
3.66. Express each of the following matrices as a product of elementary matrices:

A ¼ 1 2
3 4

� �
; B ¼ 3 �6

�2 4

� �
; C ¼ 2 6

�3 �7
� �

; D ¼
1 2 0
0 1 3
3 8 7

24 35
3.67. Find the inverse of each of the following matrices (if it exists):

A ¼
1 �2 �1
2 �3 1
3 �4 4

24 35; B ¼
1 2 3
2 6 1
3 10 �1

24 35; C ¼
1 3 �2
2 8 �3
1 7 1

24 35; D ¼
2 1 �1
5 2 �3
0 2 1

24 35
3.68. Find the inverse of each of the following n	 n matrices:

(a) A has 1’s on the diagonal and superdiagonal (entries directly above the diagonal) and 0’s elsewhere.

(b) B has 1’s on and above the diagonal, and 0’s below the diagonal.

Lu Factorization

3.69. Find the LU factorization of each of the following matrices:

(a)
1 �1 �1
3 �4 �2
2 �3 �2

24 35, (b) 1 3 �1
2 5 1
3 4 2

24 35, (c) 2 3 6
4 7 9
3 5 4

24 35, (d) 1 2 3
2 4 7
3 7 10

24 35
3.70. Let A be the matrix in Problem 3.69(a). Find X1;X2;X3;X4, where

(a) X1 is the solution of AX ¼ B1, where B1 ¼ ð1; 1; 1ÞT .
(b) For k > 1, Xk is the solution of AX ¼ Bk , where Bk ¼ Bk�1 þ Xk�1.

3.71. Let B be the matrix in Problem 3.69(b). Find the LDU factorization of B.

Miscellaneous Problems

3.72. Consider the following systems in unknowns x and y:

ðaÞ axþ by ¼ 1
cxþ dy ¼ 0

ðbÞ axþ by ¼ 0
cxþ dy ¼ 1

Suppose D ¼ ad � bc 6¼ 0. Show that each system has the unique solution:

(a) x ¼ d=D, y ¼ �c=D, (b) x ¼ �b=D, y ¼ a=D.

3.73. Find the inverse of the row operation ‘‘Replace Ri by kRj þ k0Ri ðk0 6¼ 0Þ.’’

3.74. Prove that deleting the last column of an echelon form (respectively, the row canonical form) of an
augmented matrix M ¼ ½A;B� yields an echelon form (respectively, the row canonical form) of A.

3.75. Let e be an elementary row operation and E its elementary matrix, and let f be the corresponding elementary
column operation and F its elementary matrix. Prove

(a) f ðAÞ ¼ ðeðAT ÞÞT , (b) F ¼ ET , (c) f ðAÞ ¼ AF.

3.76. Matrix A is equivalent to matrix B, written A  B, if there exist nonsingular matrices P and Q such that
B ¼ PAQ. Prove that  is an equivalence relation; that is,

(a) A  A, (b) If A  B, then B  A, (c) If A  B and B  C, then A  C.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: A ¼ ½R1; R2; . . .� denotes the matrix A with rows R1;R2; . . . . The elements in each row are separated

by commas (which may be omitted with single digits), the rows are separated by semicolons, and 0 denotes a zero

row. For example,

A ¼ ½1; 2; 3; 4; 5;�6; 7;�8; 0� ¼
1 2 3 4
5 �6 7 �8
0 0 0 0

24 35
3.49. (a) no, (b) yes, (c) linear in x; y; z, not linear in x; y; z; k

3.50. (a) x ¼ 2=p, (b) no solution, (c) every scalar k is a solution

3.51. (a) ð2;�1Þ, (b) no solution, (c) ð5; 2Þ, (d) ð5� 2a; aÞ

3.52. (a) a 6¼ �2; ð2; 2Þ; ð�2;�2Þ, (b) a 6¼ �6; ð6; 4Þ; ð�6;�4Þ, (c) a 6¼ 5
2 ; ð52 ; 6Þ

3.53. (a) ð2; 1; 12Þ, (b) no solution, (c) u ¼ ð�7a� 1; 2aþ 2; aÞ.

3.54. (a) ð3;�1Þ, (b) u ¼ ð�aþ 2b; 1þ 2a� 2b; a; bÞ, (c) no solution

3.55. (a) u ¼ ð12 aþ 2; a; 1
2Þ, (b) u ¼ ð12 ð7� 5b� 4aÞ; a; 1

2 ð1þ bÞ; bÞ

3.56. (a) a 6¼ �3; ð3; 3Þ; ð�3;�3Þ, (b) a 6¼ 5 and a 6¼ �1; ð5; 7Þ; ð�1;�5Þ,
(c) a 6¼ 1 and a 6¼ �2; ð�2; 5Þ

3.57. (a) 2;�1; 3, (b) 6;�3; 1, (c) not possible

3.58. (a) 3;�2; 1, (b) 2
3 ;�1; 13, (c) 2

3 ;
1
7 ;

1
21

3.59. (a) dim W ¼ 1; u1 ¼ ð�1; 1; 1Þ, (b) dim W ¼ 0, no basis,
(c) dim W ¼ 2; u1 ¼ ð�2; 1; 0; 0Þ; u2 ¼ ð5; 0;�2; 1Þ

3.60. (a) dim W ¼ 3; u1 ¼ ð�3; 1; 0; 0; 0Þ, u2 ¼ ð7; 0;�3; 1; 0Þ, u3 ¼ ð3; 0;�1; 0; 1Þ,
(b) dim W ¼ 2, u1 ¼ ð2; 1; 0; 0; 0Þ, u2 ¼ ð5; 0;�5;�3; 1Þ

3.61. (a) ½1; 0;� 1
2 ; 0; 1; 52 ; 0�, (b) ½1; 2; 0; 0; 2; 0; 0; 1; 0; 5; 0; 0; 0; 1; 2�,

(c) ½1; 2; 0; 4;�5; 3; 0; 0; 1;�5; 152 ;� 5
2 ; 0�

3.62. (a) ½1; 2; 0; 0;�4;�2; 0; 0; 1; 0; 1; 2; 0; 0; 0; 1; 2; 1; 0�,
(b) ½0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 0; 1; 0�, (c) ½1; 0; 0; 4; 0; 1; 0;�1; 0; 0; 1; 2; 0�

3.63. 5: ½1; 0; 0; 1�, ½1; 1; 0; 0�, ½1; 0; 0; 0�, ½0; 1; 0; 0�; 0

3.64. 16

3.65. (a) ½1; 0; 0; 0; 0; 1; 0; 1; 0�, ½1; 0; 0; 0; 3; 0; 0; 0; 1�, ½1; 0; 2; 0; 1; 0; 0; 0; 1�,
(b) R2 $ R3;

1
3R2 ! R2; �2R3 þ R1 ! R1; each E0i ¼ E�1i ,

(c) C2 $ C3; 3C2 ! C2; 2C3 þ C1 ! C1, (d) each Fi ¼ ET
i .

3.66. A ¼ ½1; 0; 3; 1�½1; 0; 0;�2�½1; 2; 0; 1�, B is not invertible,
C ¼ ½1; 0; � 3

2 ; 1�½1; 0; 0; 2�½1; 6; 0; 1�½2; 0; 0; 1�,
D ¼ ½100; 010; 301�½100; 010; 021�½100; 013; 001�½120; 010; 001�

3.67. A�1 ¼ ½�8; 12;�5; �5; 7;�3; 1;�2; 1�, B has no inverse,
C�1 ¼ ½292 ;� 17

2 ;
7
2 ; � 5

2 ;
3
2 ;� 1

2 ; 3;�2; 1�; D�1 ¼ ½8;�3;�1; �5; 2; 1; 10;�4;�1�
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3.68. A�1 ¼ ½1;�1; 1;�1; . . . ; 0; 1;�1; 1;�1; . . . ; 0; 0; 1;�1; 1;�1; 1; . . . ; . . . ; . . . ; 0; . . . 0; 1�
B�1 has 1’s on diagonal, �1’s on superdiagonal, and 0’s elsewhere.

3.69. (a) ½100; 310; 211�½1;�1;�1; 0;�1; 1; 0; 0;�1�,
(b) ½100; 210; 351�½1; 3;�1; 0;�1; 3; 0; 0;�10�,
(c) ½100; 210; 3

2 ;
1
2 ; 1�½2; 3; 6; 0; 1;�3; 0; 0;� 7

2�,
(d) There is no LU decomposition.

3.70. X1 ¼ ½1; 1;�1�T ; B2 ¼ ½2; 2; 0�T , X2 ¼ ½6; 4; 0�T , B3 ¼ ½8; 6; 0�T , X3 ¼ ½22; 16;�2�T ,
B4 ¼ ½30; 22;�2�T , X4 ¼ ½86; 62;�6�T

3.71. B ¼ ½100; 210; 351� diagð1;�1;�10Þ ½1; 3;�1; 0; 1; 3; 0; 0; 1�

3.73. Replace Ri by �kRj þ ð1=k0ÞRi.

3.75. (c) f ðAÞ ¼ ðeðAT ÞÞT ¼ ðEAT ÞT ¼ ðAT ÞTET ¼ AF

3.76. (a) A ¼ IAI : (b) If A ¼ PBQ, then B ¼ P�1AQ�1.
(c) If A ¼ PBQ and B ¼ P0CQ0, then A ¼ ðPP0ÞCðQ 0QÞ.
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Vector Spaces

4.1 Introduction

This chapter introduces the underlying structure of linear algebra, that of a finite-dimensional vector
space. The definition of a vector space V, whose elements are called vectors, involves an arbitrary field K ,
whose elements are called scalars. The following notation will be used (unless otherwise stated or
implied):

V the given vector space

u; v;w vectors in V

K the given number field

a; b; c; or k scalars in K

Almost nothing essential is lost if the reader assumes that K is the real field R or the complex field C.
The reader might suspect that the real line R has ‘‘dimension’’ one, the cartesian plane R2 has

‘‘dimension’’ two, and the space R3 has ‘‘dimension’’ three. This chapter formalizes the notion of
‘‘dimension,’’ and this definition will agree with the reader’s intuition.

Throughout this text, we will use the following set notation:

a 2 A Element a belongs to set A

a; b 2 A Elements a and b belong to A

8x 2 A For every x in A

9x 2 A There exists an x in A

A � B A is a subset of B

A \ B Intersection of A and B

A [ B Union of A and B

; Empty set

4.2 Vector Spaces

The following defines the notion of a vector space V where K is the field of scalars.

DEFINITION: Let V be a nonempty set with two operations:

(i) Vector Addition: This assigns to any u; v 2 V a sum uþ v in V.

(ii) Scalar Multiplication: This assigns to any u 2 V, k 2 K a product ku 2 V.

Then V is called a vector space (over the field K) if the following axioms hold for any
vectors u; v;w 2 V :
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[A1] ðuþ vÞ þ w ¼ uþ ðv þ wÞ
[A2] There is a vector in V, denoted by 0 and called the zero vector, such that, for any

u 2 V ;
uþ 0 ¼ 0þ u ¼ u

[A3] For each u 2 V ; there is a vector in V, denoted by �u, and called the negative of u,
such that

uþ ð�uÞ ¼ ð�uÞ þ u ¼ 0.
[A4] uþ v ¼ v þ u.
[M1] kðuþ vÞ ¼ kuþ kv, for any scalar k 2 K:
[M2] ðaþ bÞu ¼ auþ bu; for any scalars a; b 2 K.
[M3] ðabÞu ¼ aðbuÞ; for any scalars a; b 2 K.
[M4] 1u ¼ u, for the unit scalar 1 2 K.

The above axioms naturally split into two sets (as indicated by the labeling of the axioms). The first
four are concerned only with the additive structure of V and can be summarized by saying V is a
commutative group under addition. This means

(a) Any sum v1 þ v2 þ � � � þ vm of vectors requires no parentheses and does not depend on the order of
the summands.

(b) The zero vector 0 is unique, and the negative �u of a vector u is unique.

(c) (Cancellation Law) If uþ w ¼ v þ w, then u ¼ v.

Also, subtraction in V is defined by u� v ¼ uþ ð�vÞ, where �v is the unique negative of v.
On the other hand, the remaining four axioms are concerned with the ‘‘action’’ of the field K of scalars

on the vector space V. Using these additional axioms, we prove (Problem 4.2) the following simple
properties of a vector space.

THEOREM 4.1: Let V be a vector space over a field K.

(i) For any scalar k 2 K and 0 2 V ; k0 ¼ 0.

(ii) For 0 2 K and any vector u 2 V ; 0u ¼ 0.

(iii) If ku ¼ 0, where k 2 K and u 2 V, then k ¼ 0 or u ¼ 0.

(iv) For any k 2 K and any u 2 V ; ð�kÞu ¼ kð�uÞ ¼ �ku.

4.3 Examples of Vector Spaces

This section lists important examples of vector spaces that will be used throughout the text.

Space Kn

Let K be an arbitrary field. The notation Kn is frequently used to denote the set of all n-tuples of elements
in K. Here Kn is a vector space over K using the following operations:

(i) Vector Addition: ða1; a2; . . . ; anÞ þ ðb1; b2; . . . ; bnÞ ¼ ða1 þ b1; a2 þ b2; . . . ; an þ bnÞ
(ii) Scalar Multiplication: kða1; a2; . . . ; anÞ ¼ ðka1; ka2; . . . ; kanÞ
The zero vector in Kn is the n-tuple of zeros,

0 ¼ ð0; 0; . . . ; 0Þ
and the negative of a vector is defined by

�ða1; a2; . . . ; anÞ ¼ ð�a1;�a2; . . . ;�anÞ
Observe that these are the same as the operations defined for Rn in Chapter 1. The proof that Kn is a
vector space is identical to the proof of Theorem 1.1, which we now regard as stating that Rn with the
operations defined there is a vector space over R.
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Polynomial Space PðtÞ
Let PðtÞ denote the set of all polynomials of the form

pðtÞ ¼ a0 þ a1t þ a2t
2 þ � � � þ ast

s ðs ¼ 1; 2; . . .Þ
where the coefficients ai belong to a field K. Then PðtÞ is a vector space over K using the following operations:

(i) Vector Addition: Here pðtÞ þ qðtÞ in PðtÞ is the usual operation of addition of polynomials.

(ii) Scalar Multiplication: Here kpðtÞ in PðtÞ is the usual operation of the product of a scalar k and a
polynomial pðtÞ.

The zero polynomial 0 is the zero vector in PðtÞ.
Polynomial Space PnðtÞ
Let PnðtÞ denote the set of all polynomials pðtÞ over a field K, where the degree of pðtÞ is less than or
equal to n; that is,

pðtÞ ¼ a0 þ a1t þ a2t
2 þ � � � þ ast

s

where s � n. Then PnðtÞ is a vector space over K with respect to the usual operations of addition of
polynomials and of multiplication of a polynomial by a constant (just like the vector space PðtÞ above).
We include the zero polynomial 0 as an element of PnðtÞ, even though its degree is undefined.

Matrix Space Mm;n

The notationMm;n, or simplyM; will be used to denote the set of all m	 n matrices with entries in a field
K . Then Mm;n is a vector space over K with respect to the usual operations of matrix addition and scalar
multiplication of matrices, as indicated by Theorem 2.1.

Function Space FðXÞ
Let X be a nonempty set and let K be an arbitrary field. Let FðX Þ denote the set of all functions of X into
K . [Note that FðX Þ is nonempty, because X is nonempty.] Then FðX Þ is a vector space over K with
respect to the following operations:

(i) Vector Addition: The sum of two functions f and g in FðX Þ is the function f þ g in FðX Þ defined by

ð f þ gÞðxÞ ¼ f ðxÞ þ gðxÞ 8x 2 X

(ii) Scalar Multiplication: The product of a scalar k 2 K and a function f in FðX Þ is the function kf in
FðX Þ defined by

ðkf ÞðxÞ ¼ kf ðxÞ 8x 2 X

The zero vector in FðX Þ is the zero function 0, which maps every x 2 X into the zero element 0 2 K;

0ðxÞ ¼ 0 8x 2 X

Also, for any function f in FðX Þ, negative of f is the function �f in FðX Þ defined by

ð�f ÞðxÞ ¼ �f ðxÞ 8x 2 X

Fields and Subfields

Suppose a field E is an extension of a field K; that is, suppose E is a field that contains K as a subfield.
Then E may be viewed as a vector space over K using the following operations:

(i) Vector Addition: Here uþ v in E is the usual addition in E.

(ii) Scalar Multiplication: Here ku in E, where k 2 K and u 2 E, is the usual product of k and u as
elements of E.

That is, the eight axioms of a vector space are satisfied by E and its subfield K with respect to the above
two operations.

114 CHAPTER 4 Vector Spaces



4.4 Linear Combinations, Spanning Sets

Let V be a vector space over a field K. A vector v in V is a linear combination of vectors u1; u2; . . . ; um in
V if there exist scalars a1; a2; . . . ; am in K such that

v ¼ a1u1 þ a2u2 þ � � � þ amum

Alternatively, v is a linear combination of u1; u2; . . . ; um if there is a solution to the vector equation

v ¼ x1u1 þ x2u2 þ � � � þ xmum

where x1; x2; . . . ; xm are unknown scalars.

EXAMPLE 4.1 (Linear Combinations in Rn) Suppose we want to express v ¼ ð3; 7;�4Þ in R3 as a linear
combination of the vectors

u1 ¼ ð1; 2; 3Þ; u2 ¼ ð2; 3; 7Þ; u3 ¼ ð3; 5; 6Þ
We seek scalars x, y, z such that v ¼ xu1 þ yu2 þ zu3; that is,

3
3
�4

24 35 ¼ x
1
2
3

24 35þ y
2
3
7

24 35þ z
3
5
6

24 35 or
xþ 2yþ 3z ¼ 3
2xþ 3yþ 5z ¼ 7
3xþ 7yþ 6z ¼ �4

(For notational convenience, we have written the vectors in R3 as columns, because it is then easier to find the
equivalent system of linear equations.) Reducing the system to echelon form yields

xþ 2yþ 3z ¼ 3
�y� z ¼ 1
y� 3z ¼ �13

and then
xþ 2yþ 3z ¼ 3
�y� z ¼ 1
� 4z ¼ �12

Back-substitution yields the solution x ¼ 2, y ¼ �4, z ¼ 3. Thus, v ¼ 2u1 � 4u2 þ 3u3.

Remark: Generally speaking, the question of expressing a given vector v in Kn as a linear
combination of vectors u1; u2; . . . ; um in Kn is equivalent to solving a system AX ¼ B of linear equations,
where v is the column B of constants, and the u’s are the columns of the coefficient matrix A. Such a
system may have a unique solution (as above), many solutions, or no solution. The last case—no
solution—means that v cannot be written as a linear combination of the u’s.

EXAMPLE 4.2 (Linear combinations in PðtÞ) Suppose we want to express the polynomial v ¼ 3t2 þ 5t � 5 as a
linear combination of the polynomials

p1 ¼ t2 þ 2t þ 1; p2 ¼ 2t2 þ 5t þ 4; p3 ¼ t2 þ 3t þ 6

We seek scalars x, y, z such that v ¼ xp1 þ yp2 þ zp3; that is,

3t2 þ 5t � 5 ¼ xðt2 þ 2t þ 1Þ þ yð2t2 þ 5t þ 4Þ þ zðt2 þ 3t þ 6Þ ð*Þ
There are two ways to proceed from here.

(1) Expand the right-hand side of (*) obtaining:

3t2 þ 5t � 5 ¼ xt2 þ 2xt þ xþ 2yt2 þ 5yt þ 4yþ zt2 þ 3zt þ 6z

¼ ðxþ 2yþ zÞt2 þ ð2xþ 5yþ 3zÞt þ ðxþ 4yþ 6zÞ
Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form:

xþ 2yþ z ¼ 3

2xþ 5yþ 3z ¼ 5

xþ 4yþ 6z ¼ �5
or

xþ 2yþ z ¼ 3

yþ z ¼ �1
2yþ 5z ¼ �8

or

xþ 2yþ z ¼ 3

yþ z ¼ �1
3z ¼ �6
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The system is in triangular form and has a solution. Back-substitution yields the solution x ¼ 3, y ¼ 1, z ¼ �2.
Thus,

v ¼ 3p1 þ p2 � 2p3

(2) The equation (*) is actually an identity in the variable t; that is, the equation holds for any value
of t. We can obtain three equations in the unknowns x, y, z by setting t equal to any three values.
For example,

Set t ¼ 0 in ð1Þ to obtain: xþ 4yþ 6z ¼ �5
Set t ¼ 1 in ð1Þ to obtain: 4xþ 11yþ 10z ¼ 3

Set t ¼ �1 in ð1Þ to obtain: yþ 4z ¼ �7
Reducing this system to echelon form and solving by back-substitution again yields the solution x ¼ 3, y ¼ 1,
z ¼ �2. Thus (again), v ¼ 3p1 þ p2 � 2p3.

Spanning Sets

Let V be a vector space over K. Vectors u1; u2; . . . ; um in V are said to span V or to form a spanning set of
V if every v in V is a linear combination of the vectors u1; u2; . . . ; um—that is, if there exist scalars
a1; a2; . . . ; am in K such that

v ¼ a1u1 þ a2u2 þ � � � þ amum

The following remarks follow directly from the definition.

Remark 1: Suppose u1; u2; . . . ; um span V. Then, for any vector w, the set w; u1; u2; . . . ; um also
spans V.

Remark 2: Suppose u1; u2; . . . ; um span V and suppose uk is a linear combination of some of the
other u’s. Then the u’s without uk also span V.

Remark 3: Suppose u1; u2; . . . ; um span V and suppose one of the u’s is the zero vector. Then the
u’s without the zero vector also span V.

EXAMPLE 4.3 Consider the vector space V ¼ R3.

(a) We claim that the following vectors form a spanning set of R3:

e1 ¼ ð1; 0; 0Þ; e2 ¼ ð0; 1; 0Þ; e3 ¼ ð0; 0; 1Þ
Specifically, if v ¼ ða; b; cÞ is any vector in R3, then

v ¼ ae1 þ be2 þ ce3

For example, v ¼ ð5;�6; 2Þ ¼ �5e1 � 6e2 þ 2e3.

(b) We claim that the following vectors also form a spanning set of R3:

w1 ¼ ð1; 1; 1Þ; w2 ¼ ð1; 1; 0Þ; w3 ¼ ð1; 0; 0Þ
Specifically, if v ¼ ða; b; cÞ is any vector in R3, then (Problem 4.62)

v ¼ ða; b; cÞ ¼ cw1 þ ðb� cÞw2 þ ða� bÞw3

For example, v ¼ ð5;�6; 2Þ ¼ 2w1 � 8w2 þ 11w3.

(c) One can show (Problem 3.24) that v ¼ ð2; 7; 8Þ cannot be written as a linear combination of the vectors

u1 ¼ ð1; 2; 3Þ; u2 ¼ ð1; 3; 5Þ; u3 ¼ ð1; 5; 9Þ
Accordingly, u1, u2, u3 do not span R3.
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EXAMPLE 4.4 Consider the vector space V ¼ PnðtÞ consisting of all polynomials of degree �n.

(a) Clearly every polynomial in PnðtÞ can be expressed as a linear combination of the nþ 1 polynomials

1; t; t2; t3; . . . ; tn

Thus, these powers of t (where 1 ¼ t0) form a spanning set for PnðtÞ.
(b) One can also show that, for any scalar c, the following nþ 1 powers of t � c,

1; t � c; ðt � cÞ2; ðt � cÞ3; . . . ; ðt � cÞn
(where ðt � cÞ0 ¼ 1), also form a spanning set for PnðtÞ.

EXAMPLE 4.5 Consider the vector space M ¼M2;2 consisting of all 2	 2 matrices, and consider the following
four matrices in M:

E11 ¼ 1 0
0 0

� �
; E12 ¼ 0 1

0 0

� �
; E21 ¼ 0 0

1 0

� �
; E22 ¼ 0 0

0 1

� �
Then clearly any matrix A in M can be written as a linear combination of the four matrices. For example,

A ¼ 5 � 6
7 8

� �
¼ 5E11 � 6E12 þ 7E21 þ 8E22

Accordingly, the four matrices E11, E12, E21, E22 span M.

4.5 Subspaces

This section introduces the important notion of a subspace.

DEFINITION: Let V be a vector space over a field K and letW be a subset of V. ThenW is a subspace
of V if W is itself a vector space over K with respect to the operations of vector
addition and scalar multiplication on V.

The way in which one shows that any set W is a vector space is to show that W satisfies the eight
axioms of a vector space. However, if W is a subset of a vector space V, then some of the axioms
automatically hold in W, because they already hold in V. Simple criteria for identifying subspaces follow.

THEOREM 4.2: SupposeW is a subset of a vector space V. ThenW is a subspace of V if the following
two conditions hold:

(a) The zero vector 0 belongs to W.

(b) For every u; v 2 W; k 2 K: (i) The sum uþ v 2 W. (ii) The multiple ku 2 W.

Property (i) in (b) states that W is closed under vector addition, and property (ii) in (b) states that W is
closed under scalar multiplication. Both properties may be combined into the following equivalent single
statement:

(b0) For every u; v 2 W ; a; b 2 K, the linear combination auþ bv 2 W.

Now let V be any vector space. Then V automatically contains two subspaces: the set {0} consisting of
the zero vector alone and the whole space V itself. These are sometimes called the trivial subspaces of V.
Examples of nontrivial subspaces follow.

EXAMPLE 4.6 Consider the vector space V ¼ R3.

(a) Let U consist of all vectors in R3 whose entries are equal; that is,

U ¼ fða; b; cÞ : a ¼ b ¼ cg

For example, (1, 1, 1), (73,73,73), (7, 7, 7), (72,72,72) are vectors in U . Geometrically, U is the line
through the origin O and the point (1, 1, 1) as shown in Fig. 4-1(a). Clearly 0 ¼ ð0; 0; 0Þ belongs to U , because
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all entries in 0 are equal. Further, suppose u and v are arbitrary vectors in U , say, u ¼ ða; a; aÞ and v ¼ ðb; b; bÞ.
Then, for any scalar k 2 R, the following are also vectors in U :

uþ v ¼ ðaþ b; aþ b; aþ bÞ and ku ¼ ðka; ka; kaÞ

Thus, U is a subspace of R3.

(b) Let W be any plane in R3 passing through the origin, as pictured in Fig. 4-1(b). Then 0 ¼ ð0; 0; 0Þ belongs toW,
because we assumed W passes through, the origin O. Further, suppose u and v are vectors in W. Then u and v
may be viewed as arrows in the plane W emanating from the origin O, as in Fig. 4-1(b). The sum uþ v and any
multiple ku of u also lie in the plane W. Thus, W is a subspace of R3.

EXAMPLE 4.7

(a) Let V ¼Mn;n, the vector space of n	 n matrices. Let W1 be the subset of all (upper) triangular matrices and let
W2 be the subset of all symmetric matrices. Then W1 is a subspace of V, because W1 contains the zero matrix 0
and W1 is closed under matrix addition and scalar multiplication; that is, the sum and scalar multiple of such
triangular matrices are also triangular. Similarly, W2 is a subspace of V.

(b) Let V ¼ PðtÞ, the vector space PðtÞ of polynomials. Then the space PnðtÞ of polynomials of degree at most n
may be viewed as a subspace of PðtÞ. Let QðtÞ be the collection of polynomials with only even powers of t. For
example, the following are polynomials in QðtÞ:

p1 ¼ 3þ 4t2 � 5t6 and p2 ¼ 6� 7t4 þ 9t6 þ 3t12

(We assume that any constant k ¼ kt0 is an even power of t.) Then QðtÞ is a subspace of PðtÞ.
(c) Let V be the vector space of real-valued functions. Then the collection W1 of continuous functions and the

collection W2 of differentiable functions are subspaces of V.

Intersection of Subspaces

Let U andW be subspaces of a vector space V. We show that the intersection U \W is also a subspace of
V. Clearly, 0 2 U and 0 2 W, because U and W are subspaces; whence 0 2 U \W. Now suppose u and v
belong to the intersection U \W. Then u; v 2 U and u; v 2 W. Further, because U and W are subspaces,
for any scalars a; b 2 K,

auþ bv 2 U and auþ bv 2 W

Thus, auþ bv 2 U \W. Therefore, U \W is a subspace of V.
The above result generalizes as follows.

THEOREM 4.3: The intersection of any number of subspaces of a vector space V is a subspace of V.

Figure 4-1
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Solution Space of a Homogeneous System

Consider a system AX ¼ B of linear equations in n unknowns. Then every solution u may be viewed as a
vector in Kn. Thus, the solution set of such a system is a subset of Kn. Now suppose the system is
homogeneous; that is, suppose the system has the form AX ¼ 0. Let W be its solution set. Because
A0 ¼ 0, the zero vector 0 2 W. Moreover, suppose u and v belong to W. Then u and v are solutions of
AX ¼ 0, or, in other words, Au ¼ 0 and Av ¼ 0. Therefore, for any scalars a and b, we have

Aðauþ bvÞ ¼ aAuþ bAv ¼ a0þ b0 ¼ 0þ 0 ¼ 0

Thus, auþ bv belongs to W, because it is a solution of AX ¼ 0. Accordingly, W is a subspace of Kn.
We state the above result formally.

THEOREM 4.4: The solution set W of a homogeneous system AX ¼ 0 in n unknowns is a subspace
of Kn.

We emphasize that the solution set of a nonhomogeneous system AX ¼ B is not a subspace of Kn. In
fact, the zero vector 0 does not belong to its solution set.

4.6 Linear Spans, Row Space of a Matrix

Suppose u1; u2; . . . ; um are any vectors in a vector space V. Recall (Section 4.4) that any vector of the
form a1u1 þ a2u2 þ � � � þ amum, where the ai are scalars, is called a linear combination of u1; u2; . . . ; um.
The collection of all such linear combinations, denoted by

spanðu1; u2; . . . ; umÞ or spanðuiÞ
is called the linear span of u1; u2; . . . ; um.

Clearly the zero vector 0 belongs to spanðuiÞ, because
0 ¼ 0u1 þ 0u2 þ � � � þ 0um

Furthermore, suppose v and v0 belong to spanðuiÞ, say,
v ¼ a1u1 þ a2u2 þ � � � þ amum and v0 ¼ b1u1 þ b2u2 þ � � � þ bmum

Then,

v þ v0 ¼ ða1 þ b1Þu1 þ ða2 þ b2Þu2 þ � � � þ ðam þ bmÞum
and, for any scalar k 2 K,

kv ¼ ka1u1 þ ka2u2 þ � � � þ kamum

Thus, v þ v0 and kv also belong to spanðuiÞ. Accordingly, spanðuiÞ is a subspace of V.
More generally, for any subset S of V, spanðSÞ consists of all linear combinations of vectors in S or,

when S ¼ f, span(S)¼f0g. Thus, in particular, S is a spanning set (Section 4.4) of spanðSÞ.
The following theorem, which was partially proved above, holds.

THEOREM 4.5: Let S be a subset of a vector space V.

(i) Then spanðSÞ is a subspace of V that contains S.

(ii) If W is a subspace of V containing S, then spanðSÞ � W.

Condition (ii) in theorem 4.5 may be interpreted as saying that spanðSÞ is the ‘‘smallest’’ subspace of
V containing S.

EXAMPLE 4.8 Consider the vector space V ¼ R3.

(a) Let u be any nonzero vector in R3. Then spanðuÞ consists of all scalar multiples of u. Geometrically, spanðuÞ is
the line through the origin O and the endpoint of u, as shown in Fig. 4-2(a).
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(b) Let u and v be vectors in R3 that are not multiples of each other. Then spanðu; vÞ is the plane through the origin
O and the endpoints of u and v as shown in Fig. 4-2(b).

(c) Consider the vectors e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, e3 ¼ ð0; 0; 1Þ in R3. Recall [Example 4.1(a)] that every vector
in R3 is a linear combination of e1, e2, e3. That is, e1, e2, e3 form a spanning set of R3. Accordingly,
spanðe1; e2; e3Þ ¼ R3.

Row Space of a Matrix

Let A ¼ ½aij� be an arbitrary m	 n matrix over a field K. The rows of A,

R1 ¼ ða11; a12; . . . ; a1nÞ; R2 ¼ ða21; a22; . . . ; a2nÞ; . . . ; Rm ¼ ðam1; am2; . . . ; amnÞ
may be viewed as vectors in Kn; hence, they span a subspace of Kn called the row space of A and denoted
by rowsp(A). That is,

rowspðAÞ ¼ spanðR1;R2; . . . ;RmÞ
Analagously, the columns of A may be viewed as vectors in Km called the column space of A and denoted
by colsp(A). Observe that colspðAÞ ¼ rowspðAT Þ.

Recall that matrices A and B are row equivalent, written A � B, if B can be obtained from A by a
sequence of elementary row operations. Now suppose M is the matrix obtained by applying one of the
following elementary row operations on a matrix A:

ð1Þ Interchange Ri and Rj; ð2Þ Replace Ri by kRi; ð3Þ Replace Rj by kRi þ Rj

Then each row of M is a row of A or a linear combination of rows of A. Hence, the row space of M is
contained in the row space of A. On the other hand, we can apply the inverse elementary row operation on
M to obtain A; hence, the row space of A is contained in the row space of M . Accordingly, A and M have
the same row space. This will be true each time we apply an elementary row operation. Thus, we have
proved the following theorem.

THEOREM 4.6: Row equivalent matrices have the same row space.

We are now able to prove (Problems 4.45–4.47) basic results on row equivalence (which first
appeared as Theorems 3.7 and 3.8 in Chapter 3).

THEOREM 4.7: Suppose A ¼ ½aij� and B ¼ ½bij� are row equivalent echelon matrices with respective
pivot entries

a1j1 ; a2j2 ; . . . ; arjr and b1k1 ; b2k2 ; . . . ; bsks

Then A and B have the same number of nonzero rows—that is, r ¼ s—and their
pivot entries are in the same positions—that is, j1 ¼ k1; j2 ¼ k2; . . . ; jr ¼ kr.

THEOREM 4.8: Suppose A and B are row canonical matrices. Then A and B have the same row space
if and only if they have the same nonzero rows.

0

(a)

u

Figure 4-2

0

(b)

u
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COROLLARY 4.9: Every matrix A is row equivalent to a unique matrix in row canonical form.

We apply the above results in the next example.

EXAMPLE 4.9 Consider the following two sets of vectors in R4:

u1 ¼ ð1; 2;�1; 3Þ; u2 ¼ ð2; 4; 1;�2Þ; u3 ¼ ð3; 6; 3;�7Þ
w1 ¼ ð1; 2;�4; 11Þ; w2 ¼ ð2; 4;�5; 14Þ

Let U ¼ spanðuiÞ and W ¼ spanðwiÞ. There are two ways to show that U ¼ W.

(a) Show that each ui is a linear combination of w1 and w2, and show that each wi is a linear combination of u1, u2,
u3. Observe that we have to show that six systems of linear equations are consistent.

(b) Form the matrix A whose rows are u1, u2, u3 and row reduce A to row canonical form, and form the matrix B
whose rows are w1 and w2 and row reduce B to row canonical form:

A ¼
1 2 �1 3

2 4 1 �2
3 6 3 �7

264
375 � 1 2 �1 3

0 0 3 �8
0 0 6 �16

264
375 � 1 2 0 1

3

0 0 1 � 8
3

0 0 0 0

264
375

B ¼ 1 2 �4 11

2 4 �5 14

� �
� 1 2 �4 11

0 0 3 �8
� �

� 1 2 0 1
3

0 0 1 � 8
3

" #

Because the nonzero rows of the matrices in row canonical form are identical, the row spaces of A and B are
equal. Therefore, U ¼ W.

Clearly, the method in (b) is more efficient than the method in (a).

4.7 Linear Dependence and Independence

Let V be a vector space over a field K . The following defines the notion of linear dependence and
independence of vectors over K. (One usually suppresses mentioning K when the field is understood.)
This concept plays an essential role in the theory of linear algebra and in mathematics in general.

DEFINITION: We say that the vectors v1; v2; . . . ; vm in V are linearly dependent if there exist scalars
a1; a2; . . . ; am in K, not all of them 0, such that

a1v1 þ a2v2 þ � � � þ amvm ¼ 0

Otherwise, we say that the vectors are linearly independent.

The above definition may be restated as follows. Consider the vector equation

x1v1 þ x2v2 þ � � � þ xmvm ¼ 0 ð*Þ
where the x’s are unknown scalars. This equation always has the zero solution x1 ¼ 0;
x2 ¼ 0; . . . ; xm ¼ 0. Suppose this is the only solution; that is, suppose we can show:

x1v1 þ x2v2 þ � � � þ xmvm ¼ 0 implies x1 ¼ 0; x2 ¼ 0; . . . ; xm ¼ 0

Then the vectors v1; v2; . . . ; vm are linearly independent, On the other hand, suppose the equation (*) has
a nonzero solution; then the vectors are linearly dependent.

A set S ¼ fv1; v2; . . . ; vmg of vectors in V is linearly dependent or independent according to whether
the vectors v1; v2; . . . ; vm are linearly dependent or independent.

An infinite set S of vectors is linearly dependent or independent according to whether there do or do
not exist vectors v1; v2; . . . ; vk in S that are linearly dependent.

Warning: The set S ¼ fv1; v2; . . . ; vmg above represents a list or, in other words, a finite sequence
of vectors where the vectors are ordered and repetition is permitted.
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The following remarks follow directly from the above definition.

Remark 1: Suppose 0 is one of the vectors v1; v2; . . . ; vm, say v1 ¼ 0. Then the vectors must be
linearly dependent, because we have the following linear combination where the coefficient of v1 6¼ 0:

1v1 þ 0v2 þ � � � þ 0vm ¼ 1 � 0þ 0þ � � � þ 0 ¼ 0

Remark 2: Suppose v is a nonzero vector. Then v, by itself, is linearly independent, because

kv ¼ 0; v 6¼ 0 implies k ¼ 0

Remark 3: Suppose two of the vectors v1; v2; . . . ; vm are equal or one is a scalar multiple of the
other, say v1 ¼ kv2. Then the vectors must be linearly dependent, because we have the following linear
combination where the coefficient of v1 6¼ 0:

v1 � kv2 þ 0v3 þ � � � þ 0vm ¼ 0

Remark 4: Two vectors v1 and v2 are linearly dependent if and only if one of them is a multiple of
the other.

Remark 5: If the set fv1; . . . ; vmg is linearly independent, then any rearrangement of the vectors
fvi1 ; vi2 ; . . . ; vimg is also linearly independent.

Remark 6: If a set S of vectors is linearly independent, then any subset of S is linearly
independent. Alternatively, if S contains a linearly dependent subset, then S is linearly dependent.

EXAMPLE 4.10

(a) Let u ¼ ð1; 1; 0Þ, v ¼ ð1; 3; 2Þ, w ¼ ð4; 9; 5Þ. Then u, v, w are linearly dependent, because

3uþ 5v � 2w ¼ 3ð1; 1; 0Þ þ 5ð1; 3; 2Þ � 2ð4; 9; 5Þ ¼ ð0; 0; 0Þ ¼ 0

(b) We show that the vectors u ¼ ð1; 2; 3Þ, v ¼ ð2; 5; 7Þ, w ¼ ð1; 3; 5Þ are linearly independent. We form the vector
equation xuþ yv þ zw ¼ 0, where x, y, z are unknown scalars. This yields

x

1
2
3

24 35þ y

2
5
7

24 35þ z

1
3
5

24 35 ¼ 0
0
0

24 35 or
xþ 2yþ z ¼ 0
2xþ 5yþ 3z ¼ 0
3xþ 7yþ 5z ¼ 0

or
xþ 2yþ z ¼ 0

yþ z ¼ 0
2z ¼ 0

Back-substitution yields x ¼ 0, y ¼ 0, z ¼ 0. We have shown that

xuþ yv þ zw ¼ 0 implies x ¼ 0; y ¼ 0; z ¼ 0

Accordingly, u, v, w are linearly independent.

(c) Let V be the vector space of functions from R into R. We show that the functions f ðtÞ ¼ sin t, gðtÞ ¼ et,
hðtÞ ¼ t2 are linearly independent. We form the vector (function) equation xf þ yg þ zh ¼ 0, where x, y, z are
unknown scalars. This function equation means that, for every value of t,

x sin t þ yet þ zt2 ¼ 0

Thus, in this equation, we choose appropriate values of t to easily get x ¼ 0, y ¼ 0, z ¼ 0. For example,

ðiÞ Substitute t ¼ 0
ðiiÞ Substitute t ¼ p
ðiiiÞ Substitute t ¼ p=2

to obtain xð0Þ þ yð1Þ þ zð0Þ ¼ 0
to obtain xð0Þ þ 0ðepÞ þ zðp2Þ ¼ 0
to obtain xð1Þ þ 0ðep=2Þ þ 0ðp2=4Þ ¼ 0

or
or
or

y ¼ 0
z ¼ 0
x ¼ 0

We have shown

xf þ yg þ zf ¼ 0 implies x ¼ 0; y ¼ 0; z ¼ 0

Accordingly, u, v, w are linearly independent.
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Linear Dependence in R3

Linear dependence in the vector space V ¼ R3 can be described geometrically as follows:

(a) Any two vectors u and v in R3 are linearly dependent if and only if they lie on the same line through
the origin O, as shown in Fig. 4-3(a).

(b) Any three vectors u, v, w in R3 are linearly dependent if and only if they lie on the same plane
through the origin O, as shown in Fig. 4-3(b).

Later, we will be able to show that any four or more vectors in R3 are automatically linearly dependent.

Linear Dependence and Linear Combinations

The notions of linear dependence and linear combinations are closely related. Specifically, for more than
one vector, we show that the vectors v1; v2; . . . ; vm are linearly dependent if and only if one of them is a
linear combination of the others.

Suppose, say, vi is a linear combination of the others,

vi ¼ a1v1 þ � � � þ ai�1vi�1 þ aiþ1viþ1 þ � � � þ amvm

Then by adding �vi to both sides, we obtain

a1v1 þ � � � þ ai�1vi�1 � vi þ aiþ1viþ1 þ � � � þ amvm ¼ 0

where the coefficient of vi is not 0. Hence, the vectors are linearly dependent. Conversely, suppose the
vectors are linearly dependent, say,

b1v1 þ � � � þ bjvj þ � � � þ bmvm ¼ 0; where bj 6¼ 0

Then we can solve for vj obtaining

vj ¼ b�1j b1v1 � � � � � b�1j bj�1vj�1 � b�1j bjþ1vjþ1 � � � � � b�1j bmvm

and so vj is a linear combination of the other vectors.
We now state a slightly stronger statement than the one above. This result has many important

consequences.

LEMMA 4.10: Suppose two or more nonzero vectors v1; v2; . . . ; vm are linearly dependent. Then one
of the vectors is a linear combination of the preceding vectors; that is, there exists
k > 1 such that

vk ¼ c1v1 þ c2v2 þ � � � þ ck�1vk�1

Figure 4-3
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