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EXAMPLE 9.14 Find the characteristic polynomal A(¢) and the minimal polynomial m(¢) of the block diagonal
matrix:

2 5,0 0,0
0 210 0'0

M=|0704 270 :diag(Al,Az,A3),whereA1:[3 ;],Azz[g §]7A3=[7]
0 013 510
0 0,0 0,7

Then A(¢) is the product of the characterization polynomials A,(z), A,(#), A;(¢) of 4,, A,, A5, respectively.
One can show that

Ay() = (1 -2)", Ay (1) = (t=2)(=7), As(t) =1=7
Thus, A(f) = (1 — 2)* (1 — 7)*. [As expected, deg A(r) = 5.]

The minimal polynomials m,(t), m,(t), ms(t) of the diagonal blocks 4,,4,, 43, respectively, are equal to the
characteristic polynomials; that is,

my (1) = (1 - 2)", my(t) = (1 =2)(t =7), my(t) =1t =7

But m(7) is equal to the least common multiple of m, (¢),m, (1), ms(¢). Thus, m(r) = (t — 2)*(r — 7).

SOLVED PROBLEMS

Polynomials of Matrices, Characteristic Polynomials

9.1. Letd= H _g] Find f(4), where
(a) f(t)=1—3t+7, (b) f(t) =1 —6t+13
: , 1 =271 =27 [-7 -—12
First find 4 = {4 5}[4 5} = [24 17}.Then

e Y R e Y ]
b) f(A)=A2—6A+l3I:[_7 —12]+{ —6 12}+{13 0}:{0 0}

24 17 —-24 =30 0 13 0 0
[Thus, A4 is a root of f(z).]

9.2. Find the characteristic polynomial A(¢) of each of the following matrices:

25 7 -3 3 -2
@ A:L 1}’“’) B:[s —2}’@ C:{9 —3}

Use the formula (¢) = 2 — tr(M) t + |M| for a 2 x 2 matrix M:
(@ tr(d)=2+1=3, |4/=2-20=-18, so A(t)=¢-3t—18
(b) r(B)=7-2=5 [Bl=-14+15=1, so A@t)=£-5t+1
() r(C)=3-3=0, |C]=-9+18=09, so  A()=£4+9

9.3. Find the characteristic polynomial A(¢#) of each of the following matrices:
1 23 1 6 -2
(a 4=13 0 4|(,®b) B=|-3 2 0
6 4 5 0 3 —4
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Use the formula A(f) = £ — tr(A)f* + (4, + Ay, + A33)t — |4|, where A4;; is the cofactor of a;; in the
3 x 3 matrix 4 = [a;].

@) tr(A)=1+0+5=6,

A”:‘g :’:716, Azzz‘é g‘:fw, A33:’; (2)‘:76
Ay + A4y + 453 =-35, and  |4| =48+36—16—30 =38
Thus, A(t) =1 — 6 —35t—38
(b) w(B)=1+2—-4=-1
B”:’g _2’:78, 322:.(1) :i’:74, 333:‘_;‘ g’:zo
By, + By, + By =38, and |B| = -8+ 18 =72 = —62
Thus, A(t)y=1 +7 —8t+62

9.4. Find the characteristic polynomial A(¢) of each of the following matrices:
2 2

(a) 4= ,(b) B=

S oo -
OO W =

2 5 1 1
1 4 2 2 3
0 0 6 =5 5
0 0 2 3 0

AN A

(a) A is block triangular with diagonal blocks

2 5 6 -5
Al = |: :| and AZ = |: :|
1 4 2 3

Thus, At) = Ay (A (1) = (7 — 61+ 3) (£ — 91+ 28)
(b) Because B is triangular, A(¢) = (¢ — 1)(¢ = 3)(t — 5)(¢t — 6).
9.5. Find the characteristic polynomial A(¢) of each of the following linear operators:
(a) F:R? — R? defined by F(x,y) = 3x + 5y, 2x— 7).
(b) D:V — V defined by D(f) =df/dt, where V is the space of functions with basis
S = {sint,cost}.

The characteristic polynomial A(¢) of a linear operator is equal to the characteristic polynomial of any
matrix A that represents the linear operator.

(a) Find the matrix A that represents 7 relative to the usual basis of R?. We have

A:B —ﬂ o A(f) =17 —tr(d) 1+ 4| = £ + 41 - 31

(b) Find the matrix 4 representing the differential operator D relative to the basis S. We have
D(sin#) = cost = 0(sin?) + 1(cos¥) |0 -1
D(cost) = —sint = —1(sin¢) + 0(cos ) andso A= 1 0
Therefore, Aty =2 —tr(d) t+ |4 = + 1

9.6. Show that a matrix 4 and its transpose A” have the same characteristic polynomial.

By the transpose operation, (1 — 4)" = tI” — AT = I — A”. Because a matrix and its transpose have
the same determinant,

Ag(t) = —A| = |t —A)| = |t —AT| = Ayi (1)
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9.7. Prove Theorem 9.1: Let f and g be polynomials. For any square matrix 4 and scalar %,
() (f+e)d)=f(4)+g ), (i) (k)(4)=k(4),
(i) (/2)(4) =1 (4)g(4), (iv) f(4)g(4) = g(A)f (4).
Suppose f = a,t" +---+a;t+a, and g = b,,t" + --- + bt + b,. Then, by definition,
f(A) :anAn+"'+a1A+a0[ and g(A) :bn1A117+"' +b1A+b01
(i) Suppose m < n and let b; = 0 if i > m. Then
fHg=1(a,+b,)t"+ -+ (a1 + b))t + (ag + by)

Hence,
(f+2)A) = (a, +b,)A" + -+ (a; + by )4 + (ag + by)I
=a,A" +b,A"+ -+ ajA+ b A+ ayl + byl =f(A4) + g(A)
n+m
(ii) By definition, fg = ¢, "™ + -+ it + ¢y = > c;t*, where
k=0
k
e =aohy +arb_y + -+ arby = ab_;
i=0
n+m
Hence, (f2)(4) = 3. ¢4 and
k=0
n . m . n o m o n+m
1) = (Laa ) (So) = £ S apats = St = ()
1= J= i=0j= =

(iii) By definition, kf' = ka,t" + - - - + ka,t + ka,, and so
(kf)(A4) = ka,A" + - - - + kayA + kayl = k(a,A" + -+ a1A + ayl) = kf (4)

(iv) By (iD), g(4)f(4) = (&/)(4) = (fg)(4) =f(4)g(4).
9.8. Prove the Cayley—Hamilton Theorem 9.2: Every matrix 4 is a root of its characterstic polynomial
A(1).
Let A be an arbitrary n-square matrix and let A(¢) be its characteristic polynomial, say,
Aty =|tI —A| ="+ a,_ "'+ +ajt+a,

Now let B(¢) denote the classical adjoint of the matrix #/ — A. The elements of B(¢) are cofactors of the
matrix t/ — A and hence are polynomials in ¢z of degree not exceeding n — 1. Thus,

B(t)y=B, "'+ ... +B,t+B,

where the B; are n-square matrices over K which are independent of 7. By the fundamental property of the
classical adjoint (Theorem 8.9), (t/ — 4)B(t) = |t — A|I, or

(I —A)(B, (" "4 -+ Bjt+By) = (" +a, /" '+ +ayt+ay)l

Removing the parentheses and equating corresponding powers of ¢ yields

Bn—l :1, Bn_z _ABn—l :an_ll, ey BO_ABI :all, _ABO :aol
Multiplying the above equations by 4", 4"~!, ..., A, I, respectively, yields
Aan—l = Anl, Anian_z — Aan—l = an_lAnil, ey ABO — AzBl = a1A7 _ABO = aol

Adding the above matrix equations yields 0 on the left-hand side and A(4) on the right-hand side; that is,
0=A"+a, A" "+ +ad+ayl

Therefore, A(4) = 0, which is the Cayley—Hamilton theorem.
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Eigenvalues and Eigenvectors of 2 x 2 Matrices

3 —4
9.9. LetA:{2 —6]'

(a) Find all eigenvalues and corresponding eigenvectors.
(b) Find matrices P and D such that P is nonsingular and D = P~'4P is diagonal.
(a) First find the characteristic polynomial A(7) of A4:

Aty =1 —tr(A) t+ |4 =2 +3t— 10 = (t — 2)(t +5)

The roots 2 =2 and A = —5 of A(¢) are the eigenvalues of 4. We find corresponding eigenvectors.
(i) Subtract 4 = 2 down the diagonal of 4 to obtain the matrix M = A — 2, where the corresponding
homogeneous system MX = 0 yields the eigenvectors corresponding to 2 = 2. We have

1 -4 . x—4y=0 -
M = [2 78}’ corresponding to 26— 8y =0 or x—4y=0

The system has only one free variable, and v; = (4, 1) is a nonzero solution. Thus, v; = (4,1) is
an eigenvector belonging to (and spanning the eigenspace of) 4 = 2.

(i) Subtract A = —5 (or, equivalently, add 5) down the diagonal of 4 to obtain

_[8 —4 . 8x—4y=0 _
M = [2 _1}7 corresponding to - y=0 or 2x—y =0

The system has only one free variable, and v, = (1,2) is a nonzero solution. Thus, v, = (1,2) is
an eigenvector belonging to 1 = 5.

(b) Let P be the matrix whose columns are v; and v,. Then

14 1 oiup |2 0
P—L 2} and D=P AP—[O _5}

Note that D is the diagonal matrix whose diagonal entries are the eigenvalues of 4 corresponding to the
eigenvectors appearing in P.

Remark: Here P is the change-of-basis matrix from the usual basis of R? to the basis
S ={w;,v,}, and D is the matrix that represents (the matrix function) 4 relative to the new basis S.

9.10. Let 4 = ﬁ ﬂ
(a) Find all eigenvalues and corresponding eigenvectors.
(b) Find a nonsingular matrix P such that D = P~'4P is diagonal, and P~
(c) Find 4° and f(A4), where t* — 33 — 61> + 7t + 3.
(d) Find a ‘‘real cube root’” of B—that is, a matrix B such that B3> = 4 and B has real eigenvalues.

(a) First find the characteristic polynomial A(¢) of 4:
Aty =8 —tr(d) t+|A| = =5t +4=(t—1)(t—4)

The roots A = 1 and A = 4 of A(¢) are the eigenvalues of 4. We find corresponding eigenvectors.

(i) Subtract A = 1 down the diagonal of 4 to obtain the matrix M = 4 — Al, where the corresponding
homogeneous system MX = 0 yields the eigenvectors belonging to A = 1. We have

|12 . x+2y=0 .
M= [1 2}, corresponding to X 42y=0 or x+2y=0
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The system has only one independent solution; for example, x = 2, y = —1. Thus, v; = (2,—1) is
an eigenvector belonging to (and spanning the eigenspace of) A = 1.

(i) Subtract A =4 down the diagonal of 4 to obtain

-2 2
1 -1

} , corresponding to —xt+2y=0 or x—y=0

M:{ x— y=0

The system has only one independent solution; for example, x = 1, y = 1. Thus, v, = (1, 1) is an
eigenvector belonging to 4 = 4.

(b) Let P be the matrix whose columns are v; and v,. Then

_ 2 1  14p_ |10 .
P—{_l 1} and D=P AP—{O 4], where P —[

W= W]—

W W—
[

(c) Using the diagonal factorization 4 = PDP~!, and 1° = 1 and 4% = 4096, we get

1 0% —3 1366 2230
0 4096 |1 2] |1365 2731
Also, f(1) =2 and f(4) = —1. Hence,

f(A)—Pf(D)P‘I—[ : 1H2 OH

2 1
-1 1

A% =PD°P! =

-1 1

(d) Here [ (1) \3%] is the real cube root of D. Hence the real cube root of 4 is
2+V4 —2+2V4

= | 2 1|1 0 1
B = PVDP —[_1 1“" ﬂ” }‘3 —1+V4  142V4

9.11. Each of the following real matrices defines a linear transformation on R
5 6 1 -1 5 -1
Find, for each matrix, all eigenvalues and a maximum set S of linearly independent eigenvectors.
Which of these linear operators are diagonalizable—that is, which can be represented by a
diagonal matrix?

(a) First find A(f) = 2 — 3t — 28 = (t — 7)(¢t + 4). The roots A = 7 and 4 = —4 are the eigenvalues of 4.
We find corresponding eigenvectors.

W= W=

WIN W|—

(i) Subtract A = 7 down the diagonal of 4 to obtain

) . —2x+6y=0 A
M= [ 3 _9] , corresponding to 3x— 9y =0 or x—3y=0
Here v; = (3, 1) is a nonzero solution.

(i) Subtract A = —4 (or add 4) down the diagonal of 4 to obtain

9 6
3 2

} , corresponding to x+6y=0 or 3x+2y=0

M:[ 3x+2y=0

Here v, = (2, —3) is a nonzero solution.

Then S = {v;, v} = {(3,1), (2,—3)} is a maximal set of linearly independent eigenvectors. Because S is
a basis of R?, 4 is diagonalizable. Using the basis S, 4 is represented by the diagonal matrix D = diag(7, —4).

(b) First find the characteristic polynomial A(¢) = ¢ + 1. There are no real roots. Thus B, a real matrix
representing a linear transformation on R?, has no eigenvalues and no eigenvectors. Hence, in particular,
B is not diagonalizable.
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(c) First find A(r) = 2 — 8¢+ 16 = (t — 4)*. Thus, 2 = 4 is the only eigenvalue of C. Subtract A = 4 down
the diagonal of C to obtain

M = [} :} } , corresponding to x—y=0

The homogeneous system has only one independent solution; for example, x =1, y = 1. Thus,
v=(1,1) is an eigenvector of C. Furthermore, as there are no other eigenvalues, the singleton set
S ={v} ={(1,1)} is a maximal set of linearly independent eigenvectors of C. Furthermore, because S
is not a basis of R?, C is not diagonalizable.

9.12. Suppose the matrix B in Problem 9.11 represents a linear operator on complex space C>. Show
that, in this case, B is diagonalizable by finding a basis S of C? consisting of eigenvectors of B.

The characteristic polynomial of B is still A(f) = £ 4 1. As a polynomial over C, A(f) does factor;
specifically, A(t) = (t — i)(¢ +i). Thus, A =i and 1 = —i are the eigenvalues of B.

(i) Subtract A =i down the diagonal of B to obtain the homogeneous system

(I —i)x— y=0

2t (—1—i)y=0 or (I1-ix—y=0

The system has only one independent solution; for example, x = 1,y =1 —i. Thus, v; = (1, 1 —1i)is
an eigenvector that spans the eigenspace of 4 = i.

(ii) Subtract 2 = —i (or add i) down the diagonal of B to obtain the homogeneous system

(I+i)x— y=0

2t (—1+ip=o o (IH+idx—y=0

The system has only one independent solution; for example, x = 1,y = 1 4 i. Thus, v, = (1, 1+1i)is
an eigenvector that spans the eigenspace of 1 = —i.

As a complex matrix, B is diagonalizable. Specifically, S = {v;, v,} = {(1,1 —1i), (1,1+14)} is a basis of
C? consisting of eigenvectors of B. Using this basis S, B is represented by the diagonal matrix
D = diag(i, —i).

9.13. Let L be the linear transformation on R? that reflects each point P across the line y = kx, where
k > 0. (See Fig. 9-1.)

(a) Show that v; = (k, 1) and v, = (1, —k) are eigenvectors of L.

(b) Show that L is diagonalizable, and find a diagonal representation D.

Y L(P)
[ ]
L(v,) N\

U

Figure 9-1

(a) The vector v; = (k, 1) lies on the line y = kx, and hence is left fixed by Z; that is, L(v;) = v;. Thus, v,
is an eigenvector of L belonging to the eigenvalue 4, = 1.

The vector v, = (1, —k) is perpendicular to the line y = kx, and hence, L reflects v, into its

negative; that is, L(v,) = —v,. Thus, v, is an eigenvector of L belonging to the eigenvalue 1, = —1.
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(b) Here S = {v,,v,} is a basis of R? consisting of eigenvectors of L. Thus, L is diagonalizable, with the
1

diagonal representation D = [ 0

_(1)] (relative to the basis §).

Eigenvalues and Eigenvectors

4 1 -1
9.14. LetA= |2 5 —-2]|.(a) Find all eigenvalues of 4.
11 2

(b) Find a maximum set S of linearly independent eigenvectors of A.
(c) Is 4 diagonalizable? If yes, find P such that D = P~'4P is diagonal.
(a) First find the characteristic polynomial A(¢) of 4. We have
tr(d) =4+5+2=11 and |4|=40-2—-2+5+8—4=45

Also, find each cofactor 4;; of a;; in 4:

5 =2 4 -1 4 1
Allz‘l 2‘:127 Azzz'l 2‘:97 A33:‘2 5‘:18
Hence, A(t) = —tr(A) P + (Ay; + Agy + A33)t — |[A] = £ — 112 + 391 — 45

Assuming Ar has a rational root, it must be among +1, £3, +5, £9, +15, +45. Testing, by
synthetic division, we get
3] 1—-11439-45
3—-24+145
1-8415+ 0

Thus, ¢ = 3 is a root of A(¢). Also, ¢ — 3 is a factor and > — 8t + 15 is a factor. Hence,
A(t) = (t=3) (P =8t +15) = (1 =3)(t = 5)(t —3) = (t — 3)* (1 — 5)

Accordingly, A =3 and 4 = 5 are eigenvalues of A4.
(b) Find linearly independent eigenvectors for each eigenvalue of 4.

(i) Subtract A =3 down the diagonal of 4 to obtain the matrix

11
M=12 2 =2/, corresponding to x+y—z=0
11

Here u = (1,—1,0) and v = (1,0, 1) are linearly independent solutions.
(i) Subtract A =5 down the diagonal of 4 to obtain the matrix

-1 1 -1 —x+y— z=0 _ .—0
M = 2.0 =2, corresponding to 2x — 2z=10 or o _5 B 0
11 -3 X+y—32=0 yoa=

Only z is a free variable. Here w = (1,2, 1) is a solution.

Thus, S = {u,v,w}={(1,-1,0), (1,0,1), (1,2,1)} is a maximal set of linearly independent
eigenvectors of A.

Remark: The vectors u and v were chosen so that they were independent solutions of the system
x+y —z=0. On the other hand, w is automatically independent of «# and v because w belongs to a
different eigenvalue of 4. Thus, the three vectors are linearly independent.
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(c) A is diagonalizable, because it has three linearly independent eigenvectors. Let P be the matrix with
columns u, v, w. Then

1 1 1 3
P=|-1 0 2 and D=P'4P= 3
01 1 5
3 -1 1
9.15. Repeat Problem 9.14 for the matrix B= |7 -5 1
6 —6 2

(a) First find the characteristic polynomial A(¢) of B. We have
tr(B) - O, |B| == _16, Bll - _4, Bzz == 0, B33 - _8, SO ZBii - _12
i

Therefore, A(f) = £ — 12t + 16 = (t — 2)*(t + 4). Thus, 4, = 2 and A, = —4 are the eigen-
values of B.

(b) Find a basis for the eigenspace of each eigenvalue of B.

(i) Subtract 4, = 2 down the diagonal of B to obtain

111 x— y+z=0 Xx—y+z=0
M=17 -7 1], corresponding to x—=Ty+z=0 or g j:O
6 —6 0 6r—6y =0 -

The system has only one independent solution; for example, x=1, y=1, z=0. Thus,
u = (1,1,0) forms a basis for the eigenspace of 1, = 2.

(ii) Subtract 1, = —4 (or add 4) down the diagonal of B to obtain

7 -1 1 Ix— y+ z=0 Yoyt oz=0
M=\|7 -1 1|, corresponding to Tx— y+ z=0 or 6y—6z:0
6 —6 6 6x — 6y + 62 =0 Y bz =

The system has only one independent solution; for example, x =0, y =1, z=1. Thus,
v=1(0,1,1) forms a basis for the eigenspace of 1, = —4.
Thus S = {u, v} is a maximal set of linearly independent eigenvectors of B.

(c) Because B has at most two linearly independent eigenvectors, B is not similar to a diagonal matrix; that
is, B is not diagonalizable.

9.16. Find the algebraic and geometric multiplicities of the eigenvalue A, =2 of the matrix B in
Problem 9.15.

The algebraic multiplicity of Z; = 2 is 2, because ¢ — 2 appears with exponent 2 in A(¢). However, the
geometric multiplicity of 4; = 2 is 1, because dim £, =1 (where E, is the eigenspace of 4,).

9.17. Let T:R?® — R® be defined by T(x,y,z) = (2x+y — 2z, 2x+3y—4z, x+y—z). Find all
eigenvalues of 7, and find a basis of each eigenspace. Is T diagonalizable? If so, find the basis S of
R’ that diagonalizes T, and find its diagonal representation D.

First find the matrix 4 that represents 7 relative to the usual basis of R* by writing down the coefficients
of x,y,z as rows, and then find the characteristic polynomial of 4 (and 7). We have

2 1 =2 tr(d) =4, |4]=2
A=[T]=12 3 -4 and Ay =1, Ap =0, 4y =4
11 -1 > Adi=5

1

Therefore, A(f) = # — 42 + 5t —2 = (1 — 1)*(t — 2), and so A = 1 and 2 = 2 are the eigenvalues of 4 (and
T). We next find linearly independent eigenvectors for each eigenvalue of 4.
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9.18.

9.19.

9.20.

9.21.

(i) Subtract 4 = 1 down the diagonal of A4 to obtain the matrix

1 1 -2
M=12 2 —4/{, corresponding to x+y—2z=0
11 =2

Here y and z are free variables, and so there are two linearly independent eigenvectors belonging
to A = 1. For example, u = (1,—1,0) and v = (2,0, 1) are two such eigenvectors.

(i) Subtract A = 2 down the diagonal of 4 to obtain

0 1 —2 y—2z=0 _
M=1|2 1 -4/, corresponding to x+y—4z=0 or i : :Z _ g
11 =3 X+y—32=0 T

Only z is a free variable. Here w = (1,2, 1) is a solution.

Thus, T is diagonalizable, because it has three independent eigenvectors. Specifically, choosing
S={u,v,w}={(1,-1,0), (2,0,1), (1,2,1)}

as a basis, T is represented by the diagonal matrix D = diag(1,1,2).

Prove the following for a linear operator (matrix) 7

(a) The scalar 0 is an eigenvalue of T if and only if 7 is singular.

(b) If J is an eigenvalue of T, where T is invertible, then 2! is an eigenvalue of 77!

(a) We have that 0 is an eigenvalue of T if and only if there is a vector v # 0 such that 7'(v) = Ov—that is, if
and only if T is singular.

(b) Because T is invertible, it is nonsingular; hence, by (a), 1 # 0. By definition of an eigenvalue, there
exists v # 0 such that 7(v) = Av. Applying 7~' to both sides, we obtain

v="T""0v) = 2T (v), and so T v)y=21"0
Therefore, ™! is an eigenvalue of 7.

Let A be an eigenvalue of a linear operator 7: V' — V, and let £, consists of all the eigenvectors
belonging to A (called the eigenspace of 1). Prove that E; is a subspace of V. That is, prove

(a) If u € E;, then ku € E, for any scalar k. (b) Ifu,v,€ E;, thenu+v € E;.

(a) Because u € E,, we have T(u) = Au. Then T (ku) = kT (u) = k(Au) = A(ku), and so ku € E;.
(We view the zero vector 0 € V" as an ‘‘eigenvector’” of 4 in order for E; to be a subspace of V.)

(b) As u,v € E;, we have T(u) = Au and T(v) = Av. Then
Tu+v)=Twu)+T(v)=Au+Av=Au+v), andso u+v €k,

Prove Theorem 9.6: The following are equivalent: (i) The scalar / is an eigenvalue of 4.
(ii)) The matrix A/ — A4 is singular.
(iii) The scalar A is a root of the characteristic polynomial A(z) of A.

The scalar 4 is an eigenvalue of 4 if and only if there exists a nonzero vector v such that
Av=Jv  or (M)v—Av=0 or (M —A)v=0

or Al — A is singular. In such a case, 4 is a root of A(¢) = |t — A|. Also, v is in the eigenspace E; of 1 if and
only if the above relations hold. Hence, v is a solution of (A// — A)X = 0.

Prove Theorem 9.8': Suppose v;, v, ..., v, are nonzero eigenvectors of 7' belonging to distinct
eigenvalues A, 4,,...,4,. Then v, v,,..., v, are linearly independent.
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9.22,

9.23.

Suppose the theorem is not true. Let v, vs,. .., v, be a minimal set of vectors for which the theorem is
not true. We have s > 1, because v; # 0. Also, by the minimality condition, v,,..., v, are linearly
independent. Thus, v, is a linear combination of v,, ..., v, say,

V) = QU+ azvy + s+ ag g (1)

(where some a;, # 0). Applying T to (1) and using the linearity of T yields
T(v) = T(ayv, + azvy + -~ +agv) = a3 T(0y) + a3 T(v3) + -~ + a,T(vy) (2)

Because v; is an eigenvector of 7' belonging to Z;, we have T(v;) = 4;v;. Substituting in (2) yields

A0y = aydyvy + azAy vy + -+ agdgug (3)
Multiplying (1) by 4, yields
AUy = @yl vy + azhyvy + o+ agd g (4)
Setting the right-hand sides of (3) and (4) equal to each other, or subtracting (3) from (4) yields
ay(Ay — )y +az(Ay — A3)vg + -+ a Ay — A)v, =0 (5)
Because vy, vs, . .., v, are linearly independent, the coefficients in (5) must all be zero. That is,
ay(Ay — 4) =0, ay(A — 43) =0, ce a, (A —4) =0

However, the /; are distinct. Hence 4, —4; #0 for j > 1. Hence, a, =0, a3 =0,...,a, = 0. This
contradicts the fact that some a; # 0. The theorem is proved.

Prove Theorem 9.9. Suppose A(¢) = (t — a,)(t — a,) ... (t — a,) is the characteristic polynomial
of an n-square matrix 4, and suppose the » roots a; are distinct. Then 4 is similar to the diagonal
matrix D = diag(a,,a,,...,a,).

Let v}, vy, ..., v, be (nonzero) eigenvectors corresponding to the eigenvalues a;. Then the n eigenvectors

v; are linearly independent (Theorem 9.8), and hence form a basis of K. Accordingly, 4 is diagonalizable
(i.e., 4 is similar to a diagonal matrix D), and the diagonal elements of D are the eigenvalues q;.

Prove Theorem 9.10": The geometric multiplicity of an eigenvalue A of T’ does not exceed its
algebraic multiplicity.

Suppose the geometric multiplicity of 4 is ». Then its eigenspace E; contains r linearly independent
eigenvectors vy, ..., v,. Extend the set {v;} to a basis of V, say, {v;,..., v, w;,...,w,}. We have

T(v,) = Avy, T(vy) = Avy, ce T(v,) = Av,,

T(wy) = ay vy + - +ap,v, +byywy + -+ byw;
T(wy) = ay vy + - + a0, + byywy + -+ + bywy

A, A

ThenM:[O B

} is the matrix of T in the above basis, where 4 = [aij]T and B = [bl»j]r.

Because M is block diagonal, the characteristic polynomial (¢ — 4)" of the block A/, must divide the
characteristic polynomial of M and hence of 7. Thus, the algebraic multiplicity of A for T is at least r, as
required.

Diagonalizing Real Symmetric Matrices and Quadratic Forms

9.24, Let 4 = {

; _?] . Find an orthogonal matrix P such that D = P~'AP is diagonal.
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First find the characteristic polynomial A(¢) of 4. We have

Aty =0 —tr(A) t+ |4 = — 61— 16 = (t — 8)(¢t +2)

Thus, the eigenvalues of 4 are . = 8 and 1 = —2. We next find corresponding eigenvectors.
Subtract A = 8 down the diagonal of 4 to obtain the matrix
-1 3 . —x+3y=0 _
M = { 3 79} , corresponding to 3x— 9y =0 or x—3y=0

A nonzero solution is u#; = (3, 1).
Subtract A = —2 (or add 2) down the diagonal of 4 to obtain the matrix

I9x+3y=0

It y=0 or 3x+y=0

M = [i ﬂ, corresponding to

A nonzero solution is u, = (1, -3).
As expected, because 4 is symmetric, the eigenvectors #; and u, are orthogonal. Normalize #; and u, to
obtain, respectively, the unit vectors

i, = (3/V/10,1/v/10)  and 4@, = (1/3/10,—3/3/10).

Finally, let P be the matrix whose columns are the unit vectors #; and #,, respectively. Then

3/V10 1/V10
1/V10 -3/V10

As expected, the diagonal entries in D are the eigenvalues of 4.

_plyp_|8 0
and D=P AP_[O _

11 -8 4
9.25. Let B= | -8 —1 —2].(a) Find all eigenvalues of B.
4 -2 —4

(b) Find a maximal set S of nonzero orthogonal eigenvectors of B.

(c) Find an orthogonal matrix P such that D = P~'BP is diagonal.
(a) First find the characteristic polynomial of B. We have
t(B) =6, |B|=400, B;; =0, By =-60, By =-75  so > B;=—135

Hence, A(f) = £* — 61 — 135¢ — 400. If A(¢) has an integer root it must divide 400. Testing ¢ = —5, by
synthetic division, yields
5] 1— 6—-135-400
— 54 554400
1—11— 80+ O
Thus, ¢+ 5 is a factor of A(¢), and > — 11¢ — 80 is a factor. Thus,

A(r) = (1 +5)(F — 111 — 80) = (1 + 5)*(t — 16)

The eigenvalues of B are A = —5 (multiplicity 2), and A = 16 (multiplicity 1).

(b) Find an orthogonal basis for each eigenspace. Subtract A = —5 (or, add 5) down the diagonal of B to
obtain the homogeneous system

16x — 8y +4z =0, —8x+4y—2z=0, 4 —2y+z=0

That is, 4x — 2y + z = 0. The system has two independent solutions. One solution is v; = (0, 1,2). We
seek a second solution v, = (a, b, ¢), which is orthogonal to v;, such that

4a—-2b+c=0, and also b—2c=0
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One such solution is v, = (=5, —8,4).
Subtract 4 = 16 down the diagonal of B to obtain the homogeneous system

—5x—8y+4z=0, —8x — 17y —2z=0, 4x — 2y —20z=0

This system yields a nonzero solution vy = (4,—2,1). (As expected from Theorem 9.13, the
eigenvector v is orthogonal to v, and v,.)
Then v, v,, v; form a maximal set of nonzero orthogonal eigenvectors of B.

(c) Normalize v, v,, v; to obtain the orthonormal basis:
0y :Ul/\/ga by = v,/ V105, by = v;/V21

Then P is the matrix whose columns are ¥, ¥, 05. Thus,

0 —5/V105  4/V21 -5
P=11/V5 -8//105 -2/v21 and D=P'BP= -5
2/V/5  4/V/105  1/V21 16

9.26. Let ¢(x,y) = x> + 6xy — 7y*. Find an orthogonal substitution that diagonalizes g.

Find the symmetric matrix A that represents g and its characteristic polynomial A(¢). We have

A:B _ﬂ and  A(t)=F+6t—16=(t—2)(t+8)

The eigenvalues of 4 are A =2 and 4 = —8. Thus, using s and ¢ as new variables, a diagonal form of ¢ is
q(s,t) = 25> — 87
The corresponding orthogonal substitution is obtained by finding an orthogonal set of eigenvectors of 4.
(i) Subtract 4 = 2 down the diagonal of 4 to obtain the matrix

-1 3
3 -9

—x+3y=0

M:{ 3x—9y=0

} , corresponding to or —x+3y=0

A nonzero solution is #; = (3, 1).

(i) Subtract A = —8 (or add 8) down the diagonal of 4 to obtain the matrix

I9x+3y=0

9 3 .
M= [ }, corresponding to It y=0

3] or 3x+y=0

A nonzero solution is u, = (—1,3).
As expected, because 4 is symmetric, the eigenvectors #; and u, are orthogonal.
Now normalize #; and u, to obtain, respectively, the unit vectors

i, = (3/V10, 1/v/10)  and @, = (—1/3/10, 3/v/10).

Finally, let P be the matrix whose columns are the unit vectors #; and i,, respectively, and then
1" = PJs,1]" is the required orthogonal change of coordinates. That is,

b,y
3/V/10 —1/V/10 and 35—t s+ 3t
= X = i = —
1/VI0 3/v10 vio. T Vo
One can also express s and ¢ in terms of x and y by using P~' = P”. That is,

3x+y —x + 3¢
s = t=

V10’ V10
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Minimal Polynomial

4 -2 2 3 -2 2
9.27. LetA= |6 -3 4| andB= |4 —4 6. The characteristic polynomial of both matrices is
3 =23 2 -3 5

A(t) = (t — 2)(t — 1)*. Find the minimal polynomial m() of each matrix.

The minimal polynomial m(¢) must divide A(¢). Also, each factor of A(¢) (i.e., t — 2 and ¢ — 1) must
also be a factor of m(¢). Thus, m(¢) must be exactly one of the following:

FO=@-2-1) o gl)=(—-2)(-17
(a) By the Cayley—Hamilton theorem, g(4) = A(4) = 0, so we need only test /(¢). We have
2 =2 213 -2 2 0 0 0
fAy=(@A-2DA-T)=|6 -5 4||6 —4 4| =]0 0 0
3 -2 1|3 -2 2 0 0 0

Thus, m(t) = f(t) = (t — 2)(t — 1) = 2 — 3t + 2 is the minimal polynomial of 4.
(b) Again g(B) = A(B) =0, so we need only test /(¢). We get

1 =2 2(|2 -2 2 -2 2 =2
fB)=B-20)B-1)=|4 —6 6|4 -5 6|=|-4 4 —4|+£0
2 =3 3|2 -3 4 -2 2 =2
Thus, m(t) #f(t). Accordingly, m(f) = g(t) = (t —2)(t — 1)* is the minimal polynomial of B. [We

emphasize that we do not need to compute g(B); we know g(B) = 0 from the Cayley—Hamilton theorem.]

9.28. Find the minimal polynomial m(¢) of each of the following matrices:

1 2 3
51 4 —1

(a) A:{ },(b) B=10 2 3/, () C:[ }
3 7 0 0 3 1 2

(a) The characteristic polynomial of 4 is A(¢) = > — 12t + 32 = (¢t — 4)(¢ — 8). Because A(¢) has distinct
factors, the minimal polynomial m(t) = A(t) = £ — 12t + 32.

(b) Because B is triangular, its eigenvalues are the diagonal elements 1,2,3; and so its characteristic
polynomial is A(f) = (r — 1)(t — 2)(¢ — 3). Because A(¢) has distinct factors, m(t) = A(¢).

(c) The characteristic polynomial of C is A(f) = 2 — 61+ 9 = (t — 3)2. Hence the minimal polynomial of C
is f(f) =t —3 or g(t) = (t — 3)%. However, f(C) # 0; that is, C — 3I # 0. Hence,
m(t) = g(t) = A(t) = (¢ = 3)".

9.29. Suppose S = {u;,u,,...,u,} is a basis of ¥/, and suppose F and G are linear operators on V such
that [F] has 0’s on and below the diagonal, and [G] has a # 0 on the superdiagonal and 0’s
elsewhere. That is,

0 (2031 (2531 . a, 0 a 0 ... 0
0 0 asy an 0 0 a 0
T Y G = e
0 0 0 4.1 00 0 a
0 0 0 0 0 0 O 0

Show that (a) F" = 0, (b) G"~! # 0, but G" = 0. (These conditions also hold for [F] and [G].)

(a) We have F(u,) =0 and, for » > 1, F(u,) is a linear combination of vectors preceding u, in S. That is,

F(ul) = a, Uy + AUy + e+ ar,rflurfl
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9.30.

9.31.

9.32.

9.33.

Hence, F?(u,) = F(F(u,)) is a linear combination of vectors preceding u,_;, and so on. Hence,
F"(u,) = 0 for each r. Thus, for each r, F"(u,) = F""(0) = 0, and so F" = 0, as claimed.

(b) Wehave G(u;) = 0 and, for each k > 1, G(u;) = auy_,. Hence, G"(u;) = a"u,._,. for r < k. Because a # 0,
a"~! # 0. Therefore, G"~'(u,) = a" 'u; # 0, and so G"~! # 0. On the other hand, by (a), G" = 0.

Let B be the matrix in Example 9.12(a) that has 1’s on the diagonal, a’s on the superdiagonal,
where a # 0, and 0’s elsewhere. Show that f(z) = (1 — A)" is both the characteristic polynomial
A(?) and the minimum polynomial m(t) of A4.

Because 4 is triangular with A’s on the diagonal, A(¢) = f(¢) = (¢ — A)" is its characteristic polynomial.
Thus, m(¢) is a power of ¢ — 4. By Problem 9.29, (4 — I)"" # 0. Hence, m(r) = A(f) = (1 — 2)".

Find the characteristic polynomial A(#) and minimal polynomial m(¢) of each matrix:

4 1 0 0 0 D 7 0 0
04 1 00 0 2 0 0
@ M=1]0 04 0 0f,(b) M=
0 0 11
0 0 0 4 1 0 0 —2 4
0 0 0 0 4 -
(a) M is block diagonal with diagonal blocks
4 1 0]
A=10 4 1 and B:[g H
0 0 4]

The characteristic and minimal polynomial of 4 is f(¢) = (t — 4)° and the characteristic and minimal
polynomial of B is g(¢) = (¢ — 4)*. Then
A0y =f(g(t)=(t—=4)"  but  m(t) =LCM[/(1),g(n)] = (1 = 4)’

(where LCM means least common multiple). We emphasize that the exponent in m(¢) is the size of the
largest block.

0 2 -2 4

acteristic and minimal polynomial of 4’ is f(¢) = (t — 2)2. The characteristic polynomial of B’ is
g(t) = 1> —5t+6 = (t — 2)(¢t — 3), which has distinct factors. Hence, g(¢) is also the minimal polynomial
of B. Accordingly,

Aty =f(Dg(t) = (t=2*(t=3)  but  m(r) = LCM[f(1),g()] = (1 = 2)*(t = 3)

(b) Here M’ is block diagonal with diagonal blocks 4’ = {2 7} and B = { ! 1] The char-

Find a matrix 4 whose minimal polynomial is f(¢) = > — 8> + 5¢ + 7.

0 0 -7
Simply let 4 = [1 0 5] , the companion matrix of f(¢) [defined in Example 9.12(b)].
0 1 8

Prove Theorem 9.15: The minimal polynomial m(¢) of a matrix (linear operator) 4 divides every
polynomial that has 4 as a zero. In particular (by the Cayley—Hamilton theorem), m(¢) divides the
characteristic polynomial A(¢) of A4.

Suppose f'(¢) is a polynomial for which f(4) = 0. By the division algorithm, there exist polynomials
q(t) and r(¢) for which f(z) = m(¢)q(¢) + r(¢) and r(z) = 0 or deg r(¢) < deg m(t). Substituting # = 4 in this
equation, and using that f(4) = 0 and m(4) = 0, we obtain r(4) = 0. If #(¢) # 0, then r(¢) is a polynomial
of degree less than m(¢) that has A as a zero. This contradicts the definition of the minimal polynomial. Thus,
r(t) = 0, and so f(t) = m(t)q(2); that is, m(¢) divides f(¢).



