3.66. Express each of the following matrices as a product of elementary matrices:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{rr}
3 & -6 \\
-2 & 4
\end{array}\right], \quad C=\left[\begin{array}{rr}
2 & 6 \\
-3 & -7
\end{array}\right], \quad D=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 3 \\
3 & 8 & 7
\end{array}\right]
$$

3.67. Find the inverse of each of the following matrices (if it exists):

$$
A=\left[\begin{array}{rrr}
1 & -2 & -1 \\
2 & -3 & 1 \\
3 & -4 & 4
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 6 & 1 \\
3 & 10 & -1
\end{array}\right], \quad C=\left[\begin{array}{rrr}
1 & 3 & -2 \\
2 & 8 & -3 \\
1 & 7 & 1
\end{array}\right], \quad D=\left[\begin{array}{rrr}
2 & 1 & -1 \\
5 & 2 & -3 \\
0 & 2 & 1
\end{array}\right]
$$

3.68. Find the inverse of each of the following $n \times n$ matrices:
(a) A has 1 's on the diagonal and superdiagonal (entries directly above the diagonal) and 0 's elsewhere.
(b) B has 1 's on and above the diagonal, and 0 's below the diagonal.

Lu Factorization

3.69. Find the $L U$ factorization of each of the following matrices:
(a) $\left[\begin{array}{lll}1 & -1 & -1 \\ 3 & -4 & -2 \\ 2 & -3 & -2\end{array}\right]$,
, (b) $\left[\begin{array}{rrr}1 & 3 & -1 \\ 2 & 5 & 1 \\ 3 & 4 & 2\end{array}\right]$,
(c) $\left[\begin{array}{lll}2 & 3 & 6 \\ 4 & 7 & 9 \\ 3 & 5 & 4\end{array}\right]$,
, (d) $\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 7 & 10\end{array}\right]$
3.70. Let A be the matrix in Problem 3.69 (a). Find $X_{1}, X_{2}, X_{3}, X_{4}$, where
(a) X_{1} is the solution of $A X=B_{1}$, where $B_{1}=(1,1,1)^{T}$.
(b) For $k>1, X_{k}$ is the solution of $A X=B_{k}$, where $B_{k}=B_{k-1}+X_{k-1}$.
3.71. Let B be the matrix in Problem $3.69(\mathrm{~b})$. Find the $L D U$ factorization of B.

Miscellaneous Problems

3.72. Consider the following systems in unknowns x and y :
(a) $\quad \begin{aligned} a x+b y & =1 \\ c x+d y & =0\end{aligned}$
(b) $\begin{array}{r}a x+b y=0 \\ c x+d y=1\end{array}$

Suppose $D=a d-b c \neq 0$. Show that each system has the unique solution:
(a) $x=d / D, y=-c / D$,
(b) $x=-b / D, y=a / D$.
3.73. Find the inverse of the row operation ' Replace R_{i} by $k R_{j}+k^{\prime} R_{i}\left(k^{\prime} \neq 0\right)$.",
3.74. Prove that deleting the last column of an echelon form (respectively, the row canonical form) of an augmented matrix $M=[A, B]$ yields an echelon form (respectively, the row canonical form) of A.
3.75. Let e be an elementary row operation and E its elementary matrix, and let f be the corresponding elementary column operation and F its elementary matrix. Prove
(a) $f(A)=\left(e\left(A^{T}\right)\right)^{T}$,
(b) $F=E^{T}$,
(c) $f(A)=A F$.
3.76. Matrix A is equivalent to matrix B, written $A \approx B$, if there exist nonsingular matrices P and Q such that $B=P A Q$. Prove that \approx is an equivalence relation; that is,
(a) $A \approx A$,
(b) If $A \approx B$, then $B \approx A$,
(c) If $A \approx B$ and $B \approx C$, then $A \approx C$.

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: $A=\left[R_{1} ; \quad R_{2} ; \quad \ldots\right]$ denotes the matrix A with rows R_{1}, R_{2}, \ldots. The elements in each row are separated by commas (which may be omitted with single digits), the rows are separated by semicolons, and 0 denotes a zero row. For example,

$$
A=[1,2,3,4 ; \quad 5,-6,7,-8 ; \quad 0]=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & -6 & 7 & -8 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3.49. (a) no, (b) yes, (c) linear in x, y, z, not linear in x, y, z, k
3.50. (a) $x=2 / \pi$,
(b) no solution,
(c) every scalar k is a solution
3.51. (a) $(2,-1)$,
(b) no solution,
(c) $(5,2)$,
(d) $(5-2 a, a)$
3.52.
(a) $a \neq \pm 2$,
$(2,2), \quad(-2,-2)$,
(b) $a \neq \pm 6, \quad(6,4), \quad(-6,-4)$,
(c) $a \neq \frac{5}{2}, \quad\left(\frac{5}{2}, 6\right)$
3.53. (a) $\left(2,1, \frac{1}{2}\right)$,
(b) no solution,
(c) $\quad u=(-7 a-1,2 a+2, a)$.
3.54. (a) $(3,-1)$,
(b) $u=(-a+2 b, 1+2 a-2 b, a, b)$,
(c) no solution
3.55. (a) $u=\left(\frac{1}{2} a+2, \quad a, \quad \frac{1}{2}\right)$,
(b) $\quad u=\left(\frac{1}{2}(7-5 b-4 a), \quad a, \frac{1}{2}(1+b), b\right)$
3.56. (a) $a \neq \pm 3, \quad(3,3), \quad(-3,-3)$,
(b) $\quad a \neq 5$ and $a \neq-1, \quad(5,7), \quad(-1,-5)$,
(c) $\quad a \neq 1$ and $a \neq-2, \quad(-2,5)$
3.57. (a) $2,-1,3$,
(b) $6,-3,1$,
(c) not possible
3.58. (a) $3,-2,1$,
(b) $\frac{2}{3},-1, \frac{1}{3}$,
(c) $\frac{2}{3}, \frac{1}{7}, \frac{1}{21}$
3.59. (a) $\operatorname{dim} W=1, \quad u_{1}=(-1,1,1), \quad$ (b) $\quad \operatorname{dim} W=0$, no basis,
(c) $\operatorname{dim} W=2, \quad u_{1}=(-2,1,0,0), \quad u_{2}=(5,0,-2,1)$
3.60. (a) $\operatorname{dim} W=3, \quad u_{1}=(-3,1,0,0,0), \quad u_{2}=(7,0,-3,1,0), \quad u_{3}=(3,0,-1,0,1)$,
(b) $\operatorname{dim} W=2, \quad u_{1}=(2,1,0,0,0), \quad u_{2}=(5,0,-5,-3,1)$
3.61. (a) $\left[1,0,-\frac{1}{2} ; 0,1, \frac{5}{2} ; 0\right]$, (b) $[1,2,0,0,2 ; 0,0,1,0,5 ; 0,0,0,1,2]$,
(c) $\left[1,2,0,4,-5,3 ; 0,0,1,-5, \frac{15}{2},-\frac{5}{2} ; 0\right]$
3.62. (a) $[1,2,0,0,-4,-2 ; \quad 0,0,1,0,1,2 ; \quad 0,0,0,1,2,1 ; \quad 0]$,
(b) $[0,1,0,0 ; 0,0,1,0 ; 0,0,0,1 ; 0]$, (c) $[1,0,0,4 ; 0,1,0,-1 ; \quad 0,0,1,2 ; \quad 0]$
3.63. $5:[1,0 ; \quad 0,1],[1,1 ; \quad 0,0],[1,0 ; \quad 0,0],[0,1 ; \quad 0,0], 0$
3.64. 16
3.65. (a) $[1,0,0 ; \quad 0,0,1 ; \quad 0,1,0],[1,0,0 ; \quad 0,3,0 ; \quad 0,0,1],[1,0,2 ; \quad 0,1,0 ; \quad 0,0,1]$,
(b) $\quad R_{2} \leftrightarrow R_{3} ; \quad \frac{1}{3} R_{2} \rightarrow R_{2} ; \quad-2 R_{3}+R_{1} \rightarrow R_{1} ; \quad$ each $E_{i}^{\prime}=E_{i}^{-1}$,
(c) $C_{2} \leftrightarrow C_{3}, 3 C_{2} \rightarrow C_{2}, 2 C_{3}+C_{1} \rightarrow C_{1}, \quad$ (d) each $F_{i}=E_{i}^{T}$.
3.66. $A=[1,0 ; \quad 3,1][1,0 ; \quad 0,-2][1,2 ; \quad 0,1], \quad B$ is not invertible,
$C=\left[1,0 ; \quad-\frac{3}{2}, 1\right][1,0 ; \quad 0,2][1,6 ; \quad 0,1][2,0 ; \quad 0,1]$,
$D=[100 ; \quad 010 ; \quad 301][100 ; \quad 010 ; \quad 021][100 ; \quad 013 ; \quad 001][120 ; \quad 010 ; \quad 001]$
3.67. $A^{-1}=[-8,12,-5 ; \quad-5,7,-3 ; \quad 1,-2,1], \quad B$ has no inverse, $C^{-1}=\left[\frac{29}{2},-\frac{17}{2}, \frac{7}{2} ; \quad-\frac{5}{2}, \frac{3}{2},-\frac{1}{2} ; \quad 3,-2,1\right], \quad D^{-1}=[8,-3,-1 ; \quad-5,2,1 ; \quad 10,-4,-1]$
3.68. $A^{-1}=[1,-1,1,-1, \ldots ; \quad 0,1,-1,1,-1, \ldots ; \quad 0,0,1,-1,1,-1,1, \ldots ; \ldots ; \ldots ; 0, \ldots 0,1]$ B^{-1} has 1's on diagonal, -1 's on superdiagonal, and 0 's elsewhere.
3.69. (a) $[100 ; \quad 310 ; \quad 211][1,-1,-1 ; \quad 0,-1,1 ; \quad 0,0,-1]$,
(b) $[100 ; 210 ; \quad 351][1,3,-1 ; \quad 0,-1,3 ; \quad 0,0,-10]$,
(c) $\left[100 ; 210 ; \quad \frac{3}{2}, \frac{1}{2}, 1\right]\left[2,3,6 ; \quad 0,1,-3 ; \quad 0,0,-\frac{7}{2}\right]$,
(d) There is no $L U$ decomposition.
3.70. $X_{1}=[1,1,-1]^{T}, \quad B_{2}=[2,2,0]^{T}, \quad X_{2}=[6,4,0]^{T}, \quad B_{3}=[8,6,0]^{T}, \quad X_{3}=[22,16,-2]^{T}$, $B_{4}=[30,22,-2]^{T}, \quad X_{4}=[86,62,-6]^{T}$
3.71. $B=[100 ; \quad 210 ; \quad 351] \operatorname{diag}(1,-1,-10)[1,3,-1 ; \quad 0,1,3 ; \quad 0,0,1]$
3.73. Replace R_{i} by $-k R_{j}+\left(1 / k^{\prime}\right) R_{i}$.
3.75. (c) $f(A)=\left(e\left(A^{T}\right)\right)^{T}=\left(E A^{T}\right)^{T}=\left(A^{T}\right)^{T} E^{T}=A F$
3.76. (a) $A=I A I$. (b) If $A=P B Q$, then $B=P^{-1} A Q^{-1}$.
(c) If $A=P B Q$ and $B=P^{\prime} C Q^{\prime}$, then $A=\left(P P^{\prime}\right) C\left(Q^{\prime} Q\right)$.

CHAPTER 4

Vector Spaces

4.1 Introduction

This chapter introduces the underlying structure of linear algebra, that of a finite-dimensional vector space. The definition of a vector space V, whose elements are called vectors, involves an arbitrary field K, whose elements are called scalars. The following notation will be used (unless otherwise stated or implied):

$$
\begin{aligned}
V & \text { the given vector space } \\
u, v, w & \text { vectors in } V \\
K & \text { the given number field } \\
a, b, c, \text { or } k & \text { scalars in } K
\end{aligned}
$$

Almost nothing essential is lost if the reader assumes that K is the real field \mathbf{R} or the complex field \mathbf{C}.
The reader might suspect that the real line \mathbf{R} has "dimension" one, the cartesian plane \mathbf{R}^{2} has "dimension" two, and the space \mathbf{R}^{3} has "dimension" three. This chapter formalizes the notion of 'dimension," and this definition will agree with the reader's intuition.

Throughout this text, we will use the following set notation:

$$
\begin{array}{rl}
a \in A & \text { Element } a \text { belongs to set } A \\
a, b \in A & \text { Elements } a \text { and } b \text { belong to } A \\
\forall x \in A & \text { For every } x \text { in } A \\
\exists x \in A & \text { There exists an } x \text { in } A \\
A \subseteq B & A \text { is a subset of } B \\
A \cap B & \text { Intersection of } A \text { and } B \\
A \cup B & \text { Union of } A \text { and } B \\
\emptyset & \text { Empty set }
\end{array}
$$

4.2 Vector Spaces

The following defines the notion of a vector space V where K is the field of scalars.
DEFINITION: Let V be a nonempty set with two operations:
(i) Vector Addition: This assigns to any $u, v \in V$ a sum $u+v$ in V.
(ii) Scalar Multiplication: This assigns to any $u \in V, k \in K$ a product $k u \in V$.

Then V is called a vector space (over the field K) if the following axioms hold for any vectors $u, v, w \in V$:
[$\left.\mathrm{A}_{1}\right] \quad(u+v)+w=u+(v+w)$
[A_{2}] There is a vector in V, denoted by 0 and called the zero vector, such that, for any $u \in V$,

$$
u+0=0+u=u
$$

[A_{3}] For each $u \in V$, there is a vector in V, denoted by $-u$, and called the negative of u, such that

$$
u+(-u)=(-u)+u=0
$$

[$\left.\mathrm{A}_{4}\right] \quad u+v=v+u$.
[$\left.\mathrm{M}_{1}\right] \quad k(u+v)=k u+k v$, for any scalar $k \in K$.
$\left[\mathrm{M}_{2}\right] \quad(a+b) u=a u+b u$, for any scalars $a, b \in K$.
$\left[\mathrm{M}_{3}\right] \quad(a b) u=a(b u)$, for any scalars $a, b \in K$.
$\left[\mathrm{M}_{4}\right] \quad 1 u=u$, for the unit scalar $1 \in K$.
The above axioms naturally split into two sets (as indicated by the labeling of the axioms). The first four are concerned only with the additive structure of V and can be summarized by saying V is a commutative group under addition. This means
(a) Any sum $v_{1}+v_{2}+\cdots+v_{m}$ of vectors requires no parentheses and does not depend on the order of the summands.
(b) The zero vector 0 is unique, and the negative $-u$ of a vector u is unique.
(c) (Cancellation Law) If $u+w=v+w$, then $u=v$.

Also, subtraction in V is defined by $u-v=u+(-v)$, where $-v$ is the unique negative of v.
On the other hand, the remaining four axioms are concerned with the 'action'' of the field K of scalars on the vector space V. Using these additional axioms, we prove (Problem 4.2) the following simple properties of a vector space.

THEOREM 4.1: Let V be a vector space over a field K.
(i) For any scalar $k \in K$ and $0 \in V, k 0=0$.
(ii) For $0 \in K$ and any vector $u \in V, 0 u=0$.
(iii) If $k u=0$, where $k \in K$ and $u \in V$, then $k=0$ or $u=0$.
(iv) For any $k \in K$ and any $u \in V,(-k) u=k(-u)=-k u$.

4.3 Examples of Vector Spaces

This section lists important examples of vector spaces that will be used throughout the text.

Space $K^{\boldsymbol{n}}$

Let K be an arbitrary field. The notation K^{n} is frequently used to denote the set of all n-tuples of elements in K. Here K^{n} is a vector space over K using the following operations:
(i) Vector Addition: $\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$
(ii) Scalar Multiplication: $k\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(k a_{1}, k a_{2}, \ldots, k a_{n}\right)$

The zero vector in K^{n} is the n-tuple of zeros,

$$
0=(0,0, \ldots, 0)
$$

and the negative of a vector is defined by

$$
-\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)
$$

Observe that these are the same as the operations defined for \mathbf{R}^{n} in Chapter 1 . The proof that K^{n} is a vector space is identical to the proof of Theorem 1.1 , which we now regard as stating that \mathbf{R}^{n} with the operations defined there is a vector space over \mathbf{R}.

Polynomial Space $\mathbf{P}(\boldsymbol{t})$

Let $\mathbf{P}(t)$ denote the set of all polynomials of the form

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{s} t^{s} \quad(s=1,2, \ldots)
$$

where the coefficients a_{i} belong to a field K. Then $\mathbf{P}(t)$ is a vector space over K using the following operations:
(i) Vector Addition: Here $p(t)+q(t)$ in $\mathbf{P}(t)$ is the usual operation of addition of polynomials.
(ii) Scalar Multiplication: Here $k p(t)$ in $\mathbf{P}(t)$ is the usual operation of the product of a scalar k and a polynomial $p(t)$.

The zero polynomial 0 is the zero vector in $\mathbf{P}(t)$.

Polynomial Space $\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{t})$

Let $\mathbf{P}_{n}(t)$ denote the set of all polynomials $p(t)$ over a field K, where the degree of $p(t)$ is less than or equal to n; that is,

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{s} t^{s}
$$

where $s \leq n$. Then $\mathbf{P}_{n}(t)$ is a vector space over K with respect to the usual operations of addition of polynomials and of multiplication of a polynomial by a constant (just like the vector space $\mathbf{P}(t)$ above). We include the zero polynomial 0 as an element of $\mathbf{P}_{n}(t)$, even though its degree is undefined.

Matrix Space $\boldsymbol{M}_{\boldsymbol{m}, \boldsymbol{n}}$

The notation $\mathbf{M}_{m, n}$, or simply \mathbf{M}, will be used to denote the set of all $m \times n$ matrices with entries in a field K. Then $\mathbf{M}_{m, n}$ is a vector space over K with respect to the usual operations of matrix addition and scalar multiplication of matrices, as indicated by Theorem 2.1.

Function Space $\boldsymbol{F}(\boldsymbol{X})$

Let X be a nonempty set and let K be an arbitrary field. Let $F(X)$ denote the set of all functions of X into K. [Note that $F(X)$ is nonempty, because X is nonempty.] Then $F(X)$ is a vector space over K with respect to the following operations:
(i) Vector Addition: The sum of two functions f and g in $F(X)$ is the function $f+g$ in $F(X)$ defined by

$$
(f+g)(x)=f(x)+g(x) \quad \forall x \in X
$$

(ii) Scalar Multiplication: The product of a scalar $k \in K$ and a function f in $F(X)$ is the function $k f$ in $F(X)$ defined by

$$
(k f)(x)=k f(x) \quad \forall x \in X
$$

The zero vector in $F(X)$ is the zero function $\mathbf{0}$, which maps every $x \in X$ into the zero element $0 \in K$;

$$
\mathbf{0}(x)=0 \quad \forall x \in X
$$

Also, for any function f in $F(X)$, negative of f is the function $-f$ in $F(X)$ defined by

$$
(-f)(x)=-f(x) \quad \forall x \in X
$$

Fields and Subfields

Suppose a field E is an extension of a field K; that is, suppose E is a field that contains K as a subfield. Then E may be viewed as a vector space over K using the following operations:
(i) Vector Addition: Here $u+v$ in E is the usual addition in E.
(ii) Scalar Multiplication: Here $k u$ in E, where $k \in K$ and $u \in E$, is the usual product of k and u as elements of E.

That is, the eight axioms of a vector space are satisfied by E and its subfield K with respect to the above two operations.

4.4 Linear Combinations, Spanning Sets

Let V be a vector space over a field K. A vector v in V is a linear combination of vectors $u_{1}, u_{2}, \ldots, u_{m}$ in V if there exist scalars $a_{1}, a_{2}, \ldots, a_{m}$ in K such that

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{m} u_{m}
$$

Alternatively, v is a linear combination of $u_{1}, u_{2}, \ldots, u_{m}$ if there is a solution to the vector equation

$$
v=x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{m} u_{m}
$$

where $x_{1}, x_{2}, \ldots, x_{m}$ are unknown scalars.

EXAMPLE 4.1 (Linear Combinations in \mathbf{R}^{n}) Suppose we want to express $v=(3,7,-4)$ in \mathbf{R}^{3} as a linear combination of the vectors

$$
u_{1}=(1,2,3), \quad u_{2}=(2,3,7), \quad u_{3}=(3,5,6)
$$

We seek scalars x, y, z such that $v=x u_{1}+y u_{2}+z u_{3}$; that is,

$$
\left[\begin{array}{r}
3 \\
3 \\
-4
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+y\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right]+z\left[\begin{array}{l}
3 \\
5 \\
6
\end{array}\right] \quad \text { or } \quad \begin{array}{r}
x+2 y+3 z=3 \\
2 x+3 y+5 z=7 \\
3 x+7 y+6 z=-4
\end{array}
$$

(For notational convenience, we have written the vectors in \mathbf{R}^{3} as columns, because it is then easier to find the equivalent system of linear equations.) Reducing the system to echelon form yields

$$
\begin{aligned}
x+2 y+3 z & =3 \\
-y-z & =1 \\
y-3 z & =-13
\end{aligned} \quad \text { and then } \begin{aligned}
x+2 y+3 z & =3 \\
-y-z & =1 \\
-4 z & =-12
\end{aligned}
$$

Back-substitution yields the solution $x=2, \quad y=-4, \quad z=3$. Thus, $\quad v=2 u_{1}-4 u_{2}+3 u_{3}$.

Remark: Generally speaking, the question of expressing a given vector v in K^{n} as a linear combination of vectors $u_{1}, u_{2}, \ldots, u_{m}$ in K^{n} is equivalent to solving a system $A X=B$ of linear equations, where v is the column B of constants, and the u 's are the columns of the coefficient matrix A. Such a system may have a unique solution (as above), many solutions, or no solution. The last case-no solution-means that v cannot be written as a linear combination of the u 's.

EXAMPLE 4.2 (Linear combinations in $\mathbf{P}(t)$) Suppose we want to express the polynomial $v=3 t^{2}+5 t-5$ as a linear combination of the polynomials

$$
p_{1}=t^{2}+2 t+1, \quad p_{2}=2 t^{2}+5 t+4, \quad p_{3}=t^{2}+3 t+6
$$

We seek scalars x, y, z such that $v=x p_{1}+y p_{2}+z p_{3}$; that is,

$$
\begin{equation*}
3 t^{2}+5 t-5=x\left(t^{2}+2 t+1\right)+y\left(2 t^{2}+5 t+4\right)+z\left(t^{2}+3 t+6\right) \tag{*}
\end{equation*}
$$

There are two ways to proceed from here.
(1) Expand the right-hand side of $\left({ }^{*}\right)$ obtaining:

$$
\begin{aligned}
3 t^{2}+5 t-5 & =x t^{2}+2 x t+x+2 y t^{2}+5 y t+4 y+z t^{2}+3 z t+6 z \\
& =(x+2 y+z) t^{2}+(2 x+5 y+3 z) t+(x+4 y+6 z)
\end{aligned}
$$

Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form:

$$
\begin{aligned}
& x+2 y+z=3 \\
& 2 x+5 y+3 z=5 \quad \text { or } \quad y+z=-1 \\
& 2 y+5 z=-8 \\
& \begin{aligned}
x+2 y+z & =3 \\
y+z & =-1 \\
3 z & =-6
\end{aligned} \\
& x+4 y+6 z=-5 \\
& x+2 y+z=3 \\
& y+z=-1 \quad \text { or }
\end{aligned}
$$

The system is in triangular form and has a solution. Back-substitution yields the solution $x=3, y=1, z=-2$. Thus,

$$
v=3 p_{1}+p_{2}-2 p_{3}
$$

(2) The equation $\left(^{*}\right)$ is actually an identity in the variable t; that is, the equation holds for any value of t. We can obtain three equations in the unknowns x, y, z by setting t equal to any three values. For example,

Set $t=0$ in (1) to obtain: $\quad x+4 y+6 z=-5$
Set $t=1$ in (1) to obtain: $\quad 4 x+11 y+10 z=3$
Set $t=-1$ in (1) to obtain: $\quad y+4 z=-7$
Reducing this system to echelon form and solving by back-substitution again yields the solution $x=3, y=1$, $z=-2$. Thus (again), $v=3 p_{1}+p_{2}-2 p_{3}$.

Spanning Sets

Let V be a vector space over K. Vectors $u_{1}, u_{2}, \ldots, u_{m}$ in V are said to span V or to form a spanning set of V if every v in V is a linear combination of the vectors $u_{1}, u_{2}, \ldots, u_{m}$-that is, if there exist scalars $a_{1}, a_{2}, \ldots, a_{m}$ in K such that

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{m} u_{m}
$$

The following remarks follow directly from the definition.

Remark 1: Suppose $u_{1}, u_{2}, \ldots, u_{m}$ span V. Then, for any vector w, the set $w, u_{1}, u_{2}, \ldots, u_{m}$ also spans V.

Remark 2: Suppose $u_{1}, u_{2}, \ldots, u_{m}$ span V and suppose u_{k} is a linear combination of some of the other u 's. Then the u 's without u_{k} also span V.

Remark 3: Suppose $u_{1}, u_{2}, \ldots, u_{m}$ span V and suppose one of the u 's is the zero vector. Then the u 's without the zero vector also span V.

EXAMPLE 4.3 Consider the vector space $V=\mathbf{R}^{3}$.
(a) We claim that the following vectors form a spanning set of \mathbf{R}^{3} :

$$
e_{1}=(1,0,0), \quad e_{2}=(0,1,0), \quad e_{3}=(0,0,1)
$$

Specifically, if $v=(a, b, c)$ is any vector in \mathbf{R}^{3}, then

$$
v=a e_{1}+b e_{2}+c e_{3}
$$

For example, $v=(5,-6,2)=-5 e_{1}-6 e_{2}+2 e_{3}$.
(b) We claim that the following vectors also form a spanning set of \mathbf{R}^{3} :

$$
w_{1}=(1,1,1), \quad w_{2}=(1,1,0), \quad w_{3}=(1,0,0)
$$

Specifically, if $v=(a, b, c)$ is any vector in \mathbf{R}^{3}, then (Problem 4.62)

$$
v=(a, b, c)=c w_{1}+(b-c) w_{2}+(a-b) w_{3}
$$

For example, $v=(5,-6,2)=2 w_{1}-8 w_{2}+11 w_{3}$.
(c) One can show (Problem 3.24) that $v=(2,7,8)$ cannot be written as a linear combination of the vectors

$$
u_{1}=(1,2,3), \quad u_{2}=(1,3,5), \quad u_{3}=(1,5,9)
$$

Accordingly, u_{1}, u_{2}, u_{3} do not span \mathbf{R}^{3}.

EXAMPLE 4.4 Consider the vector space $V=\mathbf{P}_{n}(t)$ consisting of all polynomials of degree $\leq n$.
(a) Clearly every polynomial in $\mathbf{P}_{n}(t)$ can be expressed as a linear combination of the $n+1$ polynomials

$$
1, \quad t, \quad t^{2}, \quad t^{3}, \quad \ldots, \quad t^{n}
$$

Thus, these powers of t (where $1=t^{0}$) form a spanning set for $\mathbf{P}_{n}(t)$.
(b) One can also show that, for any scalar c, the following $n+1$ powers of $t-c$,

$$
1, \quad t-c, \quad(t-c)^{2}, \quad(t-c)^{3}, \quad \ldots, \quad(t-c)^{n}
$$

(where $(t-c)^{0}=1$), also form a spanning set for $\mathbf{P}_{n}(t)$.
EXAMPLE 4.5 Consider the vector space $\mathbf{M}=\mathbf{M}_{2,2}$ consisting of all 2×2 matrices, and consider the following four matrices in \mathbf{M} :

$$
E_{11}=\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right], \quad E_{12}=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right], \quad E_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad E_{22}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Then clearly any matrix A in \mathbf{M} can be written as a linear combination of the four matrices. For example,

$$
A=\left[\begin{array}{rr}
5 & -6 \\
7 & 8
\end{array}\right]=5 E_{11}-6 E_{12}+7 E_{21}+8 E_{22}
$$

Accordingly, the four matrices $E_{11}, E_{12}, E_{21}, E_{22}$ span \mathbf{M}.

4.5 Subspaces

This section introduces the important notion of a subspace.
DEFINITION: Let V be a vector space over a field K and let W be a subset of V. Then W is a subspace of V if W is itself a vector space over K with respect to the operations of vector addition and scalar multiplication on V.
The way in which one shows that any set W is a vector space is to show that W satisfies the eight axioms of a vector space. However, if W is a subset of a vector space V, then some of the axioms automatically hold in W, because they already hold in V. Simple criteria for identifying subspaces follow.

THEOREM 4.2: \quad Suppose W is a subset of a vector space V. Then W is a subspace of V if the following two conditions hold:
(a) The zero vector 0 belongs to W.
(b) For every $u, v \in W, k \in K$: (i) The sum $u+v \in W$. (ii) The multiple $k u \in W$.

Property (i) in (b) states that W is closed under vector addition, and property (ii) in (b) states that W is closed under scalar multiplication. Both properties may be combined into the following equivalent single statement:
(b^{\prime}) For every $u, v \in W, a, b \in K$, the linear combination $a u+b v \in W$.
Now let V be any vector space. Then V automatically contains two subspaces: the set $\{0\}$ consisting of the zero vector alone and the whole space V itself. These are sometimes called the trivial subspaces of V. Examples of nontrivial subspaces follow.

EXAMPLE 4.6 Consider the vector space $V=\mathbf{R}^{3}$.
(a) Let U consist of all vectors in \mathbf{R}^{3} whose entries are equal; that is,

$$
U=\{(a, b, c): a=b=c\}
$$

For example, $(1,1,1),(-3,-3,-3),(7,7,7),(-2,-2,-2)$ are vectors in U. Geometrically, U is the line through the origin O and the point $(1,1,1)$ as shown in Fig. 4-1(a). Clearly $0=(0,0,0)$ belongs to U, because
all entries in 0 are equal. Further, suppose u and v are arbitrary vectors in U, say, $u=(a, a, a)$ and $v=(b, b, b)$. Then, for any scalar $k \in \mathbf{R}$, the following are also vectors in U :

$$
u+v=(a+b, a+b, a+b) \quad \text { and } \quad k u=(k a, k a, k a)
$$

Thus, U is a subspace of \mathbf{R}^{3}.
(b) Let W be any plane in \mathbf{R}^{3} passing through the origin, as pictured in Fig. 4-1(b). Then $0=(0,0,0)$ belongs to W, because we assumed W passes through, the origin O. Further, suppose u and v are vectors in W. Then u and v may be viewed as arrows in the plane W emanating from the origin O, as in Fig. 4-1(b). The sum $u+v$ and any multiple $k u$ of u also lie in the plane W. Thus, W is a subspace of \mathbf{R}^{3}.

(a)

(b)

Figure 4-1

EXAMPLE 4.7

(a) Let $V=\mathbf{M}_{n, n}$, the vector space of $n \times n$ matrices. Let W_{1} be the subset of all (upper) triangular matrices and let W_{2} be the subset of all symmetric matrices. Then W_{1} is a subspace of V, because W_{1} contains the zero matrix 0 and W_{1} is closed under matrix addition and scalar multiplication; that is, the sum and scalar multiple of such triangular matrices are also triangular. Similarly, W_{2} is a subspace of V.
(b) Let $V=\mathbf{P}(t)$, the vector space $\mathbf{P}(t)$ of polynomials. Then the space $\mathbf{P}_{n}(t)$ of polynomials of degree at most n may be viewed as a subspace of $\mathbf{P}(t)$. Let $\mathbf{Q}(t)$ be the collection of polynomials with only even powers of t. For example, the following are polynomials in $\mathbf{Q}(t)$:

$$
p_{1}=3+4 t^{2}-5 t^{6} \quad \text { and } \quad p_{2}=6-7 t^{4}+9 t^{6}+3 t^{12}
$$

(We assume that any constant $k=k t^{0}$ is an even power of t.) Then $\mathbf{Q}(t)$ is a subspace of $\mathbf{P}(t)$.
(c) Let V be the vector space of real-valued functions. Then the collection W_{1} of continuous functions and the collection W_{2} of differentiable functions are subspaces of V.

Intersection of Subspaces

Let U and W be subspaces of a vector space V. We show that the intersection $U \cap W$ is also a subspace of V. Clearly, $0 \in U$ and $0 \in W$, because U and W are subspaces; whence $0 \in U \cap W$. Now suppose u and v belong to the intersection $U \cap W$. Then $u, v \in U$ and $u, v \in W$. Further, because U and W are subspaces, for any scalars $a, b \in K$,

$$
a u+b v \in U \quad \text { and } \quad a u+b v \in W
$$

Thus, $a u+b v \in U \cap W$. Therefore, $U \cap W$ is a subspace of V.
The above result generalizes as follows.

THEOREM 4.3: The intersection of any number of subspaces of a vector space V is a subspace of V.

Solution Space of a Homogeneous System

Consider a system $A X=B$ of linear equations in n unknowns. Then every solution u may be viewed as a vector in K^{n}. Thus, the solution set of such a system is a subset of K^{n}. Now suppose the system is homogeneous; that is, suppose the system has the form $A X=0$. Let W be its solution set. Because $A 0=0$, the zero vector $0 \in W$. Moreover, suppose u and v belong to W. Then u and v are solutions of $A X=0$, or, in other words, $A u=0$ and $A v=0$. Therefore, for any scalars a and b, we have

$$
A(a u+b v)=a A u+b A v=a 0+b 0=0+0=0
$$

Thus, $a u+b v$ belongs to W, because it is a solution of $A X=0$. Accordingly, W is a subspace of K^{n}.
We state the above result formally.

THEOREM 4.4: The solution set W of a homogeneous system $A X=0$ in n unknowns is a subspace of K^{n}.

We emphasize that the solution set of a nonhomogeneous system $A X=B$ is not a subspace of K^{n}. In fact, the zero vector 0 does not belong to its solution set.

4.6 Linear Spans, Row Space of a Matrix

Suppose $u_{1}, u_{2}, \ldots, u_{m}$ are any vectors in a vector space V. Recall (Section 4.4) that any vector of the form $a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{m} u_{m}$, where the a_{i} are scalars, is called a linear combination of $u_{1}, u_{2}, \ldots, u_{m}$. The collection of all such linear combinations, denoted by

$$
\operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{m}\right) \quad \text { or } \quad \operatorname{span}\left(u_{i}\right)
$$

is called the linear span of $u_{1}, u_{2}, \ldots, u_{m}$.
Clearly the zero vector 0 belongs to $\operatorname{span}\left(u_{i}\right)$, because

$$
0=0 u_{1}+0 u_{2}+\cdots+0 u_{m}
$$

Furthermore, suppose v and v^{\prime} belong to $\operatorname{span}\left(u_{i}\right)$, say,

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{m} u_{m} \quad \text { and } \quad v^{\prime}=b_{1} u_{1}+b_{2} u_{2}+\cdots+b_{m} u_{m}
$$

Then,

$$
v+v^{\prime}=\left(a_{1}+b_{1}\right) u_{1}+\left(a_{2}+b_{2}\right) u_{2}+\cdots+\left(a_{m}+b_{m}\right) u_{m}
$$

and, for any scalar $k \in K$,

$$
k v=k a_{1} u_{1}+k a_{2} u_{2}+\cdots+k a_{m} u_{m}
$$

Thus, $v+v^{\prime}$ and $k v$ also belong to $\operatorname{span}\left(u_{i}\right)$. Accordingly, $\operatorname{span}\left(u_{i}\right)$ is a subspace of V.
More generally, for any subset S of $V, \operatorname{span}(S)$ consists of all linear combinations of vectors in S or, when $S=\phi, \operatorname{span}(S)=\{0\}$. Thus, in particular, S is a spanning set (Section 4.4) of span (S).

The following theorem, which was partially proved above, holds.
THEOREM 4.5: Let S be a subset of a vector space V.
(i) Then $\operatorname{span}(S)$ is a subspace of V that contains S.
(ii) If W is a subspace of V containing S, then $\operatorname{span}(S) \subseteq W$.

Condition (ii) in theorem 4.5 may be interpreted as saying that $\operatorname{span}(S)$ is the "smallest" subspace of V containing S.

EXAMPLE 4.8 Consider the vector space $V=\mathbf{R}^{3}$.
(a) Let u be any nonzero vector in \mathbf{R}^{3}. Then $\operatorname{span}(u)$ consists of all scalar multiples of u. Geometrically, $\operatorname{span}(u)$ is the line through the origin O and the endpoint of u, as shown in Fig. 4-2(a).

Figure 4-2
(b) Let u and v be vectors in \mathbf{R}^{3} that are not multiples of each other. Then $\operatorname{span}(u, v)$ is the plane through the origin O and the endpoints of u and v as shown in Fig. 4-2(b).
(c) Consider the vectors $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$ in \mathbf{R}^{3}. Recall [Example 4.1(a)] that every vector in \mathbf{R}^{3} is a linear combination of e_{1}, e_{2}, e_{3}. That is, e_{1}, e_{2}, e_{3} form a spanning set of \mathbf{R}^{3}. Accordingly, $\operatorname{span}\left(e_{1}, e_{2}, e_{3}\right)=\mathbf{R}^{3}$.

Row Space of a Matrix

Let $A=\left[a_{i j}\right]$ be an arbitrary $m \times n$ matrix over a field K. The rows of A,

$$
R_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), \quad R_{2}=\left(a_{21}, a_{22}, \ldots, a_{2 n}\right), \quad \ldots, \quad R_{m}=\left(a_{m 1}, a_{m 2}, \ldots, a_{m n}\right)
$$

may be viewed as vectors in K^{n}; hence, they span a subspace of K^{n} called the row space of A and denoted by rowsp(A). That is,

$$
\operatorname{rowsp}(A)=\operatorname{span}\left(R_{1}, R_{2}, \ldots, R_{m}\right)
$$

Analagously, the columns of A may be viewed as vectors in K^{m} called the column space of A and denoted by colsp(A). Observe that $\operatorname{colsp}(A)=\operatorname{rowsp}\left(A^{T}\right)$.

Recall that matrices A and B are row equivalent, written $A \sim B$, if B can be obtained from A by a sequence of elementary row operations. Now suppose M is the matrix obtained by applying one of the following elementary row operations on a matrix A :
(1) Interchange R_{i} and R_{j},
(2) Replace R_{i} by $k R_{i}$,
(3) Replace R_{j} by $k R_{i}+R_{j}$

Then each row of M is a row of A or a linear combination of rows of A. Hence, the row space of M is contained in the row space of A. On the other hand, we can apply the inverse elementary row operation on M to obtain A; hence, the row space of A is contained in the row space of M. Accordingly, A and M have the same row space. This will be true each time we apply an elementary row operation. Thus, we have proved the following theorem.

THEOREM 4.6: Row equivalent matrices have the same row space.
We are now able to prove (Problems 4.45-4.47) basic results on row equivalence (which first appeared as Theorems 3.7 and 3.8 in Chapter 3).

THEOREM 4.7: Suppose $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are row equivalent echelon matrices with respective pivot entries

$$
a_{1 j_{1}}, a_{2 j_{2}}, \ldots, a_{r j_{r}} \quad \text { and } \quad b_{1 k_{1}}, b_{2 k_{2}}, \ldots, b_{s k_{s}}
$$

Then A and B have the same number of nonzero rows-that is, $r=s$-and their pivot entries are in the same positions-that is, $j_{1}=k_{1}, j_{2}=k_{2}, \ldots, j_{r}=k_{r}$.

THEOREM 4.8: Suppose A and B are row canonical matrices. Then A and B have the same row space if and only if they have the same nonzero rows.

COROLLARY 4.9: Every matrix A is row equivalent to a unique matrix in row canonical form.
We apply the above results in the next example.
EXAMPLE 4.9 Consider the following two sets of vectors in \mathbf{R}^{4} :

$$
\begin{gathered}
u_{1}=(1,2,-1,3), \quad u_{2}=(2,4,1,-2), \quad u_{3}=(3,6,3,-7) \\
w_{1}=(1,2,-4,11), \quad w_{2}=(2,4,-5,14)
\end{gathered}
$$

Let $U=\operatorname{span}\left(u_{i}\right)$ and $W=\operatorname{span}\left(w_{i}\right)$. There are two ways to show that $U=W$.
(a) Show that each u_{i} is a linear combination of w_{1} and w_{2}, and show that each w_{i} is a linear combination of u_{1}, u_{2}, u_{3}. Observe that we have to show that six systems of linear equations are consistent.
(b) Form the matrix A whose rows are u_{1}, u_{2}, u_{3} and row reduce A to row canonical form, and form the matrix B whose rows are w_{1} and w_{2} and row reduce B to row canonical form:

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
1 & 2 & -1 & 3 \\
2 & 4 & 1 & -2 \\
3 & 6 & 3 & -7
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -1 & 3 \\
0 & 0 & 3 & -8 \\
0 & 0 & 6 & -16
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & 0 & \frac{1}{3} \\
0 & 0 & 1 & -\frac{8}{3} \\
0 & 0 & 0 & 0
\end{array}\right] \\
& B=\left[\begin{array}{llll}
1 & 2 & -4 & 11 \\
2 & 4 & -5 & 14
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -4 & 11 \\
0 & 0 & 3 & -8
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & 0 & \frac{1}{3} \\
0 & 0 & 1 & -\frac{8}{3}
\end{array}\right]
\end{aligned}
$$

Because the nonzero rows of the matrices in row canonical form are identical, the row spaces of A and B are equal. Therefore, $U=W$.
Clearly, the method in (b) is more efficient than the method in (a).

4.7 Linear Dependence and Independence

Let V be a vector space over a field K. The following defines the notion of linear dependence and independence of vectors over K. (One usually suppresses mentioning K when the field is understood.) This concept plays an essential role in the theory of linear algebra and in mathematics in general.

DEFINITION: We say that the vectors $v_{1}, v_{2}, \ldots, v_{m}$ in V are linearly dependent if there exist scalars $a_{1}, a_{2}, \ldots, a_{m}$ in K, not all of them 0 , such that

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{m} v_{m}=0
$$

Otherwise, we say that the vectors are linearly independent.
The above definition may be restated as follows. Consider the vector equation

$$
\begin{equation*}
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{m} v_{m}=0 \tag{*}
\end{equation*}
$$

where the x 's are unknown scalars. This equation always has the zero solution $x_{1}=0$, $x_{2}=0, \ldots, x_{m}=0$. Suppose this is the only solution; that is, suppose we can show:

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{m} v_{m}=0 \quad \text { implies } \quad x_{1}=0, \quad x_{2}=0, \quad \ldots, \quad x_{m}=0
$$

Then the vectors $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent, On the other hand, suppose the equation $\left(^{*}\right)$ has a nonzero solution; then the vectors are linearly dependent.

A set $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ of vectors in V is linearly dependent or independent according to whether the vectors $v_{1}, v_{2}, \ldots, v_{m}$ are linearly dependent or independent.

An infinite set S of vectors is linearly dependent or independent according to whether there do or do not exist vectors $v_{1}, v_{2}, \ldots, v_{k}$ in S that are linearly dependent.

Warning: The set $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ above represents a list or, in other words, a finite sequence of vectors where the vectors are ordered and repetition is permitted.

The following remarks follow directly from the above definition.
Remark 1: Suppose 0 is one of the vectors $v_{1}, v_{2}, \ldots, v_{m}$, say $v_{1}=0$. Then the vectors must be linearly dependent, because we have the following linear combination where the coefficient of $v_{1} \neq 0$:

$$
1 v_{1}+0 v_{2}+\cdots+0 v_{m}=1 \cdot 0+0+\cdots+0=0
$$

Remark 2: Suppose v is a nonzero vector. Then v, by itself, is linearly independent, because

$$
k v=0, \quad v \neq 0 \quad \text { implies } \quad k=0
$$

Remark 3: Suppose two of the vectors $v_{1}, v_{2}, \ldots, v_{m}$ are equal or one is a scalar multiple of the other, say $v_{1}=k v_{2}$. Then the vectors must be linearly dependent, because we have the following linear combination where the coefficient of $v_{1} \neq 0$:

$$
v_{1}-k v_{2}+0 v_{3}+\cdots+0 v_{m}=0
$$

Remark 4: Two vectors v_{1} and v_{2} are linearly dependent if and only if one of them is a multiple of the other.

Remark 5: If the set $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent, then any rearrangement of the vectors $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{m}}\right\}$ is also linearly independent.

Remark 6: If a set S of vectors is linearly independent, then any subset of S is linearly independent. Alternatively, if S contains a linearly dependent subset, then S is linearly dependent.

EXAMPLE 4.10

(a) Let $u=(1,1,0), v=(1,3,2), w=(4,9,5)$. Then u, v, w are linearly dependent, because

$$
3 u+5 v-2 w=3(1,1,0)+5(1,3,2)-2(4,9,5)=(0,0,0)=0
$$

(b) We show that the vectors $u=(1,2,3), v=(2,5,7), w=(1,3,5)$ are linearly independent. We form the vector equation $x u+y v+z w=0$, where x, y, z are unknown scalars. This yields

$$
x\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+y\left[\begin{array}{l}
2 \\
5 \\
7
\end{array}\right]+z\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \text { or } \quad \begin{aligned}
x+2 y+z & =0 \\
2 x+5 y+3 z & =0 \\
3 x+7 y+5 z & =0
\end{aligned} \quad \text { or } \quad \begin{aligned}
x+2 y+z & =0 \\
y+z & =0 \\
2 z & =0
\end{aligned}
$$

Back-substitution yields $x=0, y=0, z=0$. We have shown that

$$
x u+y v+z w=0 \quad \text { implies } \quad x=0, \quad y=0, \quad z=0
$$

Accordingly, u, v, w are linearly independent.
(c) Let V be the vector space of functions from \mathbf{R} into \mathbf{R}. We show that the functions $f(t)=\sin t, g(t)=e^{t}$, $h(t)=t^{2}$ are linearly independent. We form the vector (function) equation $x f+y g+z h=0$, where x, y, z are unknown scalars. This function equation means that, for every value of t,

$$
x \sin t+y e^{t}+z t^{2}=0
$$

Thus, in this equation, we choose appropriate values of t to easily get $x=0, y=0, z=0$. For example,

(i)	Substitute $t=0$	to obtain $x(0)+y(1)+z(0)=0$	or	$y=0$
(ii)	Substitute $t=\pi$	to obtain $x(0)+0\left(e^{\pi}\right)+z\left(\pi^{2}\right)=0$	or	$z=0$
(iii)	Substitute $t=\pi / 2$	to obtain $x(1)+0\left(e^{\pi / 2}\right)+0\left(\pi^{2} / 4\right)=0$	or	$x=0$

We have shown

$$
x f+y g+z f=0 \quad \text { implies } \quad x=0, \quad y=0, \quad z=0
$$

Accordingly, u, v, w are linearly independent.

Linear Dependence in $\boldsymbol{R}^{\mathbf{3}}$

Linear dependence in the vector space $V=\mathbf{R}^{3}$ can be described geometrically as follows:
(a) Any two vectors u and v in \mathbf{R}^{3} are linearly dependent if and only if they lie on the same line through the origin O, as shown in Fig. 4-3(a).
(b) Any three vectors u, v, w in \mathbf{R}^{3} are linearly dependent if and only if they lie on the same plane through the origin O, as shown in Fig. 4-3(b).
Later, we will be able to show that any four or more vectors in \mathbf{R}^{3} are automatically linearly dependent.

(a) u and v are linearly dependent.

(b) u, v, and w are linearly dependent.

Figure 4-3

Linear Dependence and Linear Combinations

The notions of linear dependence and linear combinations are closely related. Specifically, for more than one vector, we show that the vectors $v_{1}, v_{2}, \ldots, v_{m}$ are linearly dependent if and only if one of them is a linear combination of the others.

Suppose, say, v_{i} is a linear combination of the others,

$$
v_{i}=a_{1} v_{1}+\cdots+a_{i-1} v_{i-1}+a_{i+1} v_{i+1}+\cdots+a_{m} v_{m}
$$

Then by adding $-v_{i}$ to both sides, we obtain

$$
a_{1} v_{1}+\cdots+a_{i-1} v_{i-1}-v_{i}+a_{i+1} v_{i+1}+\cdots+a_{m} v_{m}=0
$$

where the coefficient of v_{i} is not 0 . Hence, the vectors are linearly dependent. Conversely, suppose the vectors are linearly dependent, say,

$$
b_{1} v_{1}+\cdots+b_{j} v_{j}+\cdots+b_{m} v_{m}=0, \quad \text { where } \quad b_{j} \neq 0
$$

Then we can solve for v_{j} obtaining

$$
v_{j}=b_{j}^{-1} b_{1} v_{1}-\cdots-b_{j}^{-1} b_{j-1} v_{j-1}-b_{j}^{-1} b_{j+1} v_{j+1}-\cdots-b_{j}^{-1} b_{m} v_{m}
$$

and so v_{j} is a linear combination of the other vectors.
We now state a slightly stronger statement than the one above. This result has many important consequences.

LEMMA 4.10: Suppose two or more nonzero vectors $v_{1}, v_{2}, \ldots, v_{m}$ are linearly dependent. Then one of the vectors is a linear combination of the preceding vectors; that is, there exists $k>1$ such that

$$
v_{k}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k-1} v_{k-1}
$$

