CHAPTER 3 Systems of Linear Equations —daD

3.66. Express each of the following matrices as a product of elementary matrices:

1 20
1 2 3 -6 2 6
S AR
3 4 -2 4 -3 -7 38 7
3.67. Find the inverse of each of the following matrices (if it exists):

1 -2 -1 1 2 3 1 3 =2 2 1 -1
A=12 -3 1], B=1|2 6 1, cC=1(2 8 -3{, D=5 2 -3
3 -4 4 3 10 —1 1 7 1 0 2 1

3.68. Find the inverse of each of the following »n x » matrices:

(a) A has 1’s on the diagonal and superdiagonal (entries directly above the diagonal) and 0’s elsewhere.
(b) B has 1’s on and above the diagonal, and 0’s below the diagonal.

Lu Factorization

3.69. Find the LU factorization of each of the following matrices:

1 -1 -1 1 3 -1 236 1 2 3
@ |3 —4 2,0 |25 1|, |4 7 9|.@ |2 4 7
2 -3 -2 3.4 2 35 4 3.7 10

3.70. Let A4 be the matrix in Problem 3.69(a). Find X, X,, X3, X,, where
(a) X, is the solution of AX = B,, where B, = (1,1, l)T.
(b) For k> 1, X, is the solution of AX = B, where B, = B;_; +X;_;.

3.71. Let B be the matrix in Problem 3.69(b). Find the LDU factorization of B.

Miscellaneous Problems

3.72. Consider the following systems in unknowns x and y:

ax+by=1
ex+dy=0

ax+by=0
ex+dy =1

(a) (b)

Suppose D = ad — bc # 0. Show that each system has the unique solution:
(@) x=d/D,y=—c/D, (b) x=-b/D,y=a/D.
3.73. Find the inverse of the row operation ‘‘Replace R; by kR; + k'R, (k' # 0).”

3.74. Prove that deleting the last column of an echelon form (respectively, the row canonical form) of an
augmented matrix M = [4, B] yields an echelon form (respectively, the row canonical form) of 4.

3.75. Let e be an elementary row operation and £ its elementary matrix, and let / be the corresponding elementary
column operation and F its elementary matrix. Prove

@ f(4)=(eaT))", (b) F=E", (c) f(4)=AF.

3.76. Matrix 4 is equivalent to matrix B, written A =~ B, if there exist nonsingular matrices P and Q such that
B = PAQ. Prove that = is an equivalence relation; that is,

(a) A=A, (b) IfA~B,thenB~A4, (¢c) IfA=~Band B~ C, then 4 =~ C.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: A = [R;; Ry; ...] denotes the matrix 4 with rows R, R,, ... . The elements in each row are separated
by commas (which may be omitted with single digits), the rows are separated by semicolons, and 0 denotes a zero
row. For example,

[1 2 3 4]

A=11,2,3,4, 5,-6,7,-8; 0=|5 -6 7 -8

0 0 0 O

3.49. (a) no, (b) yes, (c) linear in x,y,z, not linear in x,y,z, k

3.50. (a) x=2/m, (b) no solution, (c) every scalar k is a solution

3.51. (a) (2,-1), (b) no solution, (©) (5,2), (d (5-2a, a)

3.52. (a) a#=+2, (2,2), (-2,-2), (b) a#+6, (6,4), (—6,—4), () a#3, (3,6
3.53. (a) (2,1,}), (b) no solution, ) u=(-7a-1, 2a+2, a).

3.54. (a) (3,-1), b) u=(—a+2b, 142a—2b, a, b), (¢) no solution

355. (a) u=@a+2, a, ), (b)) u=}(7-5b-4a), a, 3(1+0), b)

3.56. (a) a#+3, (3,3), (-3,-3), (b) a#5anda# -1, (57), (—1,-5),
(¢c) a#1landa+# -2, (-2,5)

3.57. (a) 2,-1,3, (b) 6,-3,1, (c) not possible

3.58. (a) 3’_271’ (b) %’_1’%’ (C) %7%7%

3.59. (a) dmW=1, u =(-1,1,1), (b) dim W = 0, no basis,
© dimW =2, u =(-2,1,0,0), u,=(50-2,1)

3.60. () dim W =3, u =(=3,1,0,0,0), u, =(7,0,—3,1,0), us=(3,0,-1,0,1),
(b) dim W =2, u =(2,1,0,0,0), u,=(5,0,—5,—3,1)

36L (@ [1,0,—1; 01,3 0, (b [1,2,0,0,2; 0,0,1,0,5 0,0,0,1,2],
[1327 747_573; 070717_57%7_%; 0]
3.62. (a) ,—2; 0,0,1,0,1,2; 0,0,0,1,2,1; 0],
; 0,0,1,0; 0,0,0,1; 0], (¢) [1,0,0,4; 0,1,0,—1; 0,0,1,2; 0]

3.63. 5:[1,0; 0,1],[1,1; 0,0}, [1,0; 0,0],[0,1; 0,0],0
3.64. 16
3.65. (a) [1,0,0; 0,0,1; 0,1,0],[1,0,0; 0,3,0; 0,0,1],[1,0,2; 0,1,0; 0,0,1],

(b) Ry« Ry; 1Ry —Ry;  —2R;+R; —Ry; eachE]=E",
(C) C2 — C3,3C2 — C272C3 + Cl — Cl’ (d) each Fi :ElT

3.66. 4=[1,0; 3,1][1,0; 0,-2][1,2; 0,1], B is not invertible,
C:[LO; 7%7]][]70; 0,2“1,6; 071][2>0§ 071]’
D =[100; 010; 301][100; 010; 021]J[100; O013; 001][120; 010; 001]
3.67. A'=[-8,12,-5; —5,7,-3; 1,-2/1], B has no inverse,
Cil :[229a g7%7 _%agy_%a 37_271}7 Dil:[87_37_1; _572717 107_4a_1]
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3.68. A '=[1,-1,1,-1,...; 0,1,—-1,1,—1,...; 0,0,1,—=1,1,—1,1,...; ...; ...; 0,...0,1]
B~! has 1’s on diagonal, —1’s on superdiagonal, and 0’s elsewhere.

3.69. (a) [100; 310; 211][1,—1,—1; 0,—1,1; 0,0,—1],
(b) [100; 210; 351][1,3,—1; 0,—1,3; 0,0,—10],
(c) [100; 210; %,%, 1][2,3,6; 0,1,-3 0,0,—%],
(d) There is no LU decomposition.

3.70. x, =[1,1,-1]", B,=1[2,2,0]", X,=1[6,4,0", B;=1[8,6,0", X;=[22,16,-2]",
B, =[30,22,-2]", X, =[86,62,—6]"

3.71. B=[100; 210; 351]diag(1,—1,—10)[1,3,—1; 0,1,3; 0,0,1]

3.73. Replace R; by —kR; + (1/K')R,.

3.75. (¢) f(4) = (e(d”))" = (EA")" = (4T)"ET = 4F

3.76. (a) A=14I. (b) If A= PBQ,then B=P '407".
(c) If 4=PBQ and B=P'CQ/, then 4 = (PP')C(Q'0).



Vector Spaces

4.1 Introduction

This chapter introduces the underlying structure of linear algebra, that of a finite-dimensional vector
space. The definition of a vector space V, whose elements are called vectors, involves an arbitrary field K,
whose elements are called scalars. The following notation will be used (unless otherwise stated or
implied):
vV the given vector space
U, v, w vectors in V
K the given number field
a,b,c, ork scalars in K
Almost nothing essential is lost if the reader assumes that K is the real field R or the complex field C.
The reader might suspect that the real line R has ‘‘dimension’’ one, the cartesian plane R? has
““dimension”” two, and the space R* has ‘‘dimension’’ three. This chapter formalizes the notion of
““‘dimension,”” and this definition will agree with the reader’s intuition.
Throughout this text, we will use the following set notation:
acA Element a belongs to set 4
a,beA Elements a and b belong to 4
Vx €4 For every x in 4
Ixe4 There exists an x in 4
ACB A is a subset of B
ANB Intersection of 4 and B
AUB Union of 4 and B
) Empty set

4.2 Vector Spaces

The following defines the notion of a vector space V' where K is the field of scalars.

DEFINITION: Let 7 be a nonempty set with two operations:
(1) Vector Addition: This assigns to any u,v € V a sum u+ v in V.

(i) Scalar Multiplication: This assigns to any u € V, k € K a product ku € V.

Then V is called a vector space (over the field K) if the following axioms hold for any
vectors u, v,w € V:

@
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[A]] w+v)+w=u+(v+w)
[A2] There is a vector in V, denoted by 0 and called the zero vector, such that, for any
uev,
u+0=0+u=u
[A3] For each u € V, there is a vector in ¥, denoted by —u, and called the negative of u,
such that

[Ag] u+v=v+u

] k(u+ v) = ku + kv, for any scalar k € K.

1 (a+ b)u = au + bu, for any scalars a,b € K.
[M3] (ab)u = a(bu), for any scalars a,b € K.

] 1lu = u, for the unit scalar 1 € K.

The above axioms naturally split into two sets (as indicated by the labeling of the axioms). The first

four are concerned only with the additive structure of V and can be summarized by saying V is a
commutative group under addition. This means

(a) Anysum v; + v, + - - - + v, of vectors requires no parentheses and does not depend on the order of
the summands.
(b) The zero vector 0 is unique, and the negative —u of a vector u is unique.
(¢) (Cancellation Law) If u +w = v+ w, then u = v.
Also, subtraction in V is defined by u — v = u + (—v), where —v is the unique negative of v.
On the other hand, the remaining four axioms are concerned with the ‘‘action’’ of the field K of scalars

on the vector space V. Using these additional axioms, we prove (Problem 4.2) the following simple
properties of a vector space.

THEOREM 4.1:  Let V' be a vector space over a field K.

(1) For any scalar k € K and 0 € V', k0 = 0.

(ii)) For 0 € K and any vector u € V, Ou = 0.
(i) Ifku=0, where k€ Kandu € V, thenk =0 or u = 0.
(iv) Forany k€ K andany u € V, (—k)u = k(—u) = —ku.

4.3 Examples of Vector Spaces

This section lists important examples of vector spaces that will be used throughout the text.

Space K"

Let K be an arbitrary field. The notation K” is frequently used to denote the set of all n-tuples of elements
in K. Here K” is a vector space over K using the following operations:

(i) Vector Addition: (a,,a,,...,a,) + (by,by,...,b,) = (a; + by, ay+by,..., a,+b,)
(ii) Scalar Multiplication: k(a,,a,,...,a,) = (ka,, ka,, ... ka,)

The zero vector in K" is the n-tuple of zeros,
0=(0,0,...,0)

and the negative of a vector is defined by
—(ay,ay,...,a,) = (—a;,—ay,...,—a,)

Observe that these are the same as the operations defined for R” in Chapter 1. The proof that K" is a
vector space is identical to the proof of Theorem 1.1, which we now regard as stating that R” with the
operations defined there is a vector space over R.
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Polynomial Space P(t)
Let P(¢) denote the set of all polynomials of the form
p(t) =ag+ajt +at* + - +at (s=1,2,...)
where the coefficients a; belong to a field K. Then P(¢) is a vector space over K using the following operations:

(i) Vector Addition: Here p(t) + q(¢) in P(¢) is the usual operation of addition of polynomials.

(ii) Scalar Multiplication: Here kp(t) in P(¢) is the usual operation of the product of a scalar k and a
polynomial p(z).

The zero polynomial 0 is the zero vector in P(z).

Polynomial Space P, (t)

Let P,(¢) denote the set of all polynomials p(¢) over a field K, where the degree of p(¢) is less than or
equal to #n; that is,

p(t) =ag+ayt +at* + - +at

where s < n. Then P,(¢) is a vector space over K with respect to the usual operations of addition of
polynomials and of multiplication of a polynomial by a constant (just like the vector space P(¢) above).
We include the zero polynomial 0 as an element of P,(¢), even though its degree is undefined.

Matrix Space M, ,

The notation M, ,, or simply M, will be used to denote the set of all m X n matrices with entries in a field
K. Then M,, , is a vector space over K with respect to the usual operations of matrix addition and scalar
multiplication of matrices, as indicated by Theorem 2.1.

Function Space F(X)

Let X be a nonempty set and let K be an arbitrary field. Let F(X) denote the set of all functions of X into
K. [Note that F(X) is nonempty, because X is nonempty.] Then F(X) is a vector space over K with
respect to the following operations:

(i) Vector Addition: The sum of two functions f and g in F(X) is the function /' + g in F(X) defined by
(f+8)x) =/(x) +glx) VreX

(ii) Scalar Multiplication: The product of a scalar k € K and a function f in F(X) is the function kf in
F(X) defined by

()(x) =K (x)  Vrex
The zero vector in F(X) is the zero function 0, which maps every x € X into the zero element 0 € K
0(x)=0 VxeX
Also, for any function f in F(X), negative of f is the function —f in F(X) defined by
(=X =—=f(x)  WwxeX

Fields and Subfields

Suppose a field E is an extension of a field K; that is, suppose E is a field that contains K as a subfield.

Then E may be viewed as a vector space over K using the following operations:

(i) Vector Addition: Here u + v in E is the usual addition in E.

(i1) Scalar Multiplication: Here ku in E, where k € K and u € E, is the usual product of k£ and u as
elements of E.

That is, the eight axioms of a vector space are satisfied by £ and its subfield K with respect to the above
two operations.
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4.4 Linear Combinations, Spanning Sets

Let V be a vector space over a field K. A vector v in V is a linear combination of vectors u;,u,, ..., u,, in

V' if there exist scalars a;,a,,...,a, in K such that

m

v = ajuy + ayu, + - +a,u,
Alternatively, v is a linear combination of u;,u,,. .., u, if there is a solution to the vector equation
V= XUy + XUy + - XU,

where x,x,,...,x, are unknown scalars.

EXAMPLE 4.1 (Linear Combinations in R") Suppose we want to express v = (3,7,—4) in R’ as a linear
combination of the vectors

u = (1,2,3), u; = (2,3,7), u3 = (3,5,6)

We seek scalars x, y, z such that v = xu; + yu, + zus; that is,

3 1 2 3 X+2y+3z= 3
3| =x|2|+y|3|+2z]|5 or 2x+3y+5z= 7
—4 3 7 6 3x+Ty+6z=—-4

(For notational convenience, we have written the vectors in R? as columns, because it is then easier to find the
equivalent system of linear equations.) Reducing the system to echelon form yields

x+2y+4+3z= 3 x+2y+3z= 3
—y—z= 1 and then —y—z= 1
y—3z=-13 —4z=-12

Back-substitution yields the solution x =2, y=—4, z=3. Thus, v=2u; —4u, + 3u;.

Remark: Generally speaking, the question of expressing a given vector v in K" as a linear
combination of vectors u,, u,, ..., u, in K" is equivalent to solving a system AX = B of linear equations,
where v is the column B of constants, and the u’s are the columns of the coefficient matrix 4. Such a
system may have a unique solution (as above), many solutions, or no solution. The last case—no
solution—means that v cannot be written as a linear combination of the u’s.

EXAMPLE 4.2 (Linear combinations in P(¢)) Suppose we want to express the polynomial v = 3> + 5t — 5 as a
linear combination of the polynomials

p =02 +2+1, py =20 +5t+4, p3=0r+3t+6
We seek scalars x, y, z such that v = xp; 4+ yp, + zp;; that is,
32 45t —5=x(+2t+ 1) +y(2F + 5t +4) +z(£ + 3t +6) (*)
There are two ways to proceed from here.
(1) Expand the right-hand side of (*) obtaining:
32 4+ 5t — 5 = xt> + 2xt +x + 291> + Syt + 4y + zt* + 3zt + 62
=(x+20+2)2 + (2x+ 5y +32)t + (x + 4y + 62)
Set coefficients of the same powers of 7 equal to each other, and reduce the system to echelon form:

x+2y+ z= 3 xX+2y+ z= 3 x+2y+ z= 3
2x+5y+3z= 5 or y+ z=-1 or y+ z=-1
X+4y+6z=-5 2y+5z=-8 3z=-6
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The system is in triangular form and has a solution. Back-substitution yields the solutionx =3,y =1,z = —2.
Thus,

v=23p; +p, —2ps

(2) The equation (*) is actually an identity in the variable #; that is, the equation holds for any value
of . We can obtain three equations in the unknowns x, y, z by setting ¢ equal to any three values.
For example,

Set t = 0 in (1) to obtain: x+ 4y+ 6z=-5
Set # = 11in (1) to obtain: 4x+11y+10z=3
Sett = —11in (1) to obtain:  y+ 4z= -7

Reducing this system to echelon form and solving by back-substitution again yields the solutionx =3,y =1,
z = —2. Thus (again), v = 3p, + p, — 2ps.

Spanning Sets

Let V be a vector space over K. Vectors u;, u,, . .., u, in V are said to span V or to form a spanning set of
V if every v in V is a linear combination of the vectors u,,u,, ..., u,—that is, if there exist scalars
a,,a,,...,a, in K such that

V= aguyp + au, + - +a,u,

The following remarks follow directly from the definition.

Remark 1: Suppose u;,u,,...,u, span V. Then, for any vector w, the set w,u;,u,,...,u,, also
spans V.
Remark 2: Suppose u;,u,,...,u, span V and suppose u, is a linear combination of some of the

other u’s. Then the «’s without u, also span V.

Remark 3: Suppose u;,u,,...,u, span V and suppose one of the u’s is the zero vector. Then the
u’s without the zero vector also span V.

EXAMPLE 4.3 Consider the vector space ¥ = R°.
(a) We claim that the following vectors form a spanning set of R*:
e, =(1,0,0), e, =(0,1,0), e; =(0,0,1)
Specifically, if v = (a, b, c) is any vector in R>, then
v =ae; + be, + ce3
For example, v = (5, —6,2) = —5¢; — 6e, + 2e;.
(b) We claim that the following vectors also form a spanning set of R>:
w, = (1,1,1), w, = (1,1,0), wy = (1,0,0)
Specifically, if v = (a, b, c) is any vector in R>, then (Problem 4.62)
v=(a,b,c) =cw; + (b—c)w, + (a — b)w;
For example, v = (5,—6,2) = 2w, — 8w, + 11ws.
(c) One can show (Problem 3.24) that v = (2,7, 8) cannot be written as a linear combination of the vectors
u; = (1,2,3), u, = (1,3,5), uy; = (1,5,9)

Accordingly, u,, u,, u; do not span R>.
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EXAMPLE 4.4 Consider the vector space V' = P, () consisting of all polynomials of degree <.
(a) Clearly every polynomial in P, () can be expressed as a linear combination of the n + 1 polynomials

3

SO

17 t? t )
Thus, these powers of ¢ (where 1 = °) form a spanning set for P, (¢).

(b) One can also show that, for any scalar ¢, the following n + 1 powers of # — ¢,
2 3
l, t—¢, (t—0¢)°, (t—¢)7, ..., (t—2¢)

(where (£ — ¢)” = 1), also form a spanning set for P, (7).

EXAMPLE 4.5 Consider the vector space M = M, , consisting of all 2 x 2 matrices, and consider the following
four matrices in M:

1 0 0 1 0 0 0 0
Ell_|:0 O:|7 E12_|:O O:|7 E21_|:1 O:|7 E22_|:0 1:|

Then clearly any matrix 4 in M can be written as a linear combination of the four matrices. For example,

5 -6
A: |:7 8:| :SEH —6E12+7E2]+8E22

Accordingly, the four matrices £, E|,, E5;, E,, span M.

4.5 Subspaces

This section introduces the important notion of a subspace.

DEFINITION:  Let /' be a vector space over a field K and let W be a subset of V. Then W is a subspace
of V' if W is itself a vector space over K with respect to the operations of vector

addition and scalar multiplication on V.
The way in which one shows that any set }¥ is a vector space is to show that I satisfies the eight
axioms of a vector space. However, if W is a subset of a vector space V, then some of the axioms
automatically hold in W, because they already hold in V. Simple criteria for identifying subspaces follow.

THEOREM 4.2:  Suppose W is a subset of a vector space V. Then W is a subspace of Vif the following
two conditions hold:
(a) The zero vector 0 belongs to W.
(b) Forevery u,v € W,k € K: (i) The sum u + v € W. (ii) The multiple ku € W.

Property (i) in (b) states that W is closed under vector addition, and property (ii) in (b) states that IV is
closed under scalar multiplication. Both properties may be combined into the following equivalent single
statement:

(b') For every u,v € W,a,b € K, the linear combination au + bv € W.

Now let V' be any vector space. Then V' automatically contains two subspaces: the set {0} consisting of
the zero vector alone and the whole space V itself. These are sometimes called the trivial subspaces of V.
Examples of nontrivial subspaces follow.

EXAMPLE 4.6 Consider the vector space V = R>.
(a) Let U consist of all vectors in R® whose entries are equal; that is,

U={(a,b,c):a=b=c}

For example, (1,1,1), (=3, —3, —3), (7,7,7), (—2, —2, —2) are vectors in U. Geometrically, U is the line
through the origin O and the point (1, 1, 1) as shown in Fig. 4-1(a). Clearly 0 = (0,0, 0) belongs to U, because
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all entries in 0 are equal. Further, suppose « and v are arbitrary vectors in U, say, u = (a,a,a) and v = (b, b, b).
Then, for any scalar k € R, the following are also vectors in U:

ut+v=(a+b, atb, a+b) and ku = (ka, ka, ka)

Thus, U is a subspace of R>.

(b) Let W be any plane in R? passing through the origin, as pictured in Fig. 4-1(b). Then 0 = (0, 0, 0) belongs to 17,
because we assumed W passes through, the origin O. Further, suppose u and v are vectors in . Then « and v
may be viewed as arrows in the plane /' emanating from the origin O, as in Fig. 4-1(b). The sum u + v and any
multiple ku of u also lie in the plane W. Thus, W is a subspace of R>.

Figure 4-1

EXAMPLE 4.7

(a) Let V=M, the vector space of n x n matrices. Let W, be the subset of all (upper) triangular matrices and let

n,ns
W, be the subset of all symmetric matrices. Then ¥, is a subspace of ¥, because W, contains the zero matrix 0
and W, is closed under matrix addition and scalar multiplication; that is, the sum and scalar multiple of such
triangular matrices are also triangular. Similarly, ¥, is a subspace of V.

(b) Let V' = P(z), the vector space P(¢) of polynomials. Then the space P,(#) of polynomials of degree at most n
may be viewed as a subspace of P(¢). Let Q(¢) be the collection of polynomials with only even powers of 7. For
example, the following are polynomials in Q(z):

pr=34+47 -5 and  p, =67+ 95 + 31

(We assume that any constant k = kf° is an even power of ¢.) Then Q(¢) is a subspace of P(¢).

(c) Let V be the vector space of real-valued functions. Then the collection W, of continuous functions and the
collection W, of differentiable functions are subspaces of V.

Intersection of Subspaces

Let U and W be subspaces of a vector space V. We show that the intersection U N W is also a subspace of
V. Clearly, 0 € U and 0 € W, because U and W are subspaces; whence 0 € U N W. Now suppose u and v
belong to the intersection U N W. Then u, v € U and u, v € W. Further, because U and W are subspaces,
for any scalars a,b € K,

au+bve U and au+bvew

Thus, au + bv € U N W. Therefore, U N W is a subspace of V.
The above result generalizes as follows.

THEOREM 4.3:  The intersection of any number of subspaces of a vector space V is a subspace of V.
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Solution Space of a Homogeneous System

Consider a system AX = B of linear equations in » unknowns. Then every solution # may be viewed as a
vector in K”. Thus, the solution set of such a system is a subset of K”. Now suppose the system is
homogeneous; that is, suppose the system has the form AX = 0. Let W be its solution set. Because
A0 = 0, the zero vector 0 € W. Moreover, suppose u and v belong to W. Then u and v are solutions of
AX = 0, or, in other words, Au = 0 and 4v = 0. Therefore, for any scalars a and b, we have

Alau + bv) = adu+bAv=a0+b0=0+0=0

Thus, au + bv belongs to W, because it is a solution of 4AX = 0. Accordingly, W is a subspace of K”".
We state the above result formally.

THEOREM 4.4:  The solution set W of a homogeneous system AX = 0 in » unknowns is a subspace
of K".

We emphasize that the solution set of a nonhomogeneous system AX = B is not a subspace of K". In
fact, the zero vector 0 does not belong to its solution set.

4.6 Linear Spans, Row Space of a Matrix

Suppose u;,u,,. .., u, are any vectors in a vector space V. Recall (Section 4.4) that any vector of the
form a,u; + a,u, + - - - + a,,u,,, where the q; are scalars, is called a linear combination of u;,u,, ..., u,,.
The collection of all such linear combinations, denoted by

span(uy, uy, ..., U,) or span(u;)
is called the linear span of u;,u,, ... u,,.

Clearly the zero vector 0 belongs to span(u;), because
0 = 0uy + Ouy + - - - 4 Ou,,
Furthermore, suppose v and v’ belong to span(;), say,
v=au +ayu,+---+a,u, and v = byuy + byuy + -+ - + b,u,
Then,
v+ = (a; +b))uy + (ay + by)uy + -+ (ay, + b, )uy,
and, for any scalar k € K,
kv =kau, + kayu, + - - - + ka,,u,,

Thus, v+ ¢ and kv also belong to span(y;). Accordingly, span(u;) is a subspace of V.

More generally, for any subset S of ¥, span(S) consists of all linear combinations of vectors in S or,
when S = ¢, span(S) ={0}. Thus, in particular, S is a spanning set (Section 4.4) of span(S).

The following theorem, which was partially proved above, holds.

THEOREM 4.5: Let S be a subset of a vector space V.

(i) Then span(S) is a subspace of V that contains S.
(if) If W is a subspace of V containing S, then span(S) C W.

Condition (ii) in theorem 4.5 may be interpreted as saying that span(S) is the ‘‘smallest’” subspace of
V' containing S.

EXAMPLE 4.8 Consider the vector space V' = R>.

(a) Let u be any nonzero vector in R*. Then span(u) consists of all scalar multiples of u. Geometrically, span(u) is
the line through the origin O and the endpoint of u, as shown in Fig. 4-2(a).
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(a) (b)
Figure 4-2

(b) Let u and v be vectors in R? that are not multiples of each other. Then span(u, v) is the plane through the origin
O and the endpoints of «# and v as shown in Fig. 4-2(b).

(c) Consider the vectors e; = (1,0,0), e, = (0,1,0), e; = (0,0, 1) in R>. Recall [Example 4.1(a)] that every vector
in R? is a linear combination of e,, e,, e;. That is, e, e,, e; form a spanning set of R*. Accordingly,
span(e;, e,,e;) = R®.

Row Space of a Matrix
Let 4 = [a;] be an arbitrary m x n matrix over a field K. The rows of 4,
Ry =(ay,ay,--.,a,), Ry = (a1, an, - - -, ay,), cee Ry = (@1, Qs+« + 5 Ay
may be viewed as vectors in K”; hence, they span a subspace of K" called the row space of A and denoted
by rowsp(A). That is,
rowsp(4) = span(R,,R,,...,R,,)

Analagously, the columns of 4 may be viewed as vectors in K™ called the column space of A and denoted
by colsp(A). Observe that colsp(4) = rowsp(47).

Recall that matrices 4 and B are row equivalent, written 4 ~ B, if B can be obtained from A4 by a
sequence of elementary row operations. Now suppose M is the matrix obtained by applying one of the
following elementary row operations on a matrix 4:

(1) Interchange R; and R;, (2) Replace R; by kR;, (3) Replace R; by kR; + R,

Then each row of M is a row of 4 or a linear combination of rows of 4. Hence, the row space of M is
contained in the row space of 4. On the other hand, we can apply the inverse elementary row operation on
M to obtain A; hence, the row space of 4 is contained in the row space of M. Accordingly, A and M have
the same row space. This will be true each time we apply an elementary row operation. Thus, we have
proved the following theorem.

THEOREM 4.6: Row equivalent matrices have the same row space.
We are now able to prove (Problems 4.45-4.47) basic results on row equivalence (which first

appeared as Theorems 3.7 and 3.8 in Chapter 3).

THEOREM 4.7:  Suppose 4 = [a;] and B = [b;] are row equivalent echelon matrices with respective
pivot entries

aljl,azjz,... ,a’j’ and b1k17b2kz7' - 7bSkS
Then 4 and B have the same number of nonzero rows—that is, » = s—and their
pivot entries are in the same positions—that is, j, = ky,j, = ky,...,j. = k,.

THEOREM 4.8:  Suppose 4 and B are row canonical matrices. Then 4 and B have the same row space
if and only if they have the same nonzero rows.
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COROLLARY 4.9:  Every matrix 4 is row equivalent to a unique matrix in row canonical form.

We apply the above results in the next example.

EXAMPLE 4.9 Consider the following two sets of vectors in R*:
u; = (1,2,-1,3), u, = (2,4,1,-2), uy = (3,6,3,-7)
w; = (1,2,—4,11), w, = (2,4,-5,14)
Let U = span(u;) and W = span(w;). There are two ways to show that U = W.

(a) Show that each u; is a linear combination of w, and w,, and show that each w; is a linear combination of u, u,,
us. Observe that we have to show that six systems of linear equations are consistent.

(b) Form the matrix 4 whose rows are u;, u,, u; and row reduce 4 to row canonical form, and form the matrix B
whose rows are w; and w, and row reduce B to row canonical form:

(1 2 -1 3 1 2 -1 3 120 4
A= 4 1 =2|~1]0 0 3 —8|~1]0 0 -3
3 6 3 -7 00 6 —16 000 0
B_' 2 —4 11 1 2 —4 11 120 !
12 4 -5 14 0 0 3 -8 o0 1 %

Because the nonzero rows of the matrices in row canonical form are identical, the row spaces of 4 and B are
equal. Therefore, U = W.

Clearly, the method in (b) is more efficient than the method in (a).

4.7 Linear Dependence and Independence

Let V be a vector space over a field K. The following defines the notion of linear dependence and
independence of vectors over K. (One usually suppresses mentioning K when the field is understood.)
This concept plays an essential role in the theory of linear algebra and in mathematics in general.

DEFINITION:  We say that the vectors v, v,, ..., v, in V are linearly dependent if there exist scalars
a,,a,,...,a, in K, not all of them 0, such that

v + ayvy + -+ a,v, =0
Otherwise, we say that the vectors are linearly independent.

The above definition may be restated as follows. Consider the vector equation

X1U1+x2vz+"'+xmvm:0 (*)
where the x’s are unknown scalars. This equation always has the zero solution x; =0,
x, =0,...,x, = 0. Suppose this is the only solution; that is, suppose we can show:

X0+ X0+ +x,v, =0 implies x=0, x=0, ..., x,=0
Then the vectors vy, vs, ..., v,, are linearly independent, On the other hand, suppose the equation (*) has
a nonzero solution; then the vectors are linearly dependent.

Aset S ={v,v,,...,0,} of vectors in V is linearly dependent or independent according to whether
the vectors vy, v,, ..., v, are linearly dependent or independent.
An infinite set S of vectors is linearly dependent or independent according to whether there do or do
not exist vectors vy, v,..., v, in S that are linearly dependent.
Warning: The set S = {v, v,,...,,,} above represents a list or, in other words, a finite sequence

of vectors where the vectors are ordered and repetition is permitted.
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The following remarks follow directly from the above definition.
Remark 1: Suppose 0 is one of the vectors v;, vy, ..., v,, say v; = 0. Then the vectors must be
linearly dependent, because we have the following linear combination where the coefficient of v, # 0:

1o, +0vy+ -+ +00, =1-04+0+---4+0=0

Remark 2: Suppose v is a nonzero vector. Then v, by itself, is linearly independent, because
kv =0, v#0 implies k=0
Remark 3: Suppose two of the vectors v, vy, ..., v, are equal or one is a scalar multiple of the

other, say v; = kv,. Then the vectors must be linearly dependent, because we have the following linear
combination where the coefficient of v; # 0:

Ul—kV2+OU3+"'+O'Um:O

Remark 4: Two vectors v; and v, are linearly dependent if and only if one of them is a multiple of
the other.

Remark 5: If the set {v,,...,v,} is linearly independent, then any rearrangement of the vectors

{035+ -+, v; } is also linearly independent.

Remark 6: If a set S of vectors is linearly independent, then any subset of S is linearly
independent. Alternatively, if S contains a linearly dependent subset, then S is linearly dependent.

EXAMPLE 4.10
(a) Letu=(1,1,0), v=(1,3,2), w= (4,9,5). Then u, v, w are linearly dependent, because
3u+5v—2w=3(1,1,0) + 5(1,3,2) — 2(4,9,5) = (0,0,0) =0

(b) We show that the vectors u = (1,2,3), v = (2,5,7), w = (1,3,5) are linearly independent. We form the vector
equation xu + yv + zw = 0, where x, y, z are unknown scalars. This yields

1 2 1 0 x+2y+ z=0 x+2y+ z=0
x|2| +y|5]|+z|3|=|0 or 2x+5y+3z=0 or y+ z=0
3 7 5 0 3x+T7y+52=0 2z=0

Back-substitution yields x = 0, y = 0, z = 0. We have shown that
xu+yv+zw=0 implies x=0, y=0, z=0
Accordingly, u, v, w are linearly independent.

(c) Let V be the vector space of functions from R into R. We show that the functions f(¢) = sint, g(t) = ¢,
h(t) = £ are linearly independent. We form the vector (function) equation xf + yg + zk = 0, where x, y, z are
unknown scalars. This function equation means that, for every value of ¢,

xsint + ye' +z£* = 0
Thus, in this equation, we choose appropriate values of ¢ to easily get x =0, y = 0, z = 0. For example,

(i) Substitute t =0 to obtain x(0) + (1) +2z(0) =0 or y=0
(ii) Substitute t =7 to obtain x(0) + 0(e") + z(n?) =0 or z=0
(iii) Substitute ¢ = 7/2 to obtain x(1) + 0(e™/?) + 0(n?/4) = 0 or x=0

We have shown
xf+yg+zf=0 implies x=0, y=0, z=0

Accordingly, u, v, w are linearly independent.
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Linear Dependence in R®

Linear dependence in the vector space ¥ = R? can be described geometrically as follows:

(a) Any two vectors  and v in R? are linearly dependent if and only if they lie on the same line through
the origin O, as shown in Fig. 4-3(a).

(b) Any three vectors u, v, w in R® are linearly dependent if and only if they lie on the same plane
through the origin O, as shown in Fig. 4-3(b).

Later, we will be able to show that any four or more vectors in R® are automatically linearly dependent.

(a) v and v are linearly dependent. (b) u, v, and w are linearly dependent.

Figure 4-3

Linear Dependence and Linear Combinations

The notions of linear dependence and linear combinations are closely related. Specifically, for more than
one vector, we show that the vectors v, v,, ..., v,, are linearly dependent if and only if one of them is a
linear combination of the others.

Suppose, say, v; is a linear combination of the others,

v =ai vt 4V G Vi Ay Uy
Then by adding —uv; to both sides, we obtain
avy+ a4V — v+ v+ + a0, =0

where the coefficient of v; is not 0. Hence, the vectors are linearly dependent. Conversely, suppose the
vectors are linearly dependent, say,
byvy + -+ +bjv; + -+ b,v, =0, where b; #0

Then we can solve for v; obtaining
v,=b'byv, —--—=b7'b_ v, —b b v ——bb v
j Y Y1V j YY1 J Ui+ J “mm
and so v; is a linear combination of the other vectors.

We now state a slightly stronger statement than the one above. This result has many important
consequences.

LEMMA 4.10:  Suppose two or more nonzero vectors v, v,, .. ., v,, are linearly dependent. Then one
of the vectors is a linear combination of the preceding vectors; that is, there exists
k > 1 such that

U = C1U; + Cr Uy +- 1+ Cr_1Vr—1



