Oldest male 2 3 Youngest female
3 0 Youngest male 3 2 Second oldest male
4+ 0 Second oldest male 3 3 Second oldest female
0 1 Female 3 4 Third oldest female
0 2 Youngest female 4 3 Second oldest male
0 3 Second oldest female 4 4 Third oldest male
0 4+ Oldest female 4 5+ Youngest female
1 1 Female 5+ 4 Second oldest male
1 2 Oldest female 5+ 5+ Fourth oldest female
1 3 Second oldest female
2 1 Youngest male
3 1 Second oldest male

+ = or more

cluster sampling. It is proportionate because the
size of each cluster (or number of elements at each
stage) is the same. The more common situation is
for the cluster groups to be of different sizes. When
this is the case, we must adjust the probability for
each stage in sampling.

The foregoing example with Alan, Barbara, and
Ricardo illustrates the problem with unweighted
cluster sampling. Barbara drew a simple random
sample of 300 colleges from a list of all 3,000
colleges, but she made a mistake—unless every

college has an identical number of students. Her
method gave each college an equal chance of being
selected—a 300/3,000, or 10 percent chance. But
colleges have different numbers of students, so each
student does not have an equal chance to end up in
her sample.

Barbara listed every college and sampled
from the list. A large university with 40,000 students
and a small college with 400 students had an
equal chance of being selected. But if she chose
the large university, the chance of a given student
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at that college being selected was 5 in 40,000
(5/40,000 � 0.0125 percent), whereas a student at
the small college had a 5 in 400 (5/400 � 1.25 per-
cent) chance of being selected. The small-college
student was 100 times more likely to be in her
sample. The total probability of a student from the
large university being selected was 0.125 percent
(10 � 0.0125) while it was 12.5 percent (10 � 1.25)
for the small-college student. Barbara violated a
principle of random sampling: that each element has
an equal chance to be selected into the sample.

If Barbara uses probability proportionate to
size (PPS) and samples correctly, then each final
sampling element or student will have an equal
probability of being selected. She does this by
adjusting the chances of selecting a college in the
first stage of sampling. She must give large colleges
with more students a greater chance of being
selected and small colleges a smaller chance. She
adjusts the probability of selecting a college on
the basis of the proportion of all students in the
population who attend it. Thus, a college with
40,000 students will be 100 times more likely to
be selected than one with 400 students. (See
Example Box 5, Probability Proportionate to
Size (PPS) Sampling.)

Random-Digit Dialing. Random-digit dialing
(RDD) is a sampling technique used in research
projects in which the general public is interviewed
by telephone.10 It does not use the published
telephone directory as the sampling frame. Using a
telephone directory as the sampling frame misses
three kinds of people: those without telephones,
those who have recently moved, and those with
unlisted numbers. Those without phones (e.g., the
poor, the uneducated, and transients) are missed in
any telephone interview study, but 95 percent of
people in advanced industrialized nations have a
telephone. Several types of people have unlisted
numbers: those who want to avoid collection agen-
cies; those who are very wealthy; and those who
want to have privacy and to avoid obscene calls,
salespeople, and prank calls. In some urban areas
in the United States, the percentage of unlisted
numbers is 50 percent. In addition, people change

their residences, so annual directories have numbers
for people who have moved away and do not list
those who have recently moved into an area.

If we use RDD, we randomly select telephone
numbers, thereby avoiding the problems of tele-
phone directories. The population is telephone num-
bers, not people with telephones. RDD is not
difficult, but it takes time and can frustrate the per-
son doing the calling.

Here is how RDD works in the United States.
Telephone numbers have three parts: a three-digit
area code, a three-digit exchange number or central
office code, and a four-digit number. For example,
the area code for Madison, Wisconsin, is 608, and
there are many exchanges within the area code (e.g.,
221, 993, 767, 455), but not all of the 999 possible
three-digit exchanges (from 001 to 999) are active.
Likewise, not all of the 9,999 possible four-digit
numbers in an exchange (from 0000 to 9999) are
being used. Some numbers are reserved for future
expansion, are disconnected, or are temporarily
withdrawn after someone moves. Thus, a possible
U.S. telephone number consists of an active area
code, an active exchange number, and a four-digit
number in an exchange.

In RDD, a researcher identifies active area
codes and exchanges and then randomly selects
four-digit numbers. A problem is that the researcher
can select any number in an exchange. This means
that some selected numbers are out of service,
disconnected, pay phones, or numbers for busi-
nesses; only some numbers are what the researcher
wants: working residential phone numbers. Until
the researcher calls, it is not possible to know
whether the number is a working residential
number. This means spending much time reaching
numbers that are disconnected, are for businesses,
and so forth. Research organizations often use

Probability proportionate to size (PPS) An adjust-
ment made in cluster sampling when each cluster does
not have the same number of sampling elements.

Random-digit dialing (RDD) A method of randomly
selecting cases for telephone interviews that uses all
possible telephone numbers as a sampling frame.
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EXAMPLE BOX 5
Probability Proportionate to Size (PPS) Sampling

adjusted cluster units of 10 persons each (because
that is how many there are in the semirural blocks)
and substitutes them for city blocks in the first stage
of sampling. The 162 semirural blocks are unchanged,
but after adjustment, he has 20 X 200 = 4,000 units
for the very high density blocks, 200 X 80 = 16,000
units for the high-density blocks, and so forth, for a
total of 49,162 such units. Henry now numbers each
block, using the adjusted cluster units, with many
blocks getting multiple numbers. For example, he
assigns numbers 1 to 200 to the first very high density
block, and so forth, as follows:

1 Very high density block #1

2 Very high density block #1

3 Very high density block #1

. . . and so forth

3,999 Very high density block #20

4,000 Very high density block #20

4,001 High-density block #1

4,002 High-density block #2

. . . and so forth

49,160 Semirural block #160

49,161 Semirural block #161

49,162 Semirural block #162

Henry still wants to interview about 220 people
and wants to select one person from each adjusted
cluster unit. He uses simple random sample methods
to select 220 of the 49,162 adjusted cluster units. He
can then convert the cluster units back to city blocks.
For example, if Henry randomly selected numbers
25 and 184, both are in very high density block #1,
telling him to select two people from that block. If he
randomly picked the number 49,161, he selects one
person in semirural block #161. Henry now goes to
each selected block, identifies all housing units in that
block, and randomly selects among housing units. Of
course, Henry may use within-household sampling
after he selects a housing unit.

Henry wants to conduct one-hour, in-person inter-
views with people living in the city of Riverdale, which
is spread out over a large area. Henry wants to reduce
his travel time and expenses, so he uses a cluster
sampling design. The last census reported that the
city had about 490,000 people. Henry can interview
only about 220 people, or about 0.05 percent of the
city population. He first gathers maps from the city
tax office and fire department, and retrieves census
information on city blocks. He learns that there are
2,182 city blocks. At first, he thinks he can randomly
select 10 percent of the blocks (i.e., 218), go to a block
and count housing units, and then locate one person
to interview in each housing unit (house, apartment,
etc.), but the blocks are of unequal geographic and
population size. He studies the population density of
the blocks and estimates the number of people in
each, and then develops a five-part classification
based on the average size of a block as in the fol-
lowing chart.

Henry realizes that randomly selecting city blocks
without adjustment will not give each person an
equal chance of being selected. For example, 1 very
high-density block has the same number of people
as 40 low-density blocks. Henry adjusts proportion-
ately to the block size. The easiest way to do this is
to convert all city blocks to equal-size units based
on the smallest cluster, or the semirural city blocks.
For example, there are 2,000/10 or 200 times more
people in a high-density block than a semirural
block, so Henry increases the odds of selecting such
a block to make its probability 200 times higher
than a semirural block. Essentially, Henry creates

Block Type
Number of

Clusters

Average 
Number People

per Block

Very high density 20 2,000
High density 200 800
Medium density 800 300
Low density 1,000 50
Semirural 162 10
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computers to select random digits and dial the
phone automatically. This speeds the process, but a
human must still listen and find out whether the
number is a working residential one (see Expansion
Box 3, Random Digit Dialing.)

The sampling element in RDD is the phone
number, not the person or the household. Several
families or individuals can share the same phone
number, and in other situations, each person may
have a separate phone number. This means that after
a working residential phone is reached, a second
stage of sampling, within household sampling, is
necessary to select the person to be interviewed.

Example Box 6, (Example Sample, the 2006
General Social Survey) illustrates how the many
sampling terms and ideas can be used together in a
specific real-life situation.

EXPANSION BOX 3
Random-Digit Dialing (RDD)

During the past decade, participation in RDD surveys
has declined. This is due to factors such as new call-
screening technologies, heightened privacy concerns
due to increased telemarketing calls, a proliferation
of nonhousehold telephone numbers, and increased
cell telephone users (most RDD samples include only
landline numbers). When they compared a new tech-
nique, address-based sampling (ABS), to RDD for the
U.S. adult population, Link et al. (2008) estimated
that RDD sampling frames may be missing 15–19
percent of the population. Although the alternative
was superior to RDD in some respects, ABS had other
limitations including overrepresentation of English-
speaking non-Hispanics and more educated persons
than RDD. One issue in RDD sampling involves
reaching someone by phone. A researcher might call
a phone number dozens of times that is never
answered. Does the nonanswer mean an eligible per-
son is not answering or that the number is not really
connected with a person? A study (Kennedy, Keeter,
and Dimock, 2008) of this issue estimates that about
half (47 percent) of unanswered calls in which there
are six call-back attempts have an eligible person
who is not being reached.

Decision Regarding Sample Size

New social researchers often ask, “How large does
my sample have to be?” The best answer is, “It
depends.” It depends on population characteristics,
the type of data analysis to be employed, and the
degree of confidence in sample accuracy needed for
research purposes. As noted, a large sample size
alone does not guarantee a representative sample.
A large sample without random sampling or with a
poor sampling frame creates a less representative
sample than a smaller one that has careful random
sampling and an excellent sampling frame.

We can address the question of sample size in
two ways. One method is to make assumptions
about the population and use statistical equations
about random sampling processes. The calculation
of sample size by this method requires a statistical
discussion that goes beyond the level of this text.11

We must make assumptions about the degree of
confidence (or number of errors) that is acceptable
and the degree of variation in the population. In gen-
eral, the more diverse a population, the more pre-
cise is the statistical analysis, the more variables will
be examined simultaneously, and the greater confi-
dence is required in sample accuracy (e.g., it makes
a difference in critical health outcomes, huge finan-
cial loss, or the freedom or incarceration of inno-
cent people), the larger the required sample size.
The flip side is that samples from homogeneous
populations with simple data analysis of one or a
few variables that are used for low-risk decisions
can be equally effective when they are smaller.

A second method to decide a sample size is a
rule of thumb, a conventional or commonly accepted
amount. We use rules of thumb because we rarely
have the information required by the statistical esti-
mation method. Also, these rules give sample sizes
close to those of the statistical method. Rules of
thumb are based on past experience with samples that
have met the requirements of the statistical method.

A major principle of sample size is that the
smaller the population, the larger the sampling ratio
has to be for a sample that has a high probability of
yielding the same results as the entire population.
Larger populations permit smaller sampling ratios
for equally good samples because as the population
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EXAMPLE BOX 6
Example Sample, the 2006 General Social Survey

Sampling has many terms for the different types
of samples. A complex sample illustrates how
researchers use them. We can look at the 2006
sample for the best-known national U.S. survey in
sociology, the General Social Survey (GSS). It has
been conducted since 1972. Its sampling has been
updated several times over the years based on the
most sophisticated social science sampling tech-
niques to produce a representative population within
practical cost limits. The population consists of all res-
ident adults (18 years of age or older) in the United
States for the universe of all Americans. The target
population consists of all English- or Spanish-speak-
ing mentally competent adults who live in house-
holds but excludes people living in institutional
settings. The researchers used a complex multistage
area probability sample to the block or segment level.
At the block level, they used quota sampling with
quotas based on gender, age, and employment sta-
tus. They selected equal numbers of men and
women as well as persons over and under 35 years
of age.

The sample design combined a cluster sample
and a stratified sample. U.S. territory was divided into
standard metropolitan statistical areas (SMSAs, a U.S.
Census Bureau classification) and nonmetropolitan
counties. The SMSAs and counties were stratified by
region, age, and race before selection. Researchers
adjusted clusters using probability proportionate to
size (PPS) based on the number of housing units in
each county or SMSA.

The sampling design had three basic stages.
Stage 1: Randomly select a “primary sampling unit”
(a U.S. census tract, a part of a SMSA, or a county)
from among the stratified “primary sampling units.”
Researchers also classified units by whether there
were stable mailing addresses in a geographic area
or others. Stage 2: Randomly select smaller geo-
graphic units (e.g., a census tract, parts of a county),
and Stage 3: Randomly select housing units on
blocks or similar geographic units. As a final stage,
researchers used the household as the sampling ele-
ment and randomly selected households from the
addresses in the block. After selecting an address, an
interviewer contacted the household and chose an
eligible respondent from it. The interviewer looked
at a quota selection table for possible respondents
and interviewed a type of respondent (e.g., second
oldest) based on the table. Interviewers used
computer-assisted personal interviewing (CAPI).

In the 2006 sample, researchers first identified
9,535 possible household addresses or locations.
However, this number dropped to 7,987 after they
eliminated vacant addresses and ones where no
one who spoke either English or Spanish lived. After
taking into account people who refused to partici-
pate, were too ill, were ineligible, or did not finish an
interview (23.3%), the final sample included 4,510
persons (for details, see http://publicdata.norc.org:
41000/gss/Documents/Codebook/A.pdf)

size grows, the returns in accuracy for sample size
decrease.

In practical terms, this means for small popula-
tions (under 500), we need a large sampling ratio
(about 30 percent) or 150 people, while for large
populations (over 150,000), we can obtain equally
good accuracy with a smaller sampling ratio (1 per-
cent), and samples of about 1,500 can be equally
accurate, all things being the same. Notice that the
population of 150,000 is 30 times larger but the
sample is just 10 times larger. Turning to very large
populations (more than 10 million), we can achieve
accuracy with tiny sampling ratios (0.025 percent),

or samples of about 2,500. The size of the population
ceases to be relevant once the sampling ratio is very
small, and samples of about 2,500 are as accurate for
populations of 200 million as for 10 million. These
are approximate sizes, and practical limitations (e.g.,
cost) also play a role.

A related principle is that for small samples, a
small increase in sample size produces a big gain in
accuracy. Equal increases in sample size produce
an increase in accuracy more for small than for large
samples. For example, an increase in sample size
from 50 to 100 reduces errors from 7.1 percent to
2.1 percent, but an increase from 1,000 to 2,000
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TABLE 3 Sample Size of a Random
Sample for Different Populations with a 
99 Percent Confidence Level

POPULATION 
SIZE

SAMPLE 
SIZE

% POPULATION
IN SAMPLE

200 171 85.5%
500 352 70.4%

1,000 543 54.3%
2,000 745 37.2%
5,000 960 19.2%

10,000 1,061 10.6%
20,000 1,121 5.6%
50,000 1,160 2.3%

100,000 1,173 1.2%

decreases errors from only 1.6 percent to 1.1 per-
cent.12 (See Table 3.)

Notice that our plans for data analysis influ-
ence the required sample size. If we want to analyze
many small subgroups within the population, we
need a larger sample. Let us say we want to see how
elderly Black females living in cities compare with
other subgroups (elderly males, females of other
ages and races, and so forth). We will need a large
sample because the subgroup is a small proportion
(e.g., 10 percent) of the entire sample. A rule of
thumb is to have about 50 cases for each subgroup
we wish to analyze. If we want to analyze a group
that is only 10 percent of our sample, then we will
need a sample 10 times 50 (500 cases) in the sample
for the subgroup analysis. You may ask how you
would know that the subgroup of interest is only 10
percent of the sample until you gather sample data?
This is a legitimate question. We often must use var-
ious other sources of information (e.g., past studies,
official statistics about people in an area), then make
an estimate, and then plan our sample size require-
ments from the estimate.

Making Inferences. The reason we draw proba-
bility samples is to make inferences from the sample
to the population. In fact, a subfield of statistical
data analysis is called inferential statistics. We

directly observe data in the sample but are not inter-
ested in a sample alone. If we had a sample of 300
from 10,000 students on a college campus, we are
less interested in the 300 students than in using
information from them to infer to the population of
10,000 students. Thus, a gap exists between what
we concretely have (variables measured in sample
data) and what is of real interest (population param-
eters) (see Figure 4).

We can express the logic of measurement in
terms of a gap between abstract constructs and con-
crete indicators. Measures of concrete, observable
data are approximations for abstract constructs. We
use the approximations to estimate what is of real
interest (i.e., constructs and causal laws). Concep-
tualization and operationalization bridge the gap in
measurement just as the use of sampling frames, the
sampling process, and inference bridge the gap
in sampling.

We can integrate the logic of sampling with the
logic of measurement by directly observing mea-
sures of constructs and empirical relationships in
samples (see Figure 4). We infer or generalize from
what we observe empirically in samples to the
abstract causal laws and parameters in the popula-
tion. Likewise, there is an analogy between the logic
of sampling and the logic of measurement for valid-
ity. In measurement, we want valid indicators of
constructs: that is, concrete observable indicators
that accurately represent unseen abstract constructs.
In sampling, we want samples that have little
sampling error: that is, concrete collections of cases
that accurately represent unseen and abstract popu-
lations. A valid measure deviates little from the con-
struct it represents. A good sample has little
sampling error, and it permits estimates that deviate
little from population parameters.

We want to reduce sampling errors. For
equally good sampling frames and precise random
selection processes, the sampling error is based on
two factors: the sample size and the population
diversity. Everything else being equal, the larger
the sample size, the smaller the sampling error.
Likewise, populations with a great deal of homo-
geneity will have smaller sampling errors. We can
think of it this way: if we had a choice between
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sampling/picking 10 or 50 marbles out of a jar of
1000 red and white marbles to determine the num-
ber of red marbles, it would be better to pick 50.
Likewise, if there are ten colors of marbles in a jar,
we are less able to predict accurately the number of
red marbles than if there were only two colors of
marbles.

Sampling error is related to confidence inter-
vals. If two samples are identical except one is much
larger, the larger one will have a smaller sampling
error and narrower confidence intervals. Likewise,
if two samples are identical except that the cases in
one are more similar to each other, the one with
greater homogeneity will have a smaller sampling
error and narrower confidence intervals. A narrow
confidence interval means that we are able to esti-
mate more precisely the population parameter for a
given level of confidence.

Here is an example: You want to estimate the
annual income of bricklayers. You have two
samples. Sample 1 gives a confidence interval of
$30,000 to $36,000 around the estimated popula-
tion parameter of $33,000 for an 80 percent level of
confidence. However, you want a 95 percent level
of confidence. Now the range is $25,000 to $45,000.
A sample that has a smaller sampling error (because
it is much larger) might give the $30,000 to $36,000
range for a 95 percent confidence level.

Strategies When the Goal Differs from
Creating a Representative Sample

In qualitative research, the purpose of research may
not require having a representative sample from a
huge number of cases. Instead, a nonprobability
sample often better fits the purposes of a study. In
nonprobability samples, you do not have to deter-
mine the sample size in advance and have limited
knowledge about the larger group or population
from which the sample is taken. Unlike a probabil-
ity sample that required a preplanned approach
based on mathematical theory, nonprobability
sampling often gradually selects cases with the spe-
cific content of a case determining whether it is cho-
sen. Table 4 shows a variety of nonprobability
sampling techniques.

Purposive or Judgmental Sampling

Purposive sampling (also known as judgmental
sampling) is a valuable sampling type for special
situations. It is used in exploratory research or in
field research.12 It uses the judgment of an expert in

TABLE 4 Types of Nonprobability Samples

TYPE OF SAMPLE PRINCIPLE

Convenience Get any cases in any manner that
is convenient.

Quota Get a preset number of cases in
each of several predetermined
categories that will reflect the
diversity of the population, using
haphazard methods.

Purposive Get all possible cases that fit
particular criteria, using various
methods.

Snowball Get cases using referrals from
one or a few cases, then referrals
from those cases, and so forth.

Deviant case Get cases that substantially differ
from the dominant pattern (a
special type of purposive sample).

Sequential Get cases until there is no
additional information or new
characteristics (often used with
other sampling methods).

Theoretical Get cases that will help reveal
features that are theoretically
important about a particular
setting/topic.

Adaptive Get cases based on multiple
stages, such as snowball followed
by purposive. This sample is used
for hidden populations.

Purposive sampling A nonrandom sample in which
the researcher uses a wide range of methods to locate
all possible cases of a highly specific and difficult-to-
reach population.
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selecting cases, or it selects cases with a specific
purpose in mind. It is inappropriate if the goal is to
have a representative sample or to pick the “aver-
age” or the “typical” case. In purposive sampling,
cases selected rarely represent the entire population.

Purposive sampling is appropriate to select
unique cases that are especially informative. For
example, we want to use content analysis to study
magazines to find cultural themes. We can use three
specific popular women’s magazines to study
because they are trend setting. In the study Promises
I Can Keep that opened this chapter, the researchers
selected eight neighborhoods using purposive
sampling. We often use purposive sampling to select
members of a difficult-to-reach, specialized popu-
lation, such as prostitutes. It is impossible to list all
prostitutes and sample randomly from the list.
Instead, to locate persons who are prostitutes, a
researcher will use local knowledge (e.g., locations
where prostitutes solicit, social groups with whom

EXAMPLE BOX 7
Purposive Sampling

prostitutes associate) and local experts (e.g., police
who work on vice units, other prostitutes) to locate
possible prostitutes for inclusion in the research
project. A researcher will use many different
methods to identify the cases because the goal is to
locate as many cases as possible.

We also use purposive sampling to identify par-
ticular types of cases for in-depth investigation to
gain a deeper understanding of types (see Example
Box 7, Purposive Sampling).

Snowball Sampling

We are often interested in an interconnected net-
work of people or organizations.13 The network
could be scientists around the world investigating
the same problem, the elites of a medium-size city,
members of an organized crime family, persons who
sit on the boards of directors of major banks and
corporations, or people on a college campus who

In her study Inside Organized Racism, Kathleen Blee
(2002) used purposive sampling to study women
who belong to racist hate organizations. The purpose
of her study was to learn why and how women
became actively involved in racist hate organizations
(e.g., neo-Nazi, Ku Klux Klan). She wanted “to create
a broadly based, national sample of women racist
group members” (p. 198). A probability sample was
not possible because no list of all organizations exists,
and the organizations keep membership lists secret.

Blee avoided using snowball sampling because
she wanted to interview women who were not con-
nected to one another. To sample women for the
study, she began by studying the communication
(videotapes, books, newsletters, magazines, flyers,
Web sites) “distributed by every self-proclaimed
racist, anti-Semitic, white supremacist, Christian Iden-
tity, neo-Nazi, white power skinhead, and white sep-
aratist organization in the United States for a
one-year period” (p. 198). She also obtained lists from
antiracist organizations that monitor racist groups

and examined the archives at the libraries of Tulane
University and the University of Kansas for right-wing
extremism. She identified more than one hundred
active organizations. From these, she found those
that had women members or activists and narrowed
the list to thirty racist organizations. She then tried
to locate women who belonged to organizations that
differed in ideological emphasis and organizational
form in fifteen different states in four major regions
of the United States.

In a type of cluster sampling, she first located
organizations and then women active in them. To
find women to interview, she used personal con-
tacts and referrals from informed persons: “parole
officers, correctional officials, newspaper reporters
and journalists, other racist activists and former
activists, federal and state task forces on gangs, attor-
neys, and other researchers” (p. 200). She eventually
located thirty-four women aged 16 to 90 years of age
and conducted two 6-hour life history interviews with
each.

Source: Excerpt from page 198 of Inside Organized Racism: Women in the Hate Movement, by Kathleen M. Blee. © 2002 by the
Regents of the University of California. Published by the University of California Press.
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have had sexual relations with each other. The cru-
cial feature is that each person or unit is connected
with another through a direct or indirect linkage.
This does not mean that each person directly knows,
interacts with, or is influenced by every other per-
son in the network. Rather, taken as a whole, with
direct and indirect links, most people are within an
interconnected web of linkages.

For example, Sally and Tim do not know each
other directly, but each has a good friend, Susan, so
they have an indirect connection. All three are part
of the same friendship network. Researchers repre-
sent such a network by drawing a sociogram, a dia-
gram of circles connected with lines. The circles
represent each person or case, and the lines repre-
sent friendship or other linkages (see Figure 5).

Snowball sampling (also called network,
chain referral, reputational, and respondent-driven
sampling) is a method for sampling (or selecting)
the cases in a network. The method uses an analogy
to a snowball, which begins small but becomes
larger as we roll it on wet snow and it picks up addi-
tional snow. Snowball sampling is a multistage
technique. It begins with one or a few people or
cases and spreads out based on links to the initial
cases.

For example, we want to study friendship net-
works among the teenagers in our community. We
might start with three teenagers who do not know
each other. We ask each teen to name four close
friends. Next we go to each set of four friends and
ask each person to name four close friends. This
continues to the next round of four people and
repeats again. Before long, a large number of people
have been identified. Each person in the sample is
directly or indirectly tied to the original teenagers,
and several people may have named the same per-
son. The process stops, either because no new
names are given, indicating a closed network, or
because the network is so large that it is at the limit
of what can be studied. The sample includes those
named by at least one other person in the network
as being a close friend.

Deviant Case Sampling

We use deviant case sampling (also called extreme
case sampling) when we are interested in cases that

differ from the dominant pattern, mainstream, or
predominant characteristics of other cases. Similar
to purposive sampling, we use a variety of tech-
niques to locate cases with specific characteris-
tics. The goal is to locate a collection of unusual,
different, or peculiar cases that are not representa-
tive of the whole. We select cases because they are
unusual. We can sometimes learn more about
social life by considering cases that fall outside the
general pattern or including what is beyond the
main flow of events.

For example, we want to study high school
dropouts. Let us say that previous research suggested
that a majority of dropouts come from low-income,
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Snowball sampling A nonrandom sample in which
the researcher begins with one case and then, based
on information about interrelationships from that case,
identifies other cases and repeats the process again and
again.

Deviant case sampling A nonrandom sample, espe-
cially used by qualitative researchers, in which a
researcher selects unusual or nonconforming cases
purposely as a way to provide increased insight into
social processes or a setting.
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single-parent families and tend to be racial minori-
ties. The family environment is one in which par-
ents and/or siblings have low education or are
themselves dropouts. In addition, many dropouts
engage in illegal behavior. We might seek dropouts
who are members of the majority racial group, who
have no record of illegal activities, and who are from
stable two-parent, upper-middle-income families.
By looking at atypical dropouts we might learn
more about the reasons for dropping out.

Sequential Sampling

Sequential sampling is also similar to purposive
sampling. We use purposive sampling to try to
locate as many relevant cases as possible. Sequen-
tial sampling differs because we continue to gather
cases until the amount of new information ends or
a certain diversity of cases is reached. The principle
is to gather cases until we reach a saturation point.
In economic terms, information is gathered until the
marginal utility, or incremental benefit for addi-
tional cases, levels off or drops significantly. It
requires that we continuously evaluate all collected
cases. For example, we locate and plan in-depth
interviews of sixty widows over 70 years of age who
have been living without a spouse for 10 or more
years. Depending on our purposes, getting an addi-
tional twenty widows whose life experiences, social

backgrounds, and worldviews differ little from the
first sixty may be unnecessary.

Theoretical Sampling

In theoretical sampling, what we sample (e.g.,
people, situations, events, time periods) comes from
grounded theory. A growing theoretical interest
guides the selection of sample cases. The researcher
selects cases based on new insights that the sample
could provide. For example, a field researcher could
be observing a site and a group of people during
weekdays. Theoretically, the researcher may ques-
tion whether the people act the same at other times
or aspects of the site change. He or she could then
sample other time periods (e.g., nights and week-
ends) to have a fuller picture and learn whether
important conditions are the same.

Adaptive Sampling and Hidden Populations

In contrast to sampling the general population or
visible and accessible people, sampling hidden
populations (i.e., people who engage in clandes-
tine or concealed activities) is a recurrent issue in
the studies of deviant or stigmatized behavior (such
as victims of sexual violence, illegal drug users).
This method illustrates the creative application of
sampling principles, mixing qualitative and quanti-
tative styles of research and combining probability
with nonprobability techniques.

Adaptive sampling is a design that adjusts
based on early observations.15 For example, we ask
illegal drug users to refer other drug users as in
snowball sampling. However, we adjust the way
that we trace through the network based on our
research topic. We might identify a geographic area,
divide it into sections randomly, and then select
participants in that area through strategies such as
random-digit dialing or by posting recruitment
fliers. Once we identify members of the targeted
hidden population, we use them in a snowball tech-
nique to find others. AIDS researchers or studies
of illegal drug users that have sampled “hidden
populations” are instructive, often relying on mod-
ified snowball techniques. (See Example Box 8,
Hidden Populations).

Sequential sampling A nonrandom sample in which
a researcher tries to find as many relevant cases as pos-
sible until time, financial resources, or his or her energy
is exhausted or until there is no new information or
diversity from the cases.

Theoretical sampling A nonrandom sample in
which the researcher selects specific times, locations,
or events to observe in order to develop a social the-
ory or evaluate theoretical ideas.

Hidden population A population of people who
engage in clandestine, socially disapproved of, or con-
cealed activities and who are difficult to locate and
study.

Adaptive sampling A nonprobability sampling tech-
nique used for hidden populations in which several
approaches to identify and recruit, including a snowball
or referral method, may be used.
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EXAMPLE BOX 8
Hidden Populations

CONCLUSION

This chapter discussed probability and nonprobabil-
ity sampling (see Summary Review Box 1, Types of
Samples). A key point is that a sampling strategy
should match in a specific study’s purpose. In gen-

eral, probability sampling is preferred for a repre-
sentative sample; it allows for using statistical tests in
data analysis. In addition to simple random sampling,
the chapter referred to other probability samples: sys-
tematic, stratified, RDD, and cluster sampling. The

Three studies of hidden populations illustrate the dif-
ficulties of sampling. Martin and Dean (1993)
sampled gay men from New York City. The men had
to live in the city, be over age 18, not be diagnosed
as having AIDS, and engage in sex with other men.
The authors began with a purposive sample using
five diverse sources to recruit 291 respondents. They
first contacted 150 New York City organizations with
predominately homosexual or bisexual members.
They next screened these to 90 organizations that
had men appropriate for the study. From the 90, the
researchers drew a stratified random sample of 52
organizations by membership size. They randomly
selected five members from each of the organiza-
tions. Reports of Martin and Dean’s study appeared
in local news sources. This brought calls from forty-
one unsolicited volunteers. They also found thirty-
two men as referrals from respondents who had
participated in a small pilot study, seventy-two men
from an annual New York City Gay Pride Parade, and
fifteen eligible men whom they contacted at a New
York City clinic and asked to participate. They next
used snowball sampling by asking each of the 291
men to give a recruitment packet to three gay male
friends. Each friend who agreed to participate was
also asked to give packets to three friends. This con-
tinued until it had gone five levels out from the ini-
tial 291 men. Eventually, Dean recruited 746 men
into the study. The researchers checked their sample
against two random samples of gay men in San Fran-
cisco, a random-digit dialing sample of 500, and a
cluster sample of 823 using San Francisco census
tracts. Their sample paralleled those from San Fran-
cisco on race, age, and the percent being “out of the
closet.”

Heckathorn (1997, 2002) studied active drug
injectors in two small Connecticut cities and the sur-
rounding area. As of July 1996, medical personnel
had diagnosed 390 AIDS cases in the towns; about

half of the cases involved drug injection. The
sampling was purposive in that each sampled ele-
ment had to meet certain criteria. Heckathorn also
used a modified snowball sampling with a “dual
reward system.” He gave each person who com-
pleted an interview a monetary reward and a second
monetary reward for recruiting a new respondent.
The first person was asked not to identify the new
person to the researcher, a practice sometimes
referred to as masking (i.e., protecting friends). This
avoids the “snitching” issue and “war on drugs”
stigma, especially strong in the U.S. context. This
modified snowball sampling is like sequential
sampling in that after a period of time, fewer and
fewer new recruits are found until the researcher
comes to saturation or an equilibrium.

Wang et al. (2006) used a respondent-driven
sampling method to recruit 249 illicit drug users in
three rural Ohio counties to examine substance abuse
and health care needs. To be eligible for the sample,
participants had to be over 18 years of age, not be in
drug abuse treatment, and not have used cocaine or
methamphetamines in the past month. After locating
an eligible participant, the researchers paid him or her
$50 dollars to participate. The participant could earn
an additional $10 by recruiting eligible peers. In a
snowball process, each subsequent participant was
also asked to make referrals. The authors identified
nineteen people to start. Only a little more than half
(eleven of the nineteen) referred peers for the study
who were eligible and participated. Over roughly 18
months, the researchers were able to identify 249 par-
ticipants for their study. They compared the study
sample with characteristics of estimates of the illegal
drug–using population and found that the racial com-
position of the originally identified participants (White)
led to overrepresentation of that racial category.
Otherwise, it appeared that the method was able to
draw a reasonable sample of the hidden population.
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SUMMARY REVIEW BOX 1
Types of Samples

EIGHT TYPES OF NONPROBABILITY SAMPLES

Type of Sample Principle

Adaptive Get a few cases using knowledge of likely locations of a hidden population, use 
random techniques or recruit, and then use a snowball sample to expand from a
few cases.

Convenience Get any cases in any manner that is convenient.
Deviant case Get cases that substantially differ from the dominant pattern (a special type of 

purposive sample).
Purposive Get all possible cases that fit particular criteria using various methods.
Quota Using haphazard methods, get a preset number of cases in each of several 

predetermined categories that will reflect the diversity of the population.

Sequential Get cases until there is no additional information or new characteristics (often used
with other sampling methods).

Snowball Get cases using referrals from one or a few cases, then referrals from those cases,
and so forth.

Theoretical Get cases that will help reveal features that are theoretically important about a 
particular setting/topic.

FOUR TYPES OF PROBABILITY SAMPLES

Type of Sample Technique

Cluster Create a sampling frame for large cluster units, draw a random sample of the
cluster units, create a sampling frame for cases within each selected cluster unit,
then draw a random sample of cases, and so forth.

Simple random Create a sampling frame for all cases and then select cases using a purely random
process (e.g., random-number table or computer program).

Stratified Create a sampling frame for each of several categories of cases, draw a random
sample from each category, and then combine the several samples.

Systematic Create a sampling frame, calculate the sampling interval 1/k, choose a random
starting place, and then take every 1/k case.

discussions of sampling error, the central limit theo-
rem, and sample size indicated that probability
sampling produces most accurate sampling when the
goal is creating a representative sample.

The chapter also discussed several types
of nonprobability samples: convenience, deviant

case quota, sequential, snowball, and theoretical.
Except for convenience, these types are best suited
for studies in which the purpose is other than
creating a sample that is highly representative of a
population.
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Before you move on, it may be useful to restate
a fundamental principle of all social research: Do
not compartmentalize the steps of the research pro-
cess; rather, learn to see the interconnections among
the steps. Research design, measurement, sampling,
and specific research techniques are interdepend-
ent. In practice, we need to think about data collec-
tion as we design research and develop measures.

Likewise, sampling issues influence research
design, measurement, and data collection strategies.
As you will see, good social research depends on
simultaneously controlling quality at several differ-
ent steps: research design, conceptualization, mea-
surement, sampling, and data collection and
handling. Making serious errors at any one stage
could make an entire research project worthless.

KEY TERMS

adaptive sampling
central limit theorem
cluster sampling
confidence intervals
convenience sampling
deviant case sampling
hidden populations
parameter
population
probability proportionate to

size (PPS)

purposive sampling
quota sampling
random-digit dialing (RDD)
random-number table
random sample
sample
sampling distribution
sampling element
sampling error
sampling frame
sampling interval

sampling ratio
sequential sampling
simple random sample
snowball sampling
statistic
stratified sampling
systematic sampling
target population
theoretical sampling

REVIEW QUESTIONS

1. When is purposive sampling used?

2. When is the snowball sampling technique appropriate?

3. What is a sampling frame and why is it important?

4. Which sampling method is best when the population has several groups and a
researcher wants to ensure that each group is in the sample?

5. How can researchers determine a sampling interval from a sampling ratio?

6. When should a researcher consider using probability proportionate to size?

7. What is the population in random-digit dialing? Does this type avoid sampling
frame problems? Explain.

8. How do researchers decide how large a sample to use?

9. How are the logic of sampling and the logic of measurement related?

10. When is random-digit dialing used, and what are its advantages and disadvantages?
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NOTES

1. See Stern (1979:77–81) and Beck (1983) on biased
samples.
2. Babbie (1998:196), Kalton (1983:91–93), and Sud-
man (1976a:191–200) discuss quota sampling.
3. For a discussion of the Literary Digest sampling error,
see Babbie (1998:192–194), Dillman (1978:9–10), Frey
(1983:18–19), and Singleton and colleagues (1988:
132–133).
4. See Traugott (1987) on the importance of persistence
in reaching sampled respondents for a representative
sample. Also see Kalton (1983:63–69) on the importance
of nonresponse.
5. Only one name appears in both. The stratified sample
has six males and four females; the simple random
sample has five males and five females. (Complete the
lower block of numbers and then begin at the far right of
the top block.)
6. Stratified sampling techniques are discussed in more
detail in Frankel (1983:37–46), Kalton (1983:19–28),
Mendenhall and associates (1971:53–88), Sudman
(1976a:107–130), and Williams (1978:162–175).
7. Cluster sampling is discussed in Frankel (1983:
47–57), Kalton (1983:28–38), Kish (1965), Mendenhall
and associates (1971:121–141, 171–183), Sudman
(1976a: 69–84), and Williams (1978:144–161).
8. For a discussion, see Frankel (1983:57–62), Kalton
(1983:38–47), Sudman (1976a:131–170), and Williams
(1978:239–241).
9. Czaja and associates (1982) and Groves and Kahn
(1979:32–36) discuss within-household sampling.

10. For more on random-digit dialing issues, see Dill-
man (1978:238–242), Frey (1983:69–77), Glasser and
Metzger (1972), Groves and Kahn (1979:20–21, 45–63),
Kalton (1983:86–90), and Waksberg (1978). Kviz (1984)
reported that telephone directories can produce relatively
accurate sampling frames in rural areas, at least for mail
questionnaire surveys. Also see Keeter (1995).
11. See Grosof and Sardy (1985:181–185), Kalton
(1983: 82–90), Kraemer and Thiemann (1987), Sudman
(1976a:85–105), and Williams (1978: 211–227) for a
technical discussion of selecting a sample size.
12. For further discussion on purposive sampling, see
Babbie (1998:195), Grosof and Sardy (1985:172–173),
and Singleton and associates (1988:153–154, 306). Bai-
ley (1987:94–95) describes “dimensional” sampling,
which is a variation of purposive sampling.
13. Snowball sampling is discussed in Babbie
(1998:194–196), Bailey (1987:97), and Sudman
(1976a:210–211). For discussions of sociometry and
sociograms, also see Bailey (1987:366–367), Dooley
(1984:86–87), Kidder and Judd (1986:240–241),
Lindzey and Byrne (1968:452–525), and Singleton and
associates (1988:372–373). Network sampling issues are
discussed in Galaskiewicz (1985), Granovetter (1976),
and Hoffmann-Lange (1987).
14. On adaptive sampling, see Martsolf et al. (2006),
Thompson and Geber (1996), Thompson (2002), and
Thompson and Collins (2002).
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