Chapter 14: Chemical Equilibrium

Dynamic Chemical Equilibrium

- To date, we have mostly focussed on describing chemical reactions as going to completion:

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

identify limiting reactant
calculate theoretical \& percent yields

- For many chemical reactions, this discussion is not appropriate because they do not go to completion.
- For these reactions we want to talk about:
when they reach dynamic equilibrium
[reactants] \& [products] present at equilibrium

Chemical Equilibrium

- What does is mean to describe a chemical reaction as being in a state of dynamic equilibrium?

What are the characteristics and requirements of dynamic equilibrium?

- What does the equilibrium constant, K represent?
- How can we determine (quantitatively) the composition of a reaction mixture when it is at a state of dynamic equilibrium?
- How do specific changes made to a system at equilibrium affect the equilibrium position?
qualitatively understand changes

Consider: $\underset{\text { reddish-brown gas }}{\mathrm{NO}_{2}(\mathrm{~g})}+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \underset{\text { colorless gas }}{\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})}$

- put $\mathrm{NO}_{2}(\mathrm{~g})$ in a sealed container at $25^{\circ} \mathrm{C}$
- see decrease in intensity of brown color as NO_{2} is converted to $\mathrm{N}_{2} \mathrm{O}_{4}$
- contents of container never go completely colorless \therefore : the reaction does not go to completion
- at some point the intensity of brown color stops changing : the $\left[\mathrm{NO}_{2}\right]$ is constant

NO_{2}
- the system has reached a state of dynamic equilibrium

For a system at equilibrium:

- both forward and reverse reactions are occurring simultaneously
- rate of forward reaction must equal rate of reverse reaction

> OR

$$
\text { Rate }_{\text {forward }}=\text { Rate }_{\text {reverse }}
$$

- concentrations of reactants and products remain constant with time

Changes in Rate and Concentration as a System
Approaches Equilibrium:
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Equilibrium is achieved at the point when:

- $\left[\mathrm{H}_{2}\right],[\mathrm{CO}],\left[\mathrm{CH}_{4}\right]$, and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ are constant with time
- rate of $\mathrm{CO}+3 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$ is the same as the rate of $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$
Changes in Rate and Concentration as a System Approaches Equilibrium:$(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

```
Initialy, only the reaction
```

Initialy, only the reaction
$\mathrm{CO}+3 \mathrm{H}_{2} \longrightarrow$ occurs,
$\mathrm{CO}+3 \mathrm{H}_{2} \longrightarrow$ occurs,
because the concentrations
because the concentrations
of CH_{4} and $\mathrm{H}_{2} \mathrm{O}$ are zero.

```
of \(\mathrm{CH}_{4}\) and \(\mathrm{H}_{2} \mathrm{O}\) are zero.
```

O $=\mathrm{CO}$
(1) $=\mathrm{H}_{2}$
O. $=\mathrm{CH}_{4}$
$=\mathrm{H}_{2} \mathrm{O}$

Later, as this reaction proceeds, the concentrations of CH_{4} and $\mathrm{H}_{2} \mathrm{O}$
increase, and the reaction increase, and the reaction the reaction $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}}$ steadily increases, whereas the rate of the reaction $\mathrm{CO}+3 \mathrm{H}_{2} \longrightarrow$ decreases. Eventually, the two rates become equal.

$\mathrm{CO}+3 \mathrm{H}_{2} \rightleftharpoons \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$

Position of Chemical Equilibrium

- the equilibrium position refers to the relative amounts of reactants and products in the system at the point of equilibrium
- a reaction with an equilibrium position that favors the products :
[product] > [reactant] at equilibrium
equilibrium lies to the right
- a reaction with an equilibrium position that favors the reactants :
[reactant] > [product]
equilibrium lies to the left

The Equilibrium Constant, K

What is the quantitative relationship between [reactants] \& [products] present in a system at equilibrium?

- established by Guldberg \& Waage in I864
- Law of Mass Action
- concentrations of reactants and products in a mixture at equilibrium always satisfy a specific, mathematic relationship

Stay tuned!

Concentrations of Reactants \& Products at Equilibrium consider the reaction: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

- reaction run multiple times
- same temperature ($\mathrm{T}=1000 \mathrm{~K}$)
- initial concentrations of reactants changed
- equilibrium concentrations of all species determined

exp't	$\left[\mathrm{O}_{2}\right]_{\mathrm{eq}}, \mathrm{M}$	$\left[\mathrm{SO}_{2}\right]_{\mathrm{eq}}, \mathrm{M}$	$\left[\mathrm{SO}_{3}\right]_{\mathrm{eq}}, \mathrm{M}$	Kc
I	0.390	0.660	0.0840	
2	0.220	0.380	0.00360	
3	0.110	0.110	0.00750	
4	0.880	0.950	0.180	
5	1.98	1.44	0.410	

The Law of Mass Action

- the concentrations of reactants and products in a mixture at equilibrium always satisfy a specific relationship
- for a reaction: $a A+b B \rightleftarrows c C+d D$

$$
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{\mathrm{a}}[B]^{b}}
$$

- this is called the equilibrium expression
- Kc - the subscript " C " represents that this is the equilibrium constant in terms of molar concentrations

The Equilibrium Constant

$$
K_{c}=\frac{[C]^{c}[D]^{\mathrm{d}}}{[A]^{\mathrm{a}}[B]^{\mathrm{b}}}
$$

- typically unitless
- concentrations used are relative to a standard molar concentration of IM
- dependent on specific reaction
- dependent on temperature
- dependent on equilibrium composition
- independent of initial concentrations
- What does the magnitude of K_{c} tell you about a chemical reaction and it's equilibrium position?

$$
\mathrm{K}_{\mathrm{C}}=\frac{[\text { products }]^{n}}{[\text { reactants }]^{m}}
$$

- if $K_{c}>1$...
[products] > [reactants]
equilibrium position favors products equilibrium position lies to the right
- if $K_{c}<1$...
[reactants] > [products] equilibrium position favors reactants equilibrium position lies to the left
example:
Consider the following reaction at 500 K :

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{c}}=6.9 \times 10^{5}
$$

This reaction is allowed to reach equilibrium, and then analyzed and found to contain the following concentrations:

$$
\left[\mathrm{O}_{2}\right]=1.0 \times 10^{-3} \mathrm{M} \quad\left[\mathrm{NO}_{2}\right]=5.0 \times 10^{-2} \mathrm{M}
$$

Write the equilibrium expression for this reaction, and then determine the equilibrium concentration of $\mathrm{NO}(\mathrm{g})$.

Relationship Between Kinetics and Equilibrium:
K and k

- consider the equilibrium:

$$
A_{2}+B_{2} \underset{k_{\text {rev }}}{\stackrel{k_{\text {for }}}{\rightleftarrows}} 2 A B
$$

- when this system is at equilibrium:

$$
\text { Rate }_{\text {forward }}=\text { Rate }_{\text {reverse }}
$$

- the rate laws:

$$
\begin{gathered}
\text { Rate }_{\text {forward }}=k_{\text {for }}\left[\mathrm{A}_{2}\right]\left[\mathrm{B}_{2}\right] \quad \text { Rate }_{\text {reverse }}=k_{\text {rev }}[\mathrm{AB}]^{2} \\
k_{\text {for }}\left[\mathrm{A}_{2}\right]\left[\mathrm{B}_{2}\right]=k_{\text {rer }}[\mathrm{AB}]^{2} \\
\frac{k_{\text {for }}}{k_{\text {rev }}}=\frac{[\mathrm{AB}]^{2}}{\left[\mathrm{~A}_{2}\right]\left[\mathrm{B}_{2}\right]}=\mathrm{K}_{\mathrm{c}}
\end{gathered}
$$

Relationship Between Kinetics and Equilibrium:
K and k

$$
\frac{k_{\text {for }}}{k_{\text {rev }}}=\frac{[A B]^{2}}{\left[A_{2}\right]\left[B_{2}\right]}=K_{c}
$$

- if $k_{\text {for }}>k_{\text {rev }}$
$K_{c}>1$
forward reaction is favored equilibrium position lies to the right
- if $k_{\text {for }}<k_{\text {rev }}$
$\mathrm{K}_{\mathrm{C}}<\mathrm{I}$
reverse reaction is favored equilibrium position lies to the left
- typically, $k_{\text {for }} \neq k_{\text {rev }}$

K_{C} Values for Related Reactions

- How does K_{c} change if a chemical reaction is written in reverse?
consider: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g}) ; \mathrm{K}_{\mathrm{C}}=54$
and:

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) ; \quad \mathrm{K}_{\mathrm{Cl}}=?!?
$$

and

$$
\mathrm{K}_{\mathrm{Cl}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{L}_{2}\right]}{[\mathrm{H}]^{2}}=\left(\mathrm{K}_{\mathrm{c}}\right)^{-1}=0.018
$$

- If you write a chemical equation in reverse, the new equilibrium constant is equal to the reciprocal of the original equilibrium constant.

K_{C} Values for Related Reactions

- How does K_{c} change if a chemical reaction is written in reverse?
- How does Kc change if the stoichiometric coefficients of a chemical reaction are changed (i.e. multiplied by n)?
- How do you determine Kc for a chemical reaction if you can write it as the sum of 2 or more chemical reactions?

K_{c} Values for Related Reactions

- How does Kc change if the stoichiometric coefficients of a chemical reaction are changed (i.e. multiplied by n)?
consider: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g}) ; \mathrm{K}_{\mathrm{C}}=54$
and: $\quad 2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 4 \mathrm{HI}(\mathrm{g}) ; \mathrm{K}_{\mathrm{C} 2}=$???

and

$$
\mathrm{K}_{\mathrm{C} 2}=\frac{[\mathrm{HI}]^{4}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{l}_{2}\right]^{2}}=(\mathrm{Kc})^{2}=2900
$$

- If the stoichiometric coefficients of a chemical reaction are multiplied by some factor, n, the equilibrium constant for the reaction must be raised to the $n^{\text {th }}$ power.

K_{c} Values for Related Reactions

- How do you determine Kc for a chemical reaction if you can write it as the sum of 2 or more chemical reactions?
- consider combining the following equations:

$$
\begin{aligned}
2 \mathrm{P}+3 \mathrm{Cl}_{2} & \rightleftarrows 2 \mathrm{PCl}_{3} ;
\end{aligned} \mathrm{K}_{\mathrm{C} 3} \mathrm{l}
$$

$$
\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{\mathrm{c} 3} \cdot \mathrm{~K}_{\mathrm{C} 4} ; \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{5}\right]^{2}}{\left[\mathrm{Cl}_{2}\right]^{5}[\mathrm{P}]^{2}}=\frac{\left[\mathrm{PCl}_{3}\right]^{2}}{\left[\mathrm{Cl}_{2}\right]^{3}[\mathrm{P}]^{2}} \cdot \frac{\left[\mathrm{PCl}_{5}\right]^{2}}{\left[\mathrm{Cl}_{2}\right]^{2}\left[\mathrm{PCl}_{3}\right]^{2}}
$$

- If a chemical reaction can be expressed as the sum of 2 or more chemical equations, the equilibrium constant for the overall reaction is the product of the equilibrium constants for the component reactions.

Equilibrium Constant, K_{p}

- for gas phase reaction mixtures, we can consider the partial pressures of reactants and products present at equilibrium
- consider: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$

$$
K_{P}=\frac{\left(P_{\mathrm{HI}}\right)^{2}}{\left(P_{\mathrm{H} 2}\right)\left(P_{12}\right)}
$$

- relationship between K_{c} and K_{p} for a reaction at a given temperature is:

$$
K_{P}=K_{C}(R T)^{\Delta n}
$$

$\Delta \mathrm{n}=\mathrm{mol}$ gas phase product -mol gas phase reactant

$$
K_{P}=K_{C} \text { when } \Delta n=0
$$

Summary of K's for Related Equations:

Chemical Equation	Equilibrium Constant
$a \mathrm{~A}+\mathrm{b} B \rightleftarrows \mathrm{c} C+d \mathrm{D}$	Kc
$c \mathrm{C}+\mathrm{d} D \rightleftarrows \mathrm{a} A+\mathrm{b}$	$\mathrm{K}_{\mathrm{cI}}=\left(\mathrm{K}_{\mathrm{c}}\right)^{-1}$
$(n \bullet a) \mathrm{A}+(n \bullet$ b) $\mathrm{B} \rightleftarrows(n \bullet c) \mathrm{C}+(n \bullet d) \mathrm{D}$	$\mathrm{K}_{\mathrm{C} 2}=\left(\mathrm{K}_{\mathrm{c}}\right)^{\mathrm{n}}$
sum of 2 reactions with $\mathrm{K}_{\mathrm{C} 3}$ \& $\mathrm{K}_{\mathrm{C} 4}$	$K_{C}=\left(K_{c 3}\right)\left(K_{c_{4}}\right)$

example:
CH_{4} reacts with $\mathrm{H}_{2} \mathrm{~S}$ to form H_{2} and CS_{2} :

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftarrows \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

Determine the value of K_{p} for this reaction at 1000 K if the following equilibrium pressures were measured:

$$
\begin{array}{ll}
P_{\mathrm{CH} 4}=0.20 \mathrm{~atm} & P_{\mathrm{H} 2 \mathrm{~S}}=0.25 \mathrm{~atm} \\
P_{\mathrm{CS} 2}=0.52 \mathrm{~atm} & P_{\mathrm{H} 2}=0.10 \mathrm{~atm}
\end{array}
$$

Determine the value of K_{c} for this reaction at 1000 K .

Heterogeneous Equilibria

- heterogeneous equilibria - reactants and products are present in more than one phase examples:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \rightleftarrows 2 \mathrm{CO}(\mathrm{~g})
\end{gathered}
$$

- concentrations of pure liquids and pure solids are constant and do not change
- bottom line - solids and liquids are not included in the equilibrium expression

Heterogeneous Equilibria

two very important examples for upcoming chapters

- heterogeneous equilibria involving weak acids and/or weak bases:

$$
\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}
$$

- heterogeneous equilibria involving the solubility of ionic compounds:

$$
\begin{aligned}
\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{~s}) & \rightleftarrows \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{IO}_{3}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{c}} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{O}_{3}^{-}\right]^{2}
\end{aligned}
$$

Predicting the Direction of Change: Q vs K - compare Q and K
if $\mathrm{Q}=\mathrm{K}$: the system is at equilibrium
if $\mathrm{Q}<\mathrm{K}$: the system is not at equilibrium the reaction proceeds in the forward direction to reach equilibrium
if $\mathrm{Q}>\mathrm{K}$: the system is not at equilibrium the reaction proceeds in the reverse direction to reach equilibrium

example:

Consider the following reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \mathrm{Kc}=6.9 \times 10^{5}
$$

A 5.0 L vessel contains $0.060 \mathrm{~mol} \mathrm{NO}, 1.0 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$, and $0.80 \mathrm{~mol} \mathrm{NO}_{2}$.

Is this system at equilibrium?

If the system is not at equilibrium, does the reaction proceed in the forward or reverse direction to reach equilibrium?

Process for Solving Equilibrium Problems:
Using an Equilibrium (or ICE) Table

- start with balanced chemical equation
- 3 rows for each gas or sol'n phase species:
initial concentration or pressure
change (Δ) in concentration or pressure as system moves to equilibrium
equilibrium concentration or pressure

Process for Solving Equilibrium Problems: Using an Equilibrium (or ICE) Table					
consider the reaction: $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftarrows 3 \mathrm{C}(\mathrm{g})$					
	2 A (g)	+	B (g)	\rightleftarrows	3 C (g)
initial []	1.00 M		2.00 M		0
Δ []	-2x		-x		+ 3 x
equil []	(1.00-2x) M		(2.00-x)		$3 \times \mathrm{M}$

notes:

- reactants A and B are consumed, so their $\Delta[]$ is -
- product C is formed, so it's Δ [] is +
- equil []'s are the sum of the initial [] row and the Δ [] row
- if we start with true initial data - before any reaction has occurred, initial [product] $=0$

Process for Solving Equilibrium Problems:
Using an Equilibrium (or ICE) Table consider the reaction: $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftarrows 3 \mathrm{C}(\mathrm{g})$

	$2 \mathrm{~A}(\mathrm{~g})$	+	$\mathrm{B}(\mathrm{g})$
initial $[\mathrm{]}$	I .00 M	2.00 M	$3 \mathrm{C}(\mathrm{g})$
$\Delta[\mathrm{l}$	-2 x	-x	0
equil $[\mathrm{]}$	$(1.00-2 \mathrm{x}) \mathrm{M}$	$(2.00-\mathrm{x}) \mathrm{M}$	3 x

- what we don't know:

How much A and B will be consumed (and how much C will form) to get the system to equilibrium?

OR - we don't know how [A], [B], and [C] will change as system approaches equilibrium
\therefore define our unknown " x "

Process for Solving Equilibrium Problems: Using an Equilibrium (or ICE) Table					
consider the reaction: $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftarrows 3 \mathrm{C}(\mathrm{g})$					
	2 A (g)	+	B (g)	\rightleftarrows	3 C (g)
initial []	1.00 M		2.00 M		0
Δ []	$-2 x$		-x		$+3 \mathrm{x}$
equil []	(1.00-2x)		$(2.00-x)$		3x M

- what we do know:
stoichiometry of how A and B combine to form C
for every $1 \mathrm{~mol} B$ consumed, $2 \mathrm{~mol} A$ consumed \& 3 mol C form
$O R-$ if $x \mathrm{~mol} B$ are consumed, $2 \cdot x$ mol A will be consumed and $3 . \times \mathrm{mol} \mathrm{C}$ will form

Equilibrium Calculations

- determine the equilibrium composition of a reaction: determine the concentration (or pressure) of each species present in the system when equilibrium is established
example: $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$

$$
K_{c}=3.75
$$

$1.24 \mathrm{~mol} \mathrm{SO}_{2}(\mathrm{~g})$ and $0.750 \mathrm{~mol} \mathrm{NO}_{2}(\mathrm{~g})$ are combined in a 2.50 L flask, and the reaction is allowed to reach equilibrium.

Determine the concentration of each species present at equilibrium.

Process for Solving Equilibrium Problems:
Using an Equilibrium (or ICE) Table consider the reaction: $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftarrows 3 \mathrm{C}(\mathrm{g})$

	$2 \mathrm{~A}(\mathrm{~g})$	+	$\mathrm{B}(\mathrm{g})$	\rightleftarrows
initial []	1.00 M	2.00 M		0
Δ []	$-2 \mathrm{~g})$			
equil []	$(1.00-2 \mathrm{x}) \mathrm{M}$	$(2.00-\mathrm{x}) \mathrm{M}$		$3 \times \mathrm{M}$

- what we do know:

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{3}}{[\mathrm{~A}]^{2}[\mathrm{~B}]} \quad O R \quad \mathrm{~K}_{\mathrm{c}}=\frac{(3 \mathrm{x})^{3}}{(1.00-2 \mathrm{x})^{2}(2.00-\mathrm{x})}
$$

example: $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) ; \mathrm{K} \mathrm{C}=3.75$
$1.24 \mathrm{~mol} \mathrm{SO}_{2}(\mathrm{~g})$ and $0.750 \mathrm{~mol} \mathrm{NO}_{2}(\mathrm{~g})$ are combined in a 2.50 L flask, and the reaction is allowed to reach equilibrium.

Determine the concentration of each species present at equilibrium.

Quadratic Equations and the Quadratic Formula

- quadratic equation: $a x^{2}+b x+c=0$
- quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- you will get 2 mathematically correct answers for x only one is the right answer for our problem the other is the "extraneous root"

Equilibrium Calculations

- determine the equilibrium composition of a reaction using pressure data and K_{p}
example: $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=4.24$

A vessel is filled with $12.0 \mathrm{~atm} \mathrm{CO}(\mathrm{g})$ and $12.0 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 800 K , and the reaction progresses until equilibrium is established.
Determine the pressure (in atm) of each species present in the reaction mixture at equilibrium.
back to our example ... the solution!

	$\mathrm{SO}_{2}(\mathrm{~g})$	$+\mathrm{NO}_{2}(\mathrm{~g})$	\rightleftarrows	$\mathrm{NO}(\mathrm{g})$	+
$\mathrm{SO}_{3}(\mathrm{~g})$					
initial []	0.496 M	0.300 M		0 M	0 M
$\Delta[\mathrm{l}$	-x	-x		+x	+x
equil []	$(.496-\mathrm{x}) \mathrm{M}$	$(.300-\mathrm{x}) \mathrm{M}$	xM	xM	

$$
3.75=\frac{(x)(x)}{(.496-x)(.300-x)}=\frac{x^{2}}{.149-.796 x+x^{2}}
$$

- using the quadratic formula: $x=0.847$ (extraneous) or $\underline{0.240}$
- so at equilibrium:

$$
\begin{aligned}
& {\left[\mathrm{SO}_{2}\right]=0.496-x=0.256 \mathrm{M} \quad \checkmark \text { Check your answer? }} \\
& {\left[\mathrm{NO}_{2}\right]=0.300-x=0.060 \mathrm{M}} \\
& {\left[\mathrm{SO}_{3}\right]=[\mathrm{NO}]=x=0.240 \mathrm{M}}
\end{aligned}
$$

example: $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \quad \mathrm{K}_{\mathrm{P}}=4.24$ A vessel is filled with $12.0 \mathrm{~atm} \mathrm{CO}(\mathrm{g})$ and $12.0 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 800 K , and the reaction progresses until equilibrium is established.
Determine the pressure (in atm) of each species present in the reaction mixture at equilibrium.

	$\mathrm{CO}(\mathrm{g})$	$+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	\rightleftarrows	$\mathrm{CO}_{2}(\mathrm{~g})$	+
$\mathrm{H}_{2}(\mathrm{~g})$					
initial P	12.0 atm	12.0 atm	0 atm	0 atm	
ΔP	-x	-x		+x	+x
equil P	$(12.0-\mathrm{x}) \mathrm{atm}$	$(12.0-\mathrm{x}) \mathrm{atm}$	xatm	xatm	

$$
\mathrm{K}_{\mathrm{P}}=\frac{\left(P_{\mathrm{CO} 2}\right)\left(P_{\mathrm{H} 2}\right)}{\left(P_{\mathrm{CO}}\right)\left(P_{\mathrm{H} 2 \mathrm{O}}\right)} \quad \text { and } \quad 4.24=\frac{\mathrm{x}^{2}}{(12.0-\mathrm{x})^{2}}
$$

- solution: $x=8.07$
at equilibrium: $P_{\mathrm{CO}}=P_{\mathrm{H} 2 \mathrm{O}}=3.93 \mathrm{~atm} ; P_{\mathrm{CO} 2}=P_{\mathrm{H} 2}=8.07 \mathrm{~atm}$

Equilibrium Calculations

- determine the value of the equilibrium constant (Kc or K_{p}) given initial concentrations or pressures, and one equilibrium concentration or pressure
example: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$
$0.750 \mathrm{M} \mathrm{H}_{2}$ and $0.990 \mathrm{M}_{2}$ are combined and allowed to react. When equilibrium is established, the concentration of I_{2} is found to be 0.330 M .

Determine Kc for this reaction.
example: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$
$0.750 \mathrm{M} \mathrm{H}_{2}$ and $0.990 \mathrm{M}_{2}$ are combined and allowed to react. When equilibrium is established, the concentration of I_{2} is found to be 0.330 M .

Determine K_{C} for this reaction.

	$\mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{I}_{2}(\mathrm{~g})$	\rightleftarrows
initial $[\mathrm{l}$	0.750 M	0.990 M	$2 \mathrm{HI}(\mathrm{g})$	
$\Delta[]$	-x	-x	0 M	
equil []	$(0.750-\mathrm{x}) \mathrm{M}$	$(0.990-\mathrm{x}) \mathrm{M}$	+2 x	

- strategy:
use given equilibrium [I_{2}] and defined (in table) equilibrium $\left[L_{2}\right]$ to solve for x
use x to determine equilibrium $\left[\mathrm{H}_{2}\right.$] and $[\mathrm{HI}]$ plug those concentrations in to solve for Kc
example: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \mathrm{Kc}=4.64 \times 10^{-3}$
At some point after the initiation of the reaction, the mixture is found to contain $.0200 \mathrm{M} \mathrm{N}_{2} \mathrm{O}_{4} \& .0300 \mathrm{M} \mathrm{NO}_{2}$.

Determine the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} present in this system at equilibrium.

	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	\rightleftarrows	$2 \mathrm{NO}_{2}(\mathrm{~g})$
initial []	0.0200 M		0.0300 M
$\Delta[]$			
equil []			

- strategy:
calculate Q_{c} and compare to value of K_{c} to determine the direction of reaction to reach equilibrium
based on direction of reaction, complete table (think carefully about how to define Δ [] row)
solve for x ; determine $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ and $\left[\mathrm{NO}_{2}\right.$]

Le Chatelier's Principle

- When a stress is applied to a system at equilibrium, the equilibrium position will shift in the direction that relieves the applied stress.
- stresses include:
changes in concentration or pressure of reactants or products by the addition or removal
changes in pressure as a result of changes in volume of container
changes in temperature (value of K will change)
addition of a catalyst

Effect of Changes in Concentration on Equilibrium Position

- If the concentration or pressure of a substance is decreased by the removal of reactant or product ...
the equilibrium position will shift in the direction that replenishes the removed substance

OR
the equilibrium position will shift toward the decreased concentration

Effect of Changes in Concentration on Equilibrium Position

- If the concentration or pressure of a substance is increased by the addition of more reactant or product...
the equilibrium position will shift in the direction that consumes the added substance
OR
the equilibrium position will shift away from the increased concentration

Effect of Changing Pressure on Equilibrium Position
There are 3 ways to change the pressure of a chemical reaction system:
I. add or remove a gas phase reactant or product recall that $P_{\text {reactant }}$ or $P_{\text {product }}$ are related (through $P V=n R T$) to molar concentration

- the result of adding or removing gas phase reactant or product can be predicted according to the guidelines stated above for effect of changing concentration.

Effect of Changing Pressure on Equilibrium Position

2. add an inert gas
the addition of an inert gas to a system changes the total pressure of the system, but not the partial pressures (i.e. changing concentrations) of gas phase reactants or products

- the result is no change in equilibrium position

Effect of Changing Temperature on Equilibrium Position \& K

- The temperature dependence of the equilibrium position and the value of the equilibrium constant is dependent on the sign of $\Delta \mathrm{H}$ of the reaction.
I. The equilibrium constant for an exothermic reaction will decrease as temperature increases;
equilibrium position will shift to the left as temperature increases

2. The equilibrium constant for an endothermic reaction will increase as temperature increases;
equilibrium position will shift to the right as temperature increases

Effect of Changing Pressure on Equilibrium Position

3. change the volume of the container
recall that P and V are inversely proportional to one another

If the equilibrium is disturbed by changing the volume of the container, Le Chatelier's Principle predicts:

- An increase in pressure resulting from reduced container volume will bring about net reaction in the direction that decreases the number of moles of gas phase species (i.e. the volume of the chemical system will decrease).
- A decrease in pressure resulting from increased container volume will bring about net reaction in the direction that increases the number of moles of gas phase species (i.e. the volume of the chemical system will increase).

Effect of a Catalyst on the Equilibrium Position

- The addition of a catalyst does not effect the equilibrium position of a reaction - only the rate at which the system reaches equilibrium.

Consider the equilibria presented below, and apply Le Chatelier's principle to predict the effect of each change on the indicated quantity. Circle I, D, or N to indicate an increase, decrease, or no change in the quantity. Assume that each change is made independently to the system at equilibrium.
reaction
a. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HCl}(\mathrm{g})$
b. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HCl}(\mathrm{g})$
c. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{l}) \leftrightarrows 2 \mathrm{HBr}(\mathrm{g})$
d. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{I}) \leftrightarrows 2 \mathrm{HBr}(\mathrm{g})$
e. $\mathrm{HCOOH}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCOO}^{-}(\mathrm{aq})$ reduce $\mathrm{pH} \quad\left[\mathrm{HCOO}^{-}\right] \quad$ I D N
f. $\mathrm{HCOOH}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCOO}^{-}(\mathrm{aq})$ add $\mathrm{OH}^{-}(\mathrm{aq}) \quad\left[\mathrm{HCOO}^{-}\right] \quad$ I D N
g. $\mathrm{HCOOH}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCOO}^{-}(\mathrm{aq})$ add $\mathrm{HCOOH} \quad \mathrm{Kc} \quad \mathrm{I} \quad \mathrm{D} \mathrm{N}$
h. $\mathrm{PbBr}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})$
i. $\mathrm{PbBr}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})$
j. $\mathrm{PbBr}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})$
k. $\mathrm{PbBr}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})$
note reaction in h, i, j and k is endothermic

