CHAPTER 9

Diagonalization: Eigenvalues and Eigenvectors

9.1 Introduction

The ideas in this chapter can be discussed from two points of view.

Matrix Point of View

Suppose an n-square matrix A is given. The matrix A is said to be diagonalizable if there exists a nonsingular matrix P such that

$$
B=P^{-1} A P
$$

is diagonal. This chapter discusses the diagonalization of a matrix A. In particular, an algorithm is given to find the matrix P when it exists.

Linear Operator Point of View

Suppose a linear operator $T: V \rightarrow V$ is given. The linear operator T is said to be diagonalizable if there exists a basis S of V such that the matrix representation of T relative to the basis S is a diagonal matrix D. This chapter discusses conditions under which the linear operator T is diagonalizable.

Equivalence of the Two Points of View

The above two concepts are essentially the same. Specifically, a square matrix A may be viewed as a linear operator F defined by

$$
F(X)=A X
$$

where X is a column vector, and $B=P^{-1} A P$ represents F relative to a new coordinate system (basis) S whose elements are the columns of P. On the other hand, any linear operator T can be represented by a matrix A relative to one basis and, when a second basis is chosen, T is represented by the matrix

$$
B=P^{-1} A P
$$

where P is the change-of-basis matrix.
Most theorems will be stated in two ways: one in terms of matrices A and again in terms of linear mappings T.

Role of Underlying Field K

The underlying number field K did not play any special role in our previous discussions on vector spaces and linear mappings. However, the diagonalization of a matrix A or a linear operator T will depend on the
roots of a polynomial $\Delta(t)$ over K, and these roots do depend on K. For example, suppose $\Delta(t)=t^{2}+1$. Then $\Delta(t)$ has no roots if $K=\mathbf{R}$, the real field; but $\Delta(t)$ has roots $\pm i$ if $K=\mathbf{C}$, the complex field. Furthermore, finding the roots of a polynomial with degree greater than two is a subject unto itself (frequently discussed in numerical analysis courses). Accordingly, our examples will usually lead to those polynomials $\Delta(t)$ whose roots can be easily determined.

9.2 Polynomials of Matrices

Consider a polynomial $f(t)=a_{n} t^{n}+\cdots+a_{1} t+a_{0}$ over a field K. Recall (Section 2.8) that if A is any square matrix, then we define

$$
f(A)=a_{n} A^{n}+\cdots+a_{1} A+a_{0} I
$$

where I is the identity matrix. In particular, we say that A is a root of $f(t)$ if $f(A)=0$, the zero matrix.
EXAMPLE 9.1 Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Then $A^{2}=\left[\begin{array}{rr}7 & 10 \\ 15 & 22\end{array}\right]$. Let

$$
f(t)=2 t^{2}-3 t+5 \quad \text { and } \quad g(t)=t^{2}-5 t-2
$$

Then

$$
f(A)=2 A^{2}-3 A+5 I=\left[\begin{array}{ll}
14 & 20 \\
30 & 44
\end{array}\right]+\left[\begin{array}{rr}
-3 & -6 \\
-9 & -12
\end{array}\right]+\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{ll}
16 & 14 \\
21 & 37
\end{array}\right]
$$

and

$$
g(A)=A^{2}-5 A-2 I=\left[\begin{array}{rr}
7 & 10 \\
15 & 22
\end{array}\right]+\left[\begin{array}{rr}
-5 & -10 \\
-15 & -20
\end{array}\right]+\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Thus, A is a zero of $g(t)$.
The following theorem (proved in Problem 9.7) applies.
THEOREM 9.1: Let f and g be polynomials. For any square matrix A and scalar k,
(i) $(f+g)(A)=f(A)+g(A)$
(iii) $(k f)(A)=k f(A)$
(ii) $(f g)(A)=f(A) g(A)$
(iv) $f(A) g(A)=g(A) f(A)$.

Observe that (iv) tells us that any two polynomials in A commute.

Matrices and Linear Operators

Now suppose that $T: V \rightarrow V$ is a linear operator on a vector space V. Powers of T are defined by the composition operation:

$$
T^{2}=T \circ T, \quad T^{3}=T^{2} \circ T,
$$

Also, for any polynomial $f(t)=a_{n} t^{n}+\cdots+a_{1} t+a_{0}$, we define $f(T)$ in the same way as we did for matrices:

$$
f(T)=a_{n} T^{n}+\cdots+a_{1} T+a_{0} I
$$

where I is now the identity mapping. We also say that T is a zero or root of $f(t)$ if $f(T)=0$, the zero mapping. We note that the relations in Theorem 9.1 hold for linear operators as they do for matrices.

Remark: Suppose A is a matrix representation of a linear operator T. Then $f(A)$ is the matrix representation of $f(T)$, and, in particular, $f(T)=0$ if and only if $f(A)=0$.

9.3 Characteristic Polynomial, Cayley-Hamilton Theorem

Let $A=\left[a_{i j}\right]$ be an n-square matrix. The matrix $M=A-t I_{n}$, where I_{n} is the n-square identity matrix and t is an indeterminate, may be obtained by subtracting t down the diagonal of A. The negative of M is the matrix $t I_{n}-A$, and its determinant

$$
\Delta(t)=\operatorname{det}\left(t I_{n}-A\right)=(-1)^{n} \operatorname{det}\left(A-t I_{n}\right)
$$

which is a polynomial in t of degree n and is called the characteristic polynomial of A.
We state an important theorem in linear algebra (proved in Problem 9.8).
THEOREM 9.2: (Cayley-Hamilton) Every matrix A is a root of its characteristic polynomial.
Remark: Suppose $A=\left[a_{i j}\right]$ is a triangular matrix. Then $t I-A$ is a triangular matrix with diagonal entries $t-a_{i i}$; hence,

$$
\Delta(t)=\operatorname{det}(t I-A)=\left(t-a_{11}\right)\left(t-a_{22}\right) \cdots\left(t-a_{n n}\right)
$$

Observe that the roots of $\Delta(t)$ are the diagonal elements of A.
EXAMPLE 9.2 Let $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right]$. Its characteristic polynomial is

$$
\Delta(t)=|t I-A|=\left|\begin{array}{rr}
t-1 & -3 \\
-4 & t-5
\end{array}\right|=(t-1)(t-5)-12=t^{2}-6 t-7
$$

As expected from the Cayley-Hamilton theorem, A is a root of $\Delta(t)$; that is,

$$
\Delta(A)=A^{2}-6 A-7 I=\left[\begin{array}{ll}
13 & 18 \\
24 & 37
\end{array}\right]+\left[\begin{array}{rr}
-6 & -18 \\
-24 & -30
\end{array}\right]+\left[\begin{array}{rr}
-7 & 0 \\
0 & -7
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Now suppose A and B are similar matrices, say $B=P^{-1} A P$, where P is invertible. We show that A and B have the same characteristic polynomial. Using $t I=P^{-1} t I P$, we have

$$
\begin{aligned}
\Delta_{B}(t) & =\operatorname{det}(t I-B)=\operatorname{det}\left(t I-P^{-1} A P\right)=\operatorname{det}\left(P^{-1} t I P-P^{-1} A P\right) \\
& =\operatorname{det}\left[P^{-1}(t I-A) P\right]=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(t I-A) \operatorname{det}(P)
\end{aligned}
$$

Using the fact that determinants are scalars and commute and that $\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)=1$, we finally obtain

$$
\Delta_{B}(t)=\operatorname{det}(t I-A)=\Delta_{A}(t)
$$

Thus, we have proved the following theorem.
THEOREM 9.3: Similar matrices have the same characteristic polynomial.

Characteristic Polynomials of Degrees 2 and 3

There are simple formulas for the characteristic polynomials of matrices of orders 2 and 3 .
(a) Suppose $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Then

$$
\Delta(t)=t^{2}-\left(a_{11}+a_{22}\right) t+\operatorname{det}(A)=t^{2}-\operatorname{tr}(A) t+\operatorname{det}(A)
$$

Here $\operatorname{tr}(A)$ denotes the trace of A-that is, the sum of the diagonal elements of A.
(b) Suppose $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. Then

$$
\Delta(t)=t^{3}-\operatorname{tr}(A) t^{2}+\left(A_{11}+A_{22}+A_{33}\right) t-\operatorname{det}(A)
$$

(Here A_{11}, A_{22}, A_{33} denote, respectively, the cofactors of a_{11}, a_{22}, a_{33}.)

EXAMPLE 9.3 Find the characteristic polynomial of each of the following matrices:
(a) $A=\left[\begin{array}{rr}5 & 3 \\ 2 & 10\end{array}\right]$,
(b) $B=\left[\begin{array}{rr}7 & -1 \\ 6 & 2\end{array}\right]$,
(c) $C=\left[\begin{array}{ll}5 & -2 \\ 4 & -4\end{array}\right]$.
(a) We have $\operatorname{tr}(A)=5+10=15$ and $|A|=50-6=44$; hence, $\Delta(t)+t^{2}-15 t+44$.
(b) We have $\operatorname{tr}(B)=7+2=9$ and $|B|=14+6=20$; hence, $\Delta(t)=t^{2}-9 t+20$.
(c) We have $\operatorname{tr}(C)=5-4=1$ and $|C|=-20+8=-12$; hence, $\Delta(t)=t^{2}-t-12$.

EXAMPLE 9.4 Find the characteristic polynomial of $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9\end{array}\right]$.
We have $\operatorname{tr}(A)=1+3+9=13$. The cofactors of the diagonal elements are as follows:

$$
A_{11}=\left|\begin{array}{ll}
3 & 2 \\
3 & 9
\end{array}\right|=21, \quad A_{22}=\left|\begin{array}{ll}
1 & 2 \\
1 & 9
\end{array}\right|=7, \quad A_{33}=\left|\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right|=3
$$

Thus, $A_{11}+A_{22}+A_{33}=31$. Also, $|A|=27+2+0-6-6-0=17$. Accordingly,

$$
\Delta(t)=t^{3}-13 t^{2}+31 t-17
$$

Remark: The coefficients of the characteristic polynomial $\Delta(t)$ of the 3 -square matrix A are, with alternating signs, as follows:

$$
S_{1}=\operatorname{tr}(A), \quad S_{2}=A_{11}+A_{22}+A_{33}, \quad S_{3}=\operatorname{det}(A)
$$

We note that each S_{k} is the sum of all principal minors of A of order k.

The next theorem, whose proof lies beyond the scope of this text, tells us that this result is true in general.

THEOREM 9.4: Let A be an n-square matrix. Then its characteristic polynomial is

$$
\Delta(t)=t^{n}-S_{1} t^{n-1}+S_{2} t^{n-2}+\cdots+(-1)^{n} S_{n}
$$

where S_{k} is the sum of the principal minors of order k.

Characteristic Polynomial of a Linear Operator

Now suppose $T: V \rightarrow V$ is a linear operator on a vector space V of finite dimension. We define the characteristic polynomial $\Delta(t)$ of T to be the characteristic polynomial of any matrix representation of T. Recall that if A and B are matrix representations of T, then $B=P^{-1} A P$, where P is a change-of-basis matrix. Thus, A and B are similar, and by Theorem $9.3, A$ and B have the same characteristic polynomial. Accordingly, the characteristic polynomial of T is independent of the particular basis in which the matrix representation of T is computed.

Because $f(T)=0$ if and only if $f(A)=0$, where $f(t)$ is any polynomial and A is any matrix representation of T, we have the following analogous theorem for linear operators.

THEOREM 9.2': (Cayley-Hamilton) A linear operator T is a zero of its characteristic polynomial.

9.4 Diagonalization, Eigenvalues and Eigenvectors

Let A be any n-square matrix. Then A can be represented by (or is similar to) a diagonal matrix $D=\operatorname{diag}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ if and only if there exists a basis S consisting of (column) vectors $u_{1}, u_{2}, \ldots, u_{n}$ such that

$$
\begin{array}{lll}
A u_{1}=k_{1} u_{1} \\
A u_{2} & = & k_{2} u_{2} \\
\ldots \\
A u_{n} & = & k_{n} u_{n}
\end{array}
$$

In such a case, A is said to be diagonizable. Furthermore, $D=P^{-1} A P$, where P is the nonsingular matrix whose columns are, respectively, the basis vectors $u_{1}, u_{2}, \ldots, u_{n}$.

The above observation leads us to the following definition.
DEFINITION: Let A be any square matrix. A scalar λ is called an eigenvalue of A if there exists a nonzero (column) vector v such that

$$
A v=\lambda v
$$

Any vector satisfying this relation is called an eigenvector of A belonging to the eigenvalue λ.

We note that each scalar multiple $k v$ of an eigenvector v belonging to λ is also such an eigenvector, because

$$
A(k v)=k(A v)=k(\lambda v)=\lambda(k v)
$$

The set E_{λ} of all such eigenvectors is a subspace of V (Problem 9.19), called the eigenspace of λ. (If $\operatorname{dim} E_{\lambda}=1$, then E_{λ} is called an eigenline and λ is called a scaling factor.)

The terms characteristic value and characteristic vector (or proper value and proper vector) are sometimes used instead of eigenvalue and eigenvector.

The above observation and definitions give us the following theorem.
THEOREM 9.5: An n-square matrix A is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. In this case, the diagonal elements of D are the corresponding eigenvalues and $D=P^{-1} A P$, where P is the matrix whose columns are the eigenvectors.

Suppose a matrix A can be diagonalized as above, say $P^{-1} A P=D$, where D is diagonal. Then A has the extremely useful diagonal factorization:

$$
A=P D P^{-1}
$$

Using this factorization, the algebra of A reduces to the algebra of the diagonal matrix D, which can be easily calculated. Specifically, suppose $D=\operatorname{diag}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$. Then

$$
A^{m}=\left(P D P^{-1}\right)^{m}=P D^{m} P^{-1}=P \operatorname{diag}\left(k_{1}^{m}, \ldots, k_{n}^{m}\right) P^{-1}
$$

More generally, for any polynomial $f(t)$,

$$
f(A)=f\left(P D P^{-1}\right)=P f(D) P^{-1}=P \operatorname{diag}\left(f\left(k_{1}\right), f\left(k_{2}\right), \ldots, f\left(k_{n}\right)\right) P^{-1}
$$

Furthermore, if the diagonal entries of D are nonnegative, let

$$
B=P \operatorname{diag}\left(\sqrt{k_{1}}, \sqrt{k_{2}}, \ldots, \sqrt{k_{n}}\right) P^{-1}
$$

Then B is a nonnegative square root of A; that is, $B^{2}=A$ and the eigenvalues of B are nonnegative.

EXAMPLE 9.5 Let $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]$ and let $v_{1}=\left[\begin{array}{r}1 \\ -2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Then

$$
A v_{1}=\left[\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=v_{1} \quad \text { and } \quad A v_{2}=\left[\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]=4 v_{2}
$$

Thus, v_{1} and v_{2} are eigenvectors of A belonging, respectively, to the eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=4$. Observe that v_{1} and v_{2} are linearly independent and hence form a basis of \mathbf{R}^{2}. Accordingly, A is diagonalizable. Furthermore, let P be the matrix whose columns are the eigenvectors v_{1} and v_{2}. That is, let

$$
P=\left[\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right], \quad \text { and so } \quad P^{-1}=\left[\begin{array}{rr}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]
$$

Then A is similar to the diagonal matrix

$$
D=P^{-1} A P=\left[\begin{array}{rr}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

As expected, the diagonal elements 1 and 4 in D are the eigenvalues corresponding, respectively, to the eigenvectors v_{1} and v_{2}, which are the columns of P. In particular, A has the factorization

$$
A=P D P^{-1}=\left[\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]
$$

Accordingly,

$$
A^{4}=\left[\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & 256
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{ll}
171 & 85 \\
170 & 86
\end{array}\right]
$$

Moreover, suppose $f(t)=t^{3}-5 t^{2}+3 t+6$; hence, $f(1)=5$ and $f(4)=2$. Then

$$
f(A)=\operatorname{Pf}(D) P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{rr}
3 & -1 \\
-2 & 4
\end{array}\right]
$$

Last, we obtain a 'positive square root'' of A. Specifically, using $\sqrt{1}=1$ and $\sqrt{4}=2$, we obtain the matrix

$$
B=P \sqrt{D} P^{-1}=\left[\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{ll}
\frac{5}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{4}{3}
\end{array}\right]
$$

where $B^{2}=A$ and where B has positive eigenvalues 1 and 2 .
Remark: Throughout this chapter, we use the following fact:

$$
\text { If } P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text {, then } P^{-1}=\left[\begin{array}{rr}
d /|P| & -b /|P| \\
-c /|P| & a /|P|
\end{array}\right]
$$

That is, P^{-1} is obtained by interchanging the diagonal elements a and d of P, taking the negatives of the nondiagonal elements b and c, and dividing each element by the determinant $|P|$.

Properties of Eigenvalues and Eigenvectors

Example 9.5 indicates the advantages of a diagonal representation (factorization) of a square matrix. In the following theorem (proved in Problem 9.20), we list properties that help us to find such a representation.

