
CHAPTER 9

Diagonalization:
Eigenvalues and Eigenvectors

9.1 Introduction

The ideas in this chapter can be discussed from two points of view.

Matrix Point of View

Suppose an n-square matrix A is given. The matrix A is said to be diagonalizable if there exists a
nonsingular matrix P such that

B ¼ P�1AP

is diagonal. This chapter discusses the diagonalization of a matrix A. In particular, an algorithm is given
to find the matrix P when it exists.

Linear Operator Point of View

Suppose a linear operator T :V ! V is given. The linear operator T is said to be diagonalizable if there
exists a basis S of V such that the matrix representation of T relative to the basis S is a diagonal matrix D.
This chapter discusses conditions under which the linear operator T is diagonalizable.

Equivalence of the Two Points of View

The above two concepts are essentially the same. Specifically, a square matrix A may be viewed as a
linear operator F defined by

FðX Þ ¼ AX

where X is a column vector, and B ¼ P�1AP represents F relative to a new coordinate system (basis)
S whose elements are the columns of P. On the other hand, any linear operator T can be represented by a
matrix A relative to one basis and, when a second basis is chosen, T is represented by the matrix

B ¼ P�1AP

where P is the change-of-basis matrix.
Most theorems will be stated in two ways: one in terms of matrices A and again in terms of linear

mappings T .

Role of Underlying Field K

The underlying number field K did not play any special role in our previous discussions on vector spaces
and linear mappings. However, the diagonalization of a matrix A or a linear operator T will depend on the
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roots of a polynomial DðtÞ over K, and these roots do depend on K. For example, suppose DðtÞ ¼ t2 þ 1.
Then DðtÞ has no roots if K ¼ R, the real field; but DðtÞ has roots �i if K ¼ C, the complex field.
Furthermore, finding the roots of a polynomial with degree greater than two is a subject unto itself
(frequently discussed in numerical analysis courses). Accordingly, our examples will usually lead to
those polynomials DðtÞ whose roots can be easily determined.

9.2 Polynomials of Matrices

Consider a polynomial f ðtÞ ¼ ant
n þ � � � þ a1t þ a0 over a field K . Recall (Section 2.8) that if A is any

square matrix, then we define

f ðAÞ ¼ anA
n þ � � � þ a1Aþ a0I

where I is the identity matrix. In particular, we say that A is a root of f ðtÞ if f ðAÞ ¼ 0, the zero matrix.

EXAMPLE 9.1 Let A ¼ 1 2
3 4

� �
. Then A2 ¼ 7 10

15 22

� �
. Let

f ðtÞ ¼ 2t2 � 3t þ 5 and gðtÞ ¼ t2 � 5t � 2

Then

f ðAÞ ¼ 2A2 � 3Aþ 5I ¼ 14 20
30 44

� �
þ �3 �6
�9 �12
� �

þ 5 0
0 5

� �
¼ 16 14

21 37

� �
and

gðAÞ ¼ A2 � 5A� 2I ¼ 7 10
15 22

� �
þ �5 �10
�15 �20
� �

þ �2 0
0 �2

� �
¼ 0 0

0 0

� �
Thus, A is a zero of gðtÞ.

The following theorem (proved in Problem 9.7) applies.

THEOREM 9.1: Let f and g be polynomials. For any square matrix A and scalar k,

(i) ð f þ gÞðAÞ ¼ f ðAÞ þ gðAÞ (iii) ðkf ÞðAÞ ¼ kf ðAÞ
(ii) ð fgÞðAÞ ¼ f ðAÞgðAÞ (iv) f ðAÞgðAÞ ¼ gðAÞ f ðAÞ:

Observe that (iv) tells us that any two polynomials in A commute.

Matrices and Linear Operators

Now suppose that T :V ! V is a linear operator on a vector space V . Powers of T are defined by the
composition operation:

T2 ¼ T � T ; T3 ¼ T2 � T ; . . .

Also, for any polynomial f ðtÞ ¼ ant
n þ � � � þ a1t þ a0, we define f ðTÞ in the same way as we did for

matrices:

f ðTÞ ¼ anT
n þ � � � þ a1T þ a0I

where I is now the identity mapping. We also say that T is a zero or root of f ðtÞ if f ðTÞ ¼ 0; the zero
mapping. We note that the relations in Theorem 9.1 hold for linear operators as they do for matrices.

Remark: Suppose A is a matrix representation of a linear operator T . Then f ðAÞ is the matrix
representation of f ðTÞ, and, in particular, f ðTÞ ¼ 0 if and only if f ðAÞ ¼ 0.
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9.3 Characteristic Polynomial, Cayley–Hamilton Theorem

Let A ¼ ½aij� be an n-square matrix. The matrix M ¼ A� tIn, where In is the n-square identity matrix and
t is an indeterminate, may be obtained by subtracting t down the diagonal of A. The negative of M is the
matrix tIn � A, and its determinant

DðtÞ ¼ detðtIn � AÞ ¼ ð�1Þn detðA� tInÞ
which is a polynomial in t of degree n and is called the characteristic polynomial of A.

We state an important theorem in linear algebra (proved in Problem 9.8).

THEOREM 9.2: (Cayley–Hamilton) Every matrix A is a root of its characteristic polynomial.

Remark: Suppose A ¼ ½aij� is a triangular matrix. Then tI � A is a triangular matrix with diagonal
entries t � aii; hence,

DðtÞ ¼ detðtI � AÞ ¼ ðt � a11Þðt � a22Þ � � � ðt � annÞ
Observe that the roots of DðtÞ are the diagonal elements of A.

EXAMPLE 9.2 Let A ¼ 1 3
4 5

� �
. Its characteristic polynomial is

DðtÞ ¼ jtI � Aj ¼ t � 1 �3
�4 t � 5

���� ¼ ðt � 1Þðt � 5Þ � 12 ¼ t2 � 6t � 7

����
As expected from the Cayley–Hamilton theorem, A is a root of DðtÞ; that is,

DðAÞ ¼ A2 � 6A� 7I ¼ 13 18
24 37

� �
þ �6 �18
�24 �30
� �

þ �7 0
0 �7

� �
¼ 0 0

0 0

� �
Now suppose A and B are similar matrices, say B ¼ P�1AP, where P is invertible. We show that A

and B have the same characteristic polynomial. Using tI ¼ P�1tIP, we have

DBðtÞ ¼ detðtI � BÞ ¼ detðtI � P�1APÞ ¼ detðP�1tIP� P�1APÞ
¼ det½P�1ðtI � AÞP� ¼ detðP�1Þ detðtI � AÞ detðPÞ

Using the fact that determinants are scalars and commute and that detðP�1Þ detðPÞ ¼ 1, we finally obtain

DBðtÞ ¼ detðtI � AÞ ¼ DAðtÞ
Thus, we have proved the following theorem.

THEOREM 9.3: Similar matrices have the same characteristic polynomial.

Characteristic Polynomials of Degrees 2 and 3

There are simple formulas for the characteristic polynomials of matrices of orders 2 and 3.

(a) Suppose A ¼ a11 a12
a21 a22

� �
. Then

DðtÞ ¼ t2 � ða11 þ a22Þt þ detðAÞ ¼ t2 � trðAÞ t þ detðAÞ
Here trðAÞ denotes the trace of A—that is, the sum of the diagonal elements of A.

(b) Suppose A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

24 35. Then
DðtÞ ¼ t3 � trðAÞ t2 þ ðA11 þ A22 þ A33Þt � detðAÞ

(Here A11, A22, A33 denote, respectively, the cofactors of a11, a22, a33.)
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EXAMPLE 9.3 Find the characteristic polynomial of each of the following matrices:

(a) A ¼ 5 3
2 10

� �
, (b) B ¼ 7 �1

6 2

� �
, (c) C ¼ 5 �2

4 �4
� �

.

(a) We have trðAÞ ¼ 5þ 10 ¼ 15 and jAj ¼ 50� 6 ¼ 44; hence, DðtÞ þ t2 � 15t þ 44.

(b) We have trðBÞ ¼ 7þ 2 ¼ 9 and jBj ¼ 14þ 6 ¼ 20; hence, DðtÞ ¼ t2 � 9t þ 20.

(c) We have trðCÞ ¼ 5� 4 ¼ 1 and jCj ¼ �20þ 8 ¼ �12; hence, DðtÞ ¼ t2 � t � 12.

EXAMPLE 9.4 Find the characteristic polynomial of A ¼
1 1 2
0 3 2
1 3 9

24 35.
We have trðAÞ ¼ 1þ 3þ 9 ¼ 13. The cofactors of the diagonal elements are as follows:

A11 ¼ 3 2
3 9

���� ���� ¼ 21; A22 ¼ 1 2
1 9

���� ���� ¼ 7; A33 ¼ 1 1
0 3

���� ���� ¼ 3

Thus, A11 þ A22 þ A33 ¼ 31. Also, jAj ¼ 27þ 2þ 0� 6� 6� 0 ¼ 17. Accordingly,

DðtÞ ¼ t3 � 13t2 þ 31t � 17

Remark: The coefficients of the characteristic polynomial DðtÞ of the 3-square matrix A are, with
alternating signs, as follows:

S1 ¼ trðAÞ; S2 ¼ A11 þ A22 þ A33; S3 ¼ detðAÞ

We note that each Sk is the sum of all principal minors of A of order k.

The next theorem, whose proof lies beyond the scope of this text, tells us that this result is true in
general.

THEOREM 9.4: Let A be an n-square matrix. Then its characteristic polynomial is

DðtÞ ¼ tn � S1t
n�1 þ S2t

n�2 þ � � � þ ð�1ÞnSn

where Sk is the sum of the principal minors of order k.

Characteristic Polynomial of a Linear Operator

Now suppose T :V ! V is a linear operator on a vector space V of finite dimension. We define the
characteristic polynomial DðtÞ of T to be the characteristic polynomial of any matrix representation of T .
Recall that if A and B are matrix representations of T , then B ¼ P�1AP, where P is a change-of-basis
matrix. Thus, A and B are similar, and by Theorem 9.3, A and B have the same characteristic polynomial.
Accordingly, the characteristic polynomial of T is independent of the particular basis in which the matrix
representation of T is computed.

Because f ðTÞ ¼ 0 if and only if f ðAÞ ¼ 0, where f ðtÞ is any polynomial and A is any matrix
representation of T , we have the following analogous theorem for linear operators.

THEOREM 9.20: (Cayley–Hamilton) A linear operator T is a zero of its characteristic polynomial.
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9.4 Diagonalization, Eigenvalues and Eigenvectors

Let A be any n-square matrix. Then A can be represented by (or is similar to) a diagonal matrix
D ¼ diagðk1; k2; . . . ; knÞ if and only if there exists a basis S consisting of (column) vectors u1; u2; . . . ; un
such that

Au1 ¼ k1u1
Au2 ¼ k2u2
::::::::::::::::::::::::::::::::::::

Aun ¼ knun

In such a case, A is said to be diagonizable. Furthermore, D ¼ P�1AP, where P is the nonsingular matrix
whose columns are, respectively, the basis vectors u1; u2; . . . ; un.

The above observation leads us to the following definition.

DEFINITION: Let A be any square matrix. A scalar l is called an eigenvalue of A if there exists a
nonzero (column) vector v such that

Av ¼ lv

Any vector satisfying this relation is called an eigenvector of A belonging to the
eigenvalue l.

We note that each scalar multiple kv of an eigenvector v belonging to l is also such an eigenvector,
because

AðkvÞ ¼ kðAvÞ ¼ kðlvÞ ¼ lðkvÞ
The set El of all such eigenvectors is a subspace of V (Problem 9.19), called the eigenspace of l. (If
dim El ¼ 1, then El is called an eigenline and l is called a scaling factor.)

The terms characteristic value and characteristic vector (or proper value and proper vector) are
sometimes used instead of eigenvalue and eigenvector.

The above observation and definitions give us the following theorem.

THEOREM 9.5: An n-square matrix A is similar to a diagonal matrix D if and only if A has n linearly
independent eigenvectors. In this case, the diagonal elements of D are the corresponding
eigenvalues and D ¼ P�1AP, where P is the matrix whose columns are the eigenvectors.

Suppose a matrix A can be diagonalized as above, say P�1AP ¼ D, where D is diagonal. Then A has
the extremely useful diagonal factorization:

A ¼ PDP�1

Using this factorization, the algebra of A reduces to the algebra of the diagonal matrix D, which can be
easily calculated. Specifically, suppose D ¼ diagðk1; k2; . . . ; knÞ. Then

Am ¼ ðPDP�1Þm ¼ PDmP�1 ¼ P diagðkm1 ; . . . ; kmn ÞP�1

More generally, for any polynomial f ðtÞ,
f ðAÞ ¼ f ðPDP�1Þ ¼ Pf ðDÞP�1 ¼ P diagð f ðk1Þ; f ðk2Þ; . . . ; f ðknÞÞP�1

Furthermore, if the diagonal entries of D are nonnegative, let

B ¼ P diagð
ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
; . . . ;

ffiffiffiffiffi
kn

p
Þ P�1

Then B is a nonnegative square root of A; that is, B2 ¼ A and the eigenvalues of B are nonnegative.
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EXAMPLE 9.5 Let A ¼ 3 1
2 2

� �
and let v1 ¼ 1

�2
� �

and v2 ¼ 1
1

� �
. Then

Av1 ¼ 3 1
2 2

� �
1
�2
� �

¼ 1
�2
� �

¼ v1 and Av2 ¼ 3 1
2 2

� �
1
1

� �
¼ 4

4

� �
¼ 4v2

Thus, v1 and v2 are eigenvectors of A belonging, respectively, to the eigenvalues l1 ¼ 1 and l2 ¼ 4. Observe that v1
and v2 are linearly independent and hence form a basis of R2. Accordingly, A is diagonalizable. Furthermore, let P
be the matrix whose columns are the eigenvectors v1 and v2. That is, let

P ¼
"

1 1
�2 1

#
; and so P�1 ¼

1
3 � 1

3
2
3

1
3

" #

Then A is similar to the diagonal matrix

D ¼ P�1AP ¼
1
3 � 1

3
2
3

1
3

" #"
3 1

2 2

#"
1 1

�2 1

#
¼
"
1 0

0 4

#

As expected, the diagonal elements 1 and 4 in D are the eigenvalues corresponding, respectively, to the eigenvectors
v1 and v2, which are the columns of P. In particular, A has the factorization

A ¼ PDP�1 ¼
"

1 1

�2 1

#"
1 0

0 4

#
1
3 � 1

3

2
3

1
3

" #

Accordingly,

A4 ¼
"

1 1

�2 1

#"
1 0

0 256

#
1
3 � 1

3

2
3

1
3

" #
¼
"
171 85

170 86

#

Moreover, suppose f ðtÞ ¼ t3 � 5t2 þ 3t þ 6; hence, f ð1Þ ¼ 5 and f ð4Þ ¼ 2. Then

f ðAÞ ¼ Pf ðDÞP�1 ¼ 1 1

�2 1

� �
5 0

0 2

� � 1
3 � 1

3

2
3

1
3

" #
¼ 3 �1
�2 4

� �
Last, we obtain a ‘‘positive square root’’ of A. Specifically, using

ffiffiffi
1
p ¼ 1 and

ffiffiffi
4
p ¼ 2, we obtain the matrix

B ¼ P
ffiffiffiffi
D
p

P�1 ¼ 1 1

�2 1

� �
1 0

0 2

� � 1
3 � 1

3

2
3

1
3

" #
¼

5
3

1
3

2
3

4
3

" #
where B2 ¼ A and where B has positive eigenvalues 1 and 2.

Remark: Throughout this chapter, we use the following fact:

If P ¼ a b

c d

� �
; then P�1 ¼ d=jPj �b=jPj

�c=jPj a=jPj

� �
:

That is, P�1 is obtained by interchanging the diagonal elements a and d of P, taking the negatives of the
nondiagonal elements b and c, and dividing each element by the determinant jPj.

Properties of Eigenvalues and Eigenvectors

Example 9.5 indicates the advantages of a diagonal representation (factorization) of a square matrix. In
the following theorem (proved in Problem 9.20), we list properties that help us to find such a
representation.
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