
One can show that row equivalence is an equivalence relation. That is,

(1) A � A for any matrix A.

(2) If A � B, then B � A.

(3) If A � B and B � C, then A � C.

Property (2) comes from the fact that each elementary row operation has an inverse operation of the same
type. Namely,

(i) ‘‘Interchange Ri and Rj’’ is its own inverse.

(ii) ‘‘Replace Ri by kRi’’ and ‘‘Replace Ri by ð1=kÞRi’’ are inverses.

(iii) ‘‘Replace Rj by kRi þ Rj’’ and ‘‘Replace Rj by �kRi þ Rj’’ are inverses.

There is a similar result for operation [E] (Problem 3.73).

3.8 Gaussian Elimination, Matrix Formulation

This section gives two matrix algorithms that accomplish the following:

(1) Algorithm 3.3 transforms any matrix A into an echelon form.

(2) Algorithm 3.4 transforms the echelon matrix into its row canonical form.

These algorithms, which use the elementary row operations, are simply restatements of Gaussian
elimination as applied to matrices rather than to linear equations. (The term ‘‘row reduce’’ or simply
‘‘reduce’’ will mean to transform a matrix by the elementary row operations.)

ALGORITHM 3.3 (Forward Elimination): The input is any matrix A. (The algorithm puts 0’s below
each pivot, working from the ‘‘top-down.’’) The output is
an echelon form of A.

Step 1. Find the first column with a nonzero entry. Let j1 denote this column.

(a) Arrange so that a1j1 6¼ 0. That is, if necessary, interchange rows so that a nonzero entry
appears in the first row in column j1.

(b) Use a1j1 as a pivot to obtain 0’s below a1j1 .

Specifically, for i > 1:

ð1Þ Set m ¼ �aij1=a1j1 ; ð2Þ Replace Ri by mR1 þ Ri

[That is, apply the operation �ðaij1=a1j1ÞR1 þ Ri ! Ri:]

Step 2. Repeat Step 1 with the submatrix formed by all the rows excluding the first row. Here we let j2
denote the first column in the subsystem with a nonzero entry. Hence, at the end of Step 2, we
have a2j2 6¼ 0.

Steps 3 to r. Continue the above process until a submatrix has only zero rows.

We emphasize that at the end of the algorithm, the pivots will be

a1j1 ; a2j2 ; . . . ; arjr

where r denotes the number of nonzero rows in the final echelon matrix.

Remark 1: The following number m in Step 1(b) is called the multiplier:

m ¼ � aij1
a1j1
¼ � entry to be deleted

pivot
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Remark 2: One could replace the operation in Step 1(b) by the following which would avoid
fractions if all the scalars were originally integers.

Replace Ri by �aij1R1 þ a1j1Ri:

ALGORITHM 3.4 (Backward Elimination): The input is a matrix A ¼ ½aij� in echelon form with pivot
entries

a1j1 ; a2j2 ; . . . ; arjr

The output is the row canonical form of A.

Step 1. (a) (Use row scaling so the last pivot equals 1.) Multiply the last nonzero row Rr by 1=arjr .

(b) (Use arjr ¼ 1 to obtain 0’s above the pivot.) For i ¼ r � 1; r � 2; . . . ; 2; 1:

ð1Þ Set m ¼ �aijr ; ð2Þ Replace Ri by mRr þ Ri

(That is, apply the operations �aijrRr þ Ri ! Ri.)

Steps 2 to r�1. Repeat Step 1 for rows Rr�1, Rr�2; . . . ;R2.

Step r. (Use row scaling so the first pivot equals 1.) Multiply R1 by 1=a1j1 .

There is an alternative form of Algorithm 3.4, which we describe here in words. The formal
description of this algorithm is left to the reader as a supplementary problem.

ALTERNATIVE ALGORITHM 3.4 Puts 0’s above the pivots row by row from the bottom up (rather
than column by column from right to left).

The alternative algorithm, when applied to an augmented matrix M of a system of linear equations, is
essentially the same as solving for the pivot unknowns one after the other from the bottom up.

Remark: We emphasize that Gaussian elimination is a two-stage process. Specifically,

Stage A (Algorithm 3.3). Puts 0’s below each pivot, working from the top row R1 down.

Stage B (Algorithm 3.4). Puts 0’s above each pivot, working from the bottom row Rr up.

There is another algorithm, called Gauss–Jordan, that also row reduces a matrix to its row canonical
form. The difference is that Gauss–Jordan puts 0’s both below and above each pivot as it works its way
from the top row R1 down. Although Gauss–Jordan may be easier to state and understand, it is much less
efficient than the two-stage Gaussian elimination algorithm.

EXAMPLE 3.11 Consider the matrix A ¼
1 2 �3 1 2
2 4 �4 6 10
3 6 �6 9 13

24 35.
(a) Use Algorithm 3.3 to reduce A to an echelon form.

(b) Use Algorithm 3.4 to further reduce A to its row canonical form.

(a) First use a11 ¼ 1 as a pivot to obtain 0’s below a11; that is, apply the operations ‘‘Replace R2 by �2R1 þ R2’’
and ‘‘Replace R3 by �3R1 þ R3.’’ Then use a23 ¼ 2 as a pivot to obtain 0 below a23; that is, apply the operation
‘‘Replace R3 by � 3

2R2 þ R3.’’ This yields

A �
1 2 �3 1 2
0 0 2 4 6
0 0 3 6 7

24 35 � 1 2 �3 1 2
0 0 2 4 6
0 0 0 0 �2

24 35
The matrix is now in echelon form.
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(b) Multiply R3 by � 1
2 so the pivot entry a35 ¼ 1, and then use a35 ¼ 1 as a pivot to obtain 0’s above it by the

operations ‘‘Replace R2 by �6R3 þ R2’’ and then ‘‘Replace R1 by �2R3 þ R1.’’ This yields

A �
1 2 �3 1 2
0 0 2 4 6
0 0 0 0 1

24 35 � 1 2 �3 1 0
0 0 2 4 0
0 0 0 0 1

24 35:
Multiply R2 by 1

2 so the pivot entry a23 ¼ 1, and then use a23 ¼ 1 as a pivot to obtain 0’s above it by the
operation ‘‘Replace R1 by 3R2 þ R1.’’ This yields

A �
1 2 �3 1 0
0 0 1 2 0
0 0 0 0 1

24 35 � 1 2 0 7 0
0 0 1 2 0
0 0 0 0 1

24 35:
The last matrix is the row canonical form of A.

Application to Systems of Linear Equations

One way to solve a system of linear equations is by working with its augmented matrix M rather than the
equations themselves. Specifically, we reduceM to echelon form (which tells us whether the system has a
solution), and then further reduceM to its row canonical form (which essentially gives the solution of the
original system of linear equations). The justification for this process comes from the following facts:

(1) Any elementary row operation on the augmented matrix M of the system is equivalent to applying
the corresponding operation on the system itself.

(2) The system has a solution if and only if the echelon form of the augmented matrixM does not have a
row of the form ð0; 0; . . . ; 0; bÞ with b 6¼ 0.

(3) In the row canonical form of the augmented matrix M (excluding zero rows), the coefficient of each
basic variable is a pivot entry equal to 1, and it is the only nonzero entry in its respective column;
hence, the free-variable form of the solution of the system of linear equations is obtained by simply
transferring the free variables to the other side.

This process is illustrated below.

EXAMPLE 3.12 Solve each of the following systems:

(a)

x1 þ x2 � 2x3 þ 4x4 ¼ 5
2x1 þ 2x2 � 3x3 þ x4 ¼ 3
3x1 þ 3x2 � 4x3 � 2x4 ¼ 1

(b)

x1 þ x2 � 2x3 þ 3x4 ¼ 4
2x1 þ 3x2 þ 3x3 � x4 ¼ 3
5x1 þ 7x2 þ 4x3 þ x4 ¼ 5

(c)

xþ 2yþ z ¼ 3
2xþ 5y� z ¼ �4
3x� 2y� z ¼ 5

(a) Reduce its augmented matrix M to echelon form and then to row canonical form as follows:

M ¼
1 1 �2 4 5
2 2 �3 1 3
3 3 �4 �2 1

24 35 � 1 1 �2 4 5
0 0 1 �7 �7
0 0 2 �14 �14

24 35 � 1 1 0 �10 �9
0 0 1 �7 �7
0 0 0 0 0

24 35
Rewrite the row canonical form in terms of a system of linear equations to obtain the free variable form of the
solution. That is,

x1 þ x2 � 10x4 ¼ �9
x3 � 7x4 ¼ �7 or

x1 ¼ �9� x2 þ 10x4
x3 ¼ �7þ 7x4

(The zero row is omitted in the solution.) Observe that x1 and x3 are the pivot variables, and x2 and x4 are the
free variables.
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(b) First reduce its augmented matrix M to echelon form as follows:

M ¼
1 1 �2 3 4
2 3 3 �1 3
5 7 4 1 5

24 35 � 1 1 �2 3 4
0 1 7 �7 �5
0 2 14 �14 �15

24 35 � 1 1 �2 3 4
0 1 7 �7 �5
0 0 0 0 �5

24 35
There is no need to continue to find the row canonical form of M , because the echelon form already tells us that
the system has no solution. Specifically, the third row of the echelon matrix corresponds to the degenerate
equation

0x1 þ 0x2 þ 0x3 þ 0x4 ¼ �5

which has no solution. Thus, the system has no solution.

(c) Reduce its augmented matrix M to echelon form and then to row canonical form as follows:

M ¼
1 2 1 3

2 5 �1 �4
3 �2 �1 5

264
375 � 1 2 1 3

0 1 �3 �10
0 �8 �4 �4

264
375 � 1 2 1 3

0 1 �3 �10
0 0 �28 �84

264
375

�
1 2 1 3

0 1 �3 �10
0 0 1 3

264
375 � 1 2 0 0

0 1 0 �1
0 0 1 3

264
375 � 1 0 0 2

0 1 0 �1
0 0 1 3

264
375

Thus, the system has the unique solution x ¼ 2, y ¼ �1, z ¼ 3, or, equivalently, the vector u ¼ ð2;�1; 3Þ. We
note that the echelon form of M already indicated that the solution was unique, because it corresponded to a
triangular system.

Application to Existence and Uniqueness Theorems

This subsection gives theoretical conditions for the existence and uniqueness of a solution of a system of
linear equations using the notion of the rank of a matrix.

THEOREM 3.9: Consider a system of linear equations in n unknowns with augmented matrix
M ¼ ½A;B�. Then,
(a) The system has a solution if and only if rankðAÞ ¼ rankðMÞ.
(b) The solution is unique if and only if rankðAÞ ¼ rankðMÞ ¼ n.

Proof of (a). The system has a solution if and only if an echelon form of M ¼ ½A;B� does not have a
row of the form

ð0; 0; . . . ; 0; bÞ; with b 6¼ 0

If an echelon form of M does have such a row, then b is a pivot of M but not of A, and hence,
rankðMÞ > rankðAÞ. Otherwise, the echelon forms of A and M have the same pivots, and hence,
rankðAÞ ¼ rankðMÞ. This proves (a).

Proof of (b). The system has a unique solution if and only if an echelon form has no free variable. This
means there is a pivot for each unknown. Accordingly, n ¼ rankðAÞ ¼ rankðMÞ. This proves (b).

The above proof uses the fact (Problem 3.74) that an echelon form of the augmented matrix
M ¼ ½A;B� also automatically yields an echelon form of A.
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3.9 Matrix Equation of a System of Linear Equations

The general system (3.2) of m linear equations in n unknowns is equivalent to the matrix equation

a11 a12 . . . a1n
a21 a22 . . . a2n
:::::::::::::::::::::::::::::::
am1 am2 . . . amn

2664
3775

x1
x2
x3
. . .
xn

266664
377775 ¼

b1
b2
. . .
bm

2664
3775 or AX ¼ B

where A ¼ ½aij� is the coefficient matrix, X ¼ ½xj� is the column vector of unknowns, and B ¼ ½bi� is the
column vector of constants. (Some texts write Ax ¼ b rather than AX ¼ B, in order to emphasize that x
and b are simply column vectors.)

The statement that the system of linear equations and the matrix equation are equivalent means that
any vector solution of the system is a solution of the matrix equation, and vice versa.

EXAMPLE 3.13 The following system of linear equations and matrix equation are equivalent:

x1 þ 2x2 � 4x3 þ 7x4 ¼ 4
3x1 � 5x2 þ 6x3 � 8x4 ¼ 8
4x1 � 3x2 � 2x3 þ 6x4 ¼ 11

and
1 2 �4 7
3 �5 6 �8
4 �3 �2 6

24 35 x1
x2
x3
x4

2664
3775 ¼ 4

8
11

24 35
We note that x1 ¼ 3, x2 ¼ 1, x3 ¼ 2, x4 ¼ 1, or, in other words, the vector u ¼ ½3; 1; 2; 1� is a solution of
the system. Thus, the (column) vector u is also a solution of the matrix equation.

The matrix form AX ¼ B of a system of linear equations is notationally very convenient when
discussing and proving properties of systems of linear equations. This is illustrated with our first theorem
(described in Fig. 3-1), which we restate for easy reference.

THEOREM 3.1: Suppose the field K is infinite. Then the system AX ¼ B has: (a) a unique solution, (b)
no solution, or (c) an infinite number of solutions.

Proof. It suffices to show that if AX ¼ B has more than one solution, then it has infinitely many.
Suppose u and v are distinct solutions of AX ¼ B; that is, Au ¼ B and Av ¼ B. Then, for any k 2 K,

A½uþ kðu� vÞ� ¼ Auþ kðAu� AvÞ ¼ Bþ kðB� BÞ ¼ B

Thus, for each k 2 K, the vector uþ kðu� vÞ is a solution of AX ¼ B. Because all such solutions are
distinct (Problem 3.47), AX ¼ B has an infinite number of solutions.

Observe that the above theorem is true when K is the real field R (or the complex field C). Section 3.3
shows that the theorem has a geometrical description when the system consists of two equations in two
unknowns, where each equation represents a line in R2. The theorem also has a geometrical description
when the system consists of three nondegenerate equations in three unknowns, where the three equations
correspond to planes H1, H2, H3 in R3. That is,

(a) Unique solution: Here the three planes intersect in exactly one point.

(b) No solution: Here the planes may intersect pairwise but with no common point of intersection, or two
of the planes may be parallel.

(c) Infinite number of solutions: Here the three planes may intersect in a line (one free variable), or they
may coincide (two free variables).

These three cases are pictured in Fig. 3-3.

Matrix Equation of a Square System of Linear Equations

A system AX ¼ B of linear equations is square if and only if the matrix A of coefficients is square. In such
a case, we have the following important result.
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THEOREM 3.10: A square system AX ¼ B of linear equations has a unique solution if and only if the
matrix A is invertible. In such a case, A�1B is the unique solution of the system.

We only prove here that if A is invertible, then A�1B is a unique solution. If A is invertible, then

AðA�1BÞ ¼ ðAA�1ÞB ¼ IB ¼ B

and hence, A�1B is a solution. Now suppose v is any solution, so Av ¼ B. Then

v ¼ Iv ¼ ðA�1AÞv ¼ A�1ðAvÞ ¼ A�1B

Thus, the solution A�1B is unique.

EXAMPLE 3.14 Consider the following system of linear equations, whose coefficient matrix A and
inverse A�1 are also given:

xþ 2yþ 3z ¼ 1
xþ 3yþ 6z ¼ 3
2xþ 6yþ 13z ¼ 5

; A ¼
1 2 3
1 3 6
2 6 13

24 35; A�1 ¼
3 �8 3
�1 7 �3
0 �2 1

24 35
By Theorem 3.10, the unique solution of the system is

A�1B ¼
3 �8 3
�1 7 �3
0 �2 1

24 35 1
3
5

24 35 ¼ �6
5
�1

24 35
That is, x ¼ �6, y ¼ 5, z ¼ �1.

Remark: We emphasize that Theorem 3.10 does not usually help us to find the solution of a square
system. That is, finding the inverse of a coefficient matrix A is not usually any easier than solving the
system directly. Thus, unless we are given the inverse of a coefficient matrix A, as in Example 3.14,
we usually solve a square system by Gaussian elimination (or some iterative method whose discussion
lies beyond the scope of this text).

( ) Unique solutiona

H2

H3

H1

H1

H2

H3

( ) Infinite number of solutionsc

H3

H H1 2and

(i) (ii) (iii)

H H H1 2 3, , and

(i)

( ) No solutionsb

H3

H2

H1

(ii) (iii) (i )v

H1

H2

H3

H2

H3

H1

H3

Figure 3-3
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3.10 Systems of Linear Equations and Linear Combinations of Vectors

The general system (3.2) of linear equations may be rewritten as the following vector equation:

x1

a11
a21
. . .
am1

2664
3775þ x2

a12
a22
. . .
am2

2664
3775þ � � � þ xn

a1n
a2n
. . .
amn

2664
3775 ¼

b1
b2
. . .
bm

2664
3775

Recall that a vector v in Kn is said to be a linear combination of vectors u1; u2; . . . ; um in Kn if there exist
scalars a1; a2; . . . ; am in K such that

v ¼ a1u1 þ a2u2 þ � � � þ amum

Accordingly, the general system (3.2) of linear equations and the above equivalent vector equation have a
solution if and only if the column vector of constants is a linear combination of the columns of the
coefficient matrix. We state this observation formally.

THEOREM 3.11: A system AX ¼ B of linear equations has a solution if and only if B is a linear
combination of the columns of the coefficient matrix A.

Thus, the answer to the problem of expressing a given vector v in Kn as a linear combination of vectors
u1; u2; . . . ; um in Kn reduces to solving a system of linear equations.

Linear Combination Example

Suppose we want to write the vector v ¼ ð1;�2; 5Þ as a linear combination of the vectors

u1 ¼ ð1; 1; 1Þ; u2 ¼ ð1; 2; 3Þ; u3 ¼ ð2;�1; 1Þ
First we write v ¼ xu1 þ yu2 þ zu3 with unknowns x; y; z, and then we find the equivalent system of linear
equations which we solve. Specifically, we first write

1
�2
5

24 35 ¼ x
1
1
1

24 35þ y
1
2
3

24 35þ z
2
�1
1

24 35 ð*Þ

Then

1
�2
5

24 35 ¼ x
x
x

24 35þ y
2y
3y

24 35þ 2z
�z
z

24 35 ¼ xþ yþ 2z
xþ 2y� z
xþ 3yþ z

24 35
Setting corresponding entries equal to each other yields the following equivalent system:

xþ yþ 2z ¼ 1

xþ 2y� z ¼ �2
xþ 3yþ z ¼ 5

ð**Þ

For notational convenience, we have written the vectors in Rn as columns, because it is then easier to find
the equivalent system of linear equations. In fact, one can easily go from the vector equation (*) directly
to the system (**).

Now we solve the equivalent system of linear equations by reducing the system to echelon form. This
yields

xþ yþ 2z ¼ 1
y� 3z ¼ �3

2y� z ¼ 4
and then

xþ yþ 2z ¼ 1
y� 3z ¼ �3

5z ¼ 10

Back-substitution yields the solution x ¼ �6, y ¼ 3, z ¼ 2. Thus, v ¼ �6u1 þ 3u2 þ 2u3.
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EXAMPLE 3.15

(a) Write the vector v ¼ ð4; 9; 19Þ as a linear combination of

u1 ¼ ð1;�2; 3Þ; u2 ¼ ð3;�7; 10Þ; u3 ¼ ð2; 1; 9Þ:
Find the equivalent system of linear equations by writing v ¼ xu1 þ yu2 þ zu3, and reduce the system to an

echelon form. We have

xþ 3yþ 2z ¼ 4
�2x� 7yþ z ¼ 9
3xþ 10yþ 9z ¼ 19

or
xþ 3yþ 2z ¼ 4
�yþ 5z ¼ 17
yþ 3z ¼ 7

or
xþ 3yþ 2z ¼ 4
�yþ 5z ¼ 17

8z ¼ 24

Back-substitution yields the solution x ¼ 4, y ¼ �2, z ¼ 3. Thus, v is a linear combination of u1; u2; u3.
Specifically, v ¼ 4u1 � 2u2 þ 3u3.

(b) Write the vector v ¼ ð2; 3;�5Þ as a linear combination of

u1 ¼ ð1; 2;�3Þ; u2 ¼ ð2; 3;�4Þ; u3 ¼ ð1; 3;�5Þ
Find the equivalent system of linear equations by writing v ¼ xu1 þ yu2 þ zu3, and reduce the system to an

echelon form. We have

xþ 2yþ z ¼ 2
2xþ 3yþ 3z ¼ 3
�3x� 4y� 5z ¼ �5

or
xþ 2yþ z ¼ 2
�yþ z ¼ �1
2y� 2z ¼ 1

or
xþ 2yþ z ¼ 2
� 5yþ 5z ¼ �1

0 ¼ 3

The system has no solution. Thus, it is impossible to write v as a linear combination of u1; u2; u3.

Linear Combinations of Orthogonal Vectors, Fourier Coefficients

Recall first (Section 1.4) that the dot (inner) product u � v of vectors u ¼ ða1; . . . ; anÞ and v ¼ ðb1; . . . ; bnÞ
in Rn is defined by

u � v ¼ a1b1 þ a2b2 þ � � � þ anbn

Furthermore, vectors u and v are said to be orthogonal if their dot product u � v ¼ 0.
Suppose that u1; u2; . . . ; un in Rn are n nonzero pairwise orthogonal vectors. This means

ðiÞ ui � uj ¼ 0 for i 6¼ j and ðiiÞ ui � ui 6¼ 0 for each i

Then, for any vector v in Rn, there is an easy way to write v as a linear combination of u1; u2; . . . ; un,
which is illustrated in the next example.

EXAMPLE 3.16 Consider the following three vectors in R3:

u1 ¼ ð1; 1; 1Þ; u2 ¼ ð1;�3; 2Þ; u3 ¼ ð5;�1;�4Þ
These vectors are pairwise orthogonal; that is,

u1 � u2 ¼ 1� 3þ 2 ¼ 0; u1 � u3 ¼ 5� 1� 4 ¼ 0; u2 � u3 ¼ 5þ 3� 8 ¼ 0

Suppose we want to write v ¼ ð4; 14;�9Þ as a linear combination of u1; u2; u3.

Method 1. Find the equivalent system of linear equations as in Example 3.14 and then solve,
obtaining v ¼ 3u1 � 4u2 þ u3.

Method 2. (This method uses the fact that the vectors u1; u2; u3 are mutually orthogonal, and
hence, the arithmetic is much simpler.) Set v as a linear combination of u1; u2; u3 using unknown scalars
x; y; z as follows:

ð4; 14;�9Þ ¼ xð1; 1; 1Þ þ yð1;�3; 2Þ þ zð5;�1;�4Þ ð*Þ
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Take the dot product of (*) with respect to u1 to get

ð4; 14;�9Þ � ð1; 1; 1Þ ¼ xð1; 1; 1Þ � ð1; 1; 1Þ or 9 ¼ 3x or x ¼ 3

(The last two terms drop out, because u1 is orthogonal to u2 and to u3.) Next take the dot product of (*) with respect
to u2 to obtain

ð4; 14;�9Þ � ð1;�3; 2Þ ¼ yð1;�3; 2Þ � ð1;�3; 2Þ or � 56 ¼ 14y or y ¼ �4
Finally, take the dot product of (*) with respect to u3 to get

ð4; 14;�9Þ � ð5;�1;�4Þ ¼ zð5;�1;�4Þ � ð5;�1;�4Þ or 42 ¼ 42z or z ¼ 1

Thus, v ¼ 3u1 � 4u2 þ u3.

The procedure in Method 2 in Example 3.16 is valid in general. Namely,

THEOREM 3.12: Suppose u1; u2; . . . ; un are nonzero mutually orthogonal vectors in Rn. Then, for any
vector v in Rn,

v ¼ v � u1
u1 � u1

u1 þ
v � u2
u2 � u2

u2 þ � � � þ
v � un
un � un

un

We emphasize that there must be n such orthogonal vectors ui in Rn for the formula to be used. Note
also that each ui � ui 6¼ 0, because each ui is a nonzero vector.

Remark: The following scalar ki (appearing in Theorem 3.12) is called the Fourier coefficient of v
with respect to ui:

ki ¼
v � ui
ui � ui

¼ v � ui
kuik2

It is analogous to a coefficient in the celebrated Fourier series of a function.

3.11 Homogeneous Systems of Linear Equations

A system of linear equations is said to be homogeneous if all the constant terms are zero. Thus, a
homogeneous system has the form AX ¼ 0. Clearly, such a system always has the zero vector
0 ¼ ð0; 0; . . . ; 0Þ as a solution, called the zero or trivial solution. Accordingly, we are usually interested
in whether or not the system has a nonzero solution.

Because a homogeneous system AX ¼ 0 has at least the zero solution, it can always be put in an
echelon form, say

a11x1 þ a12x2 þ a13x3 þ a14x4 þ � � � þ a1nxn ¼ 0
a2j2xj2 þ a2;j2þ1xj2þ1 þ � � � þ a2nxn ¼ 0

::::::::::::::::::::::::::::::::::::::::::::
arjr xjr þ � � � þ arnxn ¼ 0

Here r denotes the number of equations in echelon form and n denotes the number of unknowns. Thus,
the echelon system has n� r free variables.

The question of nonzero solutions reduces to the following two cases:

(i) r ¼ n. The system has only the zero solution.

(ii) r < n. The system has a nonzero solution.

Accordingly, if we begin with fewer equations than unknowns, then, in echelon form, r < n, and the
system has a nonzero solution. This proves the following important result.

THEOREM 3.13: A homogeneous system AX ¼ 0 with more unknowns than equations has a nonzero
solution.
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EXAMPLE 3.17 Determine whether or not each of the following homogeneous systems has a nonzero
solution:

(a)

xþ y� z ¼ 0
2x� 3yþ z ¼ 0
x� 4yþ 2z ¼ 0

(b)

xþ y� z ¼ 0
2xþ 4y� z ¼ 0
3xþ 2yþ 2z ¼ 0

(c)

x1 þ 2x2 � 3x3 þ 4x4 ¼ 0
2x1 � 3x2 þ 5x3 � 7x4 ¼ 0
5x1 þ 6x2 � 9x3 þ 8x4 ¼ 0

(a) Reduce the system to echelon form as follows:

xþ y� z ¼ 0
�5yþ 3z ¼ 0
�5yþ 3z ¼ 0

and then
xþ y� z ¼ 0
�5yþ 3z ¼ 0

The system has a nonzero solution, because there are only two equations in the three unknowns in echelon form.
Here z is a free variable. Let us, say, set z ¼ 5. Then, by back-substitution, y ¼ 3 and x ¼ 2. Thus, the vector
u ¼ ð2; 3; 5Þ is a particular nonzero solution.

(b) Reduce the system to echelon form as follows:

xþ y� z ¼ 0
2yþ z ¼ 0
�yþ 5z ¼ 0

and then
xþ y� z ¼ 0

2yþ z ¼ 0
11z ¼ 0

In echelon form, there are three equations in three unknowns. Thus, the system has only the zero solution.

(c) The system must have a nonzero solution (Theorem 3.13), because there are four unknowns but only three
equations. (Here we do not need to reduce the system to echelon form.)

Basis for the General Solution of a Homogeneous System

Let W denote the general solution of a homogeneous system AX ¼ 0. A list of nonzero solution vectors
u1; u2; . . . ; us of the system is said to be a basis for W if each solution vector w 2 W can be expressed
uniquely as a linear combination of the vectors u1; u2; . . . ; us; that is, there exist unique scalars
a1; a2; . . . ; as such that

w ¼ a1u1 þ a2u2 þ � � � þ asus

The number s of such basis vectors is equal to the number of free variables. This number s is called the
dimension of W , written as dim W ¼ s. When W ¼ f0g—that is, the system has only the zero solution—
we define dimW ¼ 0.

The following theorem, proved in Chapter 5, page 171, tells us how to find such a basis.

THEOREM 3.14: Let W be the general solution of a homogeneous system AX ¼ 0, and suppose that
the echelon form of the homogeneous system has s free variables. Let u1; u2; . . . ; us
be the solutions obtained by setting one of the free variables equal to 1 (or any
nonzero constant) and the remaining free variables equal to 0. Then dim W ¼ s, and
the vectors u1; u2; . . . ; us form a basis of W .

We emphasize that the general solutionW may have many bases, and that Theorem 3.12 only gives us
one such basis.

EXAMPLE 3.18 Find the dimension and a basis for the general solution W of the homogeneous system

x1 þ 2x2 � 3x3 þ 2x4 � 4x5 ¼ 0

2x1 þ 4x2 � 5x3 þ x4 � 6x5 ¼ 0

5x1 þ 10x2 � 13x3 þ 4x4 � 16x5 ¼ 0
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First reduce the system to echelon form. Apply the following operations:

‘‘Replace L2 by �2L1 þ L2’’ and ‘‘Replace L3 by � 5L1 þ L3’’ and then ‘‘Replace L3 by �2L2 þ L3’’

These operations yield

x1 þ 2x2 � 3x3 þ 2x4 � 4x5 ¼ 0
x3 � 3x4 þ 2x5 ¼ 0
2x3 � 6x4 þ 4x5 ¼ 0

and
x1 þ 2x2 � 3x3 þ 2x4 � 4x5 ¼ 0

x3 � 3x4 þ 2x5 ¼ 0

The system in echelon form has three free variables, x2; x4; x5; hence, dim W ¼ 3. Three solution vectors that form a
basis for W are obtained as follows:

(1) Set x2 ¼ 1, x4 ¼ 0, x5 ¼ 0. Back-substitution yields the solution u1 ¼ ð�2; 1; 0; 0; 0Þ.
(2) Set x2 ¼ 0, x4 ¼ 1, x5 ¼ 0. Back-substitution yields the solution u2 ¼ ð7; 0; 3; 1; 0Þ.
(3) Set x2 ¼ 0, x4 ¼ 0, x5 ¼ 1. Back-substitution yields the solution u3 ¼ ð�2; 0;�2; 0; 1Þ.

The vectors u1 ¼ ð�2; 1; 0; 0; 0Þ, u2 ¼ ð7; 0; 3; 1; 0Þ, u3 ¼ ð�2; 0;�2; 0; 1Þ form a basis for W .

Remark: Any solution of the system in Example 3.18 can be written in the form

au1 þ bu2 þ cu3 ¼ að�2; 1; 0; 0; 0Þ þ bð7; 0; 3; 1; 0Þ þ cð�2; 0;�2; 0; 1Þ
¼ ð�2aþ 7b� 2c; a; 3b� 2c; b; cÞ

or

x1 ¼ �2aþ 7b� 2c; x2 ¼ a; x3 ¼ 3b� 2c; x4 ¼ b; x5 ¼ c

where a; b; c are arbitrary constants. Observe that this representation is nothing more than the parametric
form of the general solution under the choice of parameters x2 ¼ a, x4 ¼ b, x5 ¼ c.

Nonhomogeneous and Associated Homogeneous Systems

Let AX ¼ B be a nonhomogeneous system of linear equations. Then AX ¼ 0 is called the associated
homogeneous system. For example,

xþ 2y� 4z ¼ 7
3x� 5yþ 6z ¼ 8

and
xþ 2y� 4z ¼ 0
3x� 5yþ 6z ¼ 0

show a nonhomogeneous system and its associated homogeneous system.
The relationship between the solution U of a nonhomogeneous system AX ¼ B and the solution W of

its associated homogeneous system AX ¼ 0 is contained in the following theorem.

THEOREM 3.15: Let v0 be a particular solution of AX ¼ B and let W be the general solution of
AX ¼ 0. Then the following is the general solution of AX ¼ B:

U ¼ v0 þW ¼ fv0 þ w : w 2 Wg

That is, U ¼ v0 þW is obtained by adding v0 to each element in W . We note that this theorem has a
geometrical interpretation in R3. Specifically, suppose W is a line through the origin O. Then, as pictured
in Fig. 3-4, U ¼ v0 þW is the line parallel to W obtained by adding v0 to each element of W . Similarly,
whenever W is a plane through the origin O, then U ¼ v0 þW is a plane parallel to W .
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