EXAMPLE 9.14 Find the characteristic polynomal $\Delta(t)$ and the minimal polynomial m(t) of the block diagonal matrix:

$$M = \begin{bmatrix} 2 & 5 & 10 & 0 & 10 \\ 0 & 2 & 10 & 0 & 10 \\ 0 & 0 & 14 & 2 & 10 \\ 0 & 0 & 10 & 0 & 17 \end{bmatrix} = \operatorname{diag}(A_1, A_2, A_3), \text{ where } A_1 = \begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 4 & 2 \\ 3 & 5 \end{bmatrix}, A_3 = \begin{bmatrix} 7 \end{bmatrix}$$

Then $\Delta(t)$ is the product of the characterization polynomials $\Delta_1(t)$, $\Delta_2(t)$, $\Delta_3(t)$ of A_1 , A_2 , A_3 , respectively. One can show that

$$\Delta_1(t) = (t-2)^2,$$
 $\Delta_2(t) = (t-2)(t-7),$ $\Delta_3(t) = t-7$

Thus, $\Delta(t) = (t-2)^3 (t-7)^2$. [As expected, deg $\Delta(t) = 5$.]

The minimal polynomials $m_1(t)$, $m_2(t)$, $m_3(t)$ of the diagonal blocks A_1, A_2, A_3 , respectively, are equal to the characteristic polynomials; that is,

$$m_1(t) = (t-2)^2$$
, $m_2(t) = (t-2)(t-7)$, $m_3(t) = t-7$

But m(t) is equal to the least common multiple of $m_1(t), m_2(t), m_3(t)$. Thus, $m(t) = (t-2)^2(t-7)$.

SOLVED PROBLEMS

Polynomials of Matrices, Characteristic Polynomials

9.1. Let
$$A = \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix}$$
. Find $f(A)$, where

(a)
$$f(t) = t^2 - 3t + 7$$
,

(a)
$$f(t) = t^2 - 3t + 7$$
, (b) $f(t) = t^2 - 6t + 13$

First find
$$A^2 = \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} -7 & -12 \\ 24 & 17 \end{bmatrix}$$
. Then

(a)
$$f(A) = A^2 - 3A + 7I = \begin{bmatrix} -7 & -12 \\ 24 & 17 \end{bmatrix} + \begin{bmatrix} -3 & 6 \\ -12 & -15 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -3 & -6 \\ 12 & 9 \end{bmatrix}$$

(b)
$$f(A) = A^2 - 6A + 13I = \begin{bmatrix} -7 & -12 \\ 24 & 17 \end{bmatrix} + \begin{bmatrix} -6 & 12 \\ -24 & -30 \end{bmatrix} + \begin{bmatrix} 13 & 0 \\ 0 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 [Thus, A is a root of $f(t)$.]

9.2. Find the characteristic polynomial $\Delta(t)$ of each of the following matrices:

(a)
$$A = \begin{bmatrix} 2 & 5 \\ 4 & 1 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 7 & -3 \\ 5 & -2 \end{bmatrix}$, (c) $C = \begin{bmatrix} 3 & -2 \\ 9 & -3 \end{bmatrix}$

Use the formula $(t) = t^2 - tr(M) t + |M|$ for a 2 × 2 matrix M:

(a)
$$tr(A) = 2 + 1 = 3$$
, $|A| = 2 - 20 = -18$, so $\Delta(t) = t^2 - 3t - 18$

(a)
$$\operatorname{tr}(A) = 2 + 1 = 3$$
, $|A| = 2 - 20 = -18$, so $\Delta(t) = t^2 - 3t - 18$
(b) $\operatorname{tr}(B) = 7 - 2 = 5$, $|B| = -14 + 15 = 1$, so $\Delta(t) = t^2 - 5t + 1$
(c) $\operatorname{tr}(C) = 3 - 3 = 0$, $|C| = -9 + 18 = 9$, so $\Delta(t) = t^2 + 9$

(c)
$$tr(C) = 3 - 3 = 0$$
, $|C| = -9 + 18 = 9$, so $\Delta(t) = t^2 + 9$

Find the characteristic polynomial $\Delta(t)$ of each of the following matrices: 9.3.

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 4 \\ 6 & 4 & 5 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & 6 & -2 \\ -3 & 2 & 0 \\ 0 & 3 & -4 \end{bmatrix}$

Use the formula $\Delta(t) = t^3 - \text{tr}(A)t^2 + (A_{11} + A_{22} + A_{33})t - |A|$, where A_{ii} is the cofactor of a_{ii} in the 3×3 matrix $A = [a_{ij}]$.

(a)
$$tr(A) = 1 + 0 + 5 = 6$$

$$A_{11} = \begin{vmatrix} 0 & 4 \\ 4 & 5 \end{vmatrix} = -16,$$
 $A_{22} = \begin{vmatrix} 1 & 3 \\ 6 & 5 \end{vmatrix} = -13,$ $A_{33} = \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} = -6$

$$A_{11} + A_{22} + A_{33} = -35$$
, and $|A| = 48 + 36 - 16 - 30 = 38$

Thus,

$$\Delta(t) = t^3 - 6t^2 - 35t - 38$$

(b)
$$tr(B) = 1 + 2 - 4 = -1$$

$$B_{11} = \begin{vmatrix} 2 & 0 \\ 3 & -4 \end{vmatrix} = -8,$$
 $B_{22} = \begin{vmatrix} 1 & -2 \\ 0 & -4 \end{vmatrix} = -4,$ $B_{33} = \begin{vmatrix} 1 & 6 \\ -3 & 2 \end{vmatrix} = 20$

$$B_{11} + B_{22} + B_{33} = 8$$
, and $|B| = -8 + 18 - 72 = -62$

Thus.

$$\Delta(t) = t^3 + t^2 - 8t + 62$$

9.4. Find the characteristic polynomial $\Delta(t)$ of each of the following matrices:

(a)
$$A = \begin{bmatrix} 2 & 5 & 1 & 1 \\ 1 & 4 & 2 & 2 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 3 & 3 & 4 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 6 \end{bmatrix}$

(a) A is block triangular with diagonal blocks

$$A_1 = \begin{bmatrix} 2 & 5 \\ 1 & 4 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 6 & -5 \\ 2 & 3 \end{bmatrix}$

Thus,

$$\Delta(t) = \Delta_{A_1}(t)\Delta_{A_2}(t) = (t^2 - 6t + 3)(t^2 - 9t + 28)$$

(b) Because B is triangular,
$$\Delta(t) = (t-1)(t-3)(t-5)(t-6)$$
.

9.5. Find the characteristic polynomial $\Delta(t)$ of each of the following linear operators:

(a)
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $F(x, y) = (3x + 5y, 2x - 7y)$.

(b)
$$\mathbf{D}: V \to V$$
 defined by $\mathbf{D}(f) = df/dt$, where V is the space of functions with basis $S = \{\sin t, \cos t\}$.

The characteristic polynomial $\Delta(t)$ of a linear operator is equal to the characteristic polynomial of any matrix A that represents the linear operator.

(a) Find the matrix A that represents T relative to the usual basis of \mathbb{R}^2 . We have

$$A = \begin{bmatrix} 3 & 5 \\ 2 & -7 \end{bmatrix}$$
, so $\Delta(t) = t^2 - \text{tr}(A) \ t + |A| = t^2 + 4t - 31$

(b) Find the matrix A representing the differential operator **D** relative to the basis S. We have

$$\mathbf{D}(\sin t) = \cos t = 0(\sin t) + 1(\cos t)$$

$$\mathbf{D}(\cos t) = -\sin t = -1(\sin t) + 0(\cos t)$$
 and so $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

Therefore,

$$\Delta(t) = t^2 - \text{tr}(A) \ t + |A| = t^2 + 1$$

9.6. Show that a matrix A and its transpose A^T have the same characteristic polynomial.

By the transpose operation, $(tI - A)^T = tI^T - A^T = tI - A^T$. Because a matrix and its transpose have the same determinant,

$$\Delta_A(t) = |tI - A| = |(tI - A)^T| = |tI - A^T| = \Delta_{A^T}(t)$$

- Prove Theorem 9.1: Let f and g be polynomials. For any square matrix A and scalar k,
 - (i) (f+g)(A) = f(A) + g(A), (iii) (kf)(A) = kf(A),
- - (ii) (fg)(A) = f(A)g(A),
- (iv) f(A)g(A) = g(A)f(A).

Suppose $f = a_n t^n + \cdots + a_1 t + a_0$ and $g = b_m t^m + \cdots + b_1 t + b_0$. Then, by definition,

$$f(A) = a_n A^n + \dots + a_1 A + a_0 I$$
 and $g(A) = b_m A^m + \dots + b_1 A + b_0 I$

(i) Suppose $m \le n$ and let $b_i = 0$ if i > m. Then

$$f + g = (a_n + b_n)t^n + \dots + (a_1 + b_1)t + (a_0 + b_0)$$

Hence.

$$(f+g)(A) = (a_n + b_n)A^n + \dots + (a_1 + b_1)A + (a_0 + b_0)I$$

= $a_nA^n + b_nA^n + \dots + a_1A + b_1A + a_0I + b_0I = f(A) + g(A)$

(ii) By definition, $fg = c_{n+m}t^{n+m} + \cdots + c_1t + c_0 = \sum_{k=0}^{n+m} c_kt^k$, where

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0 = \sum_{i=0}^k a_i b_{k-i}$$

Hence, $(fg)(A) = \sum_{k=0}^{n+m} c_k A^k$ and

$$f(A)g(A) = \left(\sum_{i=0}^{n} a_i A^i\right) \left(\sum_{j=0}^{m} b_j A^j\right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j A^{i+j} = \sum_{k=0}^{n+m} c_k A^k = (fg)(A)$$

(iii) By definition, $kf = ka_nt^n + \cdots + ka_1t + ka_0$, and so

$$(kf)(A) = ka_nA^n + \dots + ka_1A + ka_0I = k(a_nA^n + \dots + a_1A + a_0I) = kf(A)$$

- (iv) By (ii), g(A)f(A) = (gf)(A) = (fg)(A) = f(A)g(A).
- Prove the Cayley–Hamilton Theorem 9.2: Every matrix A is a root of its characteristic polynomial 9.8. $\Delta(t)$.

Let A be an arbitrary n-square matrix and let $\Delta(t)$ be its characteristic polynomial, say,

$$\Delta(t) = |tI - A| = t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0$$

Now let B(t) denote the classical adjoint of the matrix tI - A. The elements of B(t) are cofactors of the matrix tI - A and hence are polynomials in t of degree not exceeding n - 1. Thus,

$$B(t) = B_{n-1}t^{n-1} + \cdots + B_1t + B_0$$

where the B_i are n-square matrices over K which are independent of t. By the fundamental property of the classical adjoint (Theorem 8.9), (tI - A)B(t) = |tI - A|I, or

$$(tI - A)(B_{n-1}t^{n-1} + \dots + B_1t + B_0) = (t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0)I$$

Removing the parentheses and equating corresponding powers of t yields

$$B_{n-1} = I$$
, $B_{n-2} - AB_{n-1} = a_{n-1}I$, ..., $B_0 - AB_1 = a_1I$, $-AB_0 = a_0I$

Multiplying the above equations by A^n , A^{n-1} , ..., A, I, respectively, yields

$$A^{n}B_{n-1} = A_{n}I$$
, $A^{n-1}B_{n-2} - A^{n}B_{n-1} = a_{n-1}A^{n-1}$, ..., $AB_{0} - A^{2}B_{1} = a_{1}A$, $-AB_{0} = a_{0}I$

Adding the above matrix equations yields 0 on the left-hand side and $\Delta(A)$ on the right-hand side; that is,

$$0 = A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A + a_{0}I$$

Therefore, $\Delta(A) = 0$, which is the Cayley–Hamilton theorem.

Eigenvalues and Eigenvectors of 2×2 Matrices

9.9. Let
$$A = \begin{bmatrix} 3 & -4 \\ 2 & -6 \end{bmatrix}$$
.

- (a) Find all eigenvalues and corresponding eigenvectors.
- (b) Find matrices P and D such that P is nonsingular and $D = P^{-1}AP$ is diagonal.
- (a) First find the characteristic polynomial $\Delta(t)$ of A:

$$\Delta(t) = t^2 - \text{tr}(A) \ t + |A| = t^2 + 3t - 10 = (t - 2)(t + 5)$$

The roots $\lambda = 2$ and $\lambda = -5$ of $\Delta(t)$ are the eigenvalues of A. We find corresponding eigenvectors.

(i) Subtract $\lambda = 2$ down the diagonal of A to obtain the matrix M = A - 2I, where the corresponding homogeneous system MX = 0 yields the eigenvectors corresponding to $\lambda = 2$. We have

$$M = \begin{bmatrix} 1 & -4 \\ 2 & -8 \end{bmatrix}$$
, corresponding to $\begin{cases} x - 4y = 0 \\ 2x - 8y = 0 \end{cases}$ or $x - 4y = 0$

The system has only one free variable, and $v_1 = (4, 1)$ is a nonzero solution. Thus, $v_1 = (4, 1)$ is an eigenvector belonging to (and spanning the eigenspace of) $\lambda = 2$.

(ii) Subtract $\lambda = -5$ (or, equivalently, add 5) down the diagonal of A to obtain

$$M = \begin{bmatrix} 8 & -4 \\ 2 & -1 \end{bmatrix}$$
, corresponding to $\begin{cases} 8x - 4y = 0 \\ 2x - y = 0 \end{cases}$ or $2x - y = 0$

The system has only one free variable, and $v_2 = (1,2)$ is a nonzero solution. Thus, $v_2 = (1,2)$ is an eigenvector belonging to $\lambda = 5$.

(b) Let P be the matrix whose columns are v_1 and v_2 . Then

$$P = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad D = P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & -5 \end{bmatrix}$$

Note that D is the diagonal matrix whose diagonal entries are the eigenvalues of A corresponding to the eigenvectors appearing in P.

Remark: Here P is the change-of-basis matrix from the usual basis of \mathbb{R}^2 to the basis $S = \{v_1, v_2\}$, and D is the matrix that represents (the matrix function) A relative to the new basis S.

9.10. Let
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
.

- (a) Find all eigenvalues and corresponding eigenvectors.
- (b) Find a nonsingular matrix P such that $D = P^{-1}AP$ is diagonal, and P^{-1} .
- (c) Find A^6 and f(A), where $t^4 3t^3 6t^2 + 7t + 3$.
- (d) Find a "real cube root" of B—that is, a matrix B such that $B^3 = A$ and B has real eigenvalues.
- (a) First find the characteristic polynomial $\Delta(t)$ of A:

$$\Delta(t) = t^2 - \operatorname{tr}(A) \ t + |A| = t^2 - 5t + 4 = (t - 1)(t - 4)$$

The roots $\lambda = 1$ and $\lambda = 4$ of $\Delta(t)$ are the eigenvalues of A. We find corresponding eigenvectors.

(i) Subtract $\lambda = 1$ down the diagonal of A to obtain the matrix $M = A - \lambda I$, where the corresponding homogeneous system MX = 0 yields the eigenvectors belonging to $\lambda = 1$. We have

$$M = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
, corresponding to $\begin{aligned} x + 2y &= 0 \\ x + 2y &= 0 \end{aligned}$ or $x + 2y = 0$

The system has only one independent solution; for example, x = 2, y = -1. Thus, $v_1 = (2, -1)$ is an eigenvector belonging to (and spanning the eigenspace of) $\lambda = 1$.

(ii) Subtract $\lambda = 4$ down the diagonal of A to obtain

$$M = \begin{bmatrix} -2 & 2 \\ 1 & -1 \end{bmatrix}$$
, corresponding to $\begin{aligned} -2x + 2y &= 0 \\ x - y &= 0 \end{aligned}$ or $x - y = 0$

The system has only one independent solution; for example, x = 1, y = 1. Thus, $v_2 = (1, 1)$ is an eigenvector belonging to $\lambda = 4$.

(b) Let P be the matrix whose columns are v_1 and v_2 . Then

$$P = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$$
 and $D = P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$, where $P^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$

(c) Using the diagonal factorization $A = PDP^{-1}$, and $1^6 = 1$ and $4^6 = 4096$, we get

$$A^{6} = PD^{6}P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4096 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1366 & 2230 \\ 1365 & 2731 \end{bmatrix}$$

Also, f(1) = 2 and f(4) = -1. Hence,

$$f(A) = Pf(D)P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$$

(d) Here $\begin{bmatrix} 1 & 0 \\ 0 & \sqrt[3]{4} \end{bmatrix}$ is the real cube root of D. Hence the real cube root of A is

$$B = P\sqrt[3]{D}P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt[3]{4} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 + \sqrt[3]{4} & -2 + 2\sqrt[3]{4} \\ -1 + \sqrt[3]{4} & 1 + 2\sqrt[3]{4} \end{bmatrix}$$

9.11. Each of the following real matrices defines a linear transformation on \mathbb{R}^2 :

(a)
$$A = \begin{bmatrix} 5 & 6 \\ 3 & -2 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, (c) $C = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$

Find, for each matrix, all eigenvalues and a maximum set *S* of linearly independent eigenvectors. Which of these linear operators are diagonalizable—that is, which can be represented by a diagonal matrix?

- (a) First find $\Delta(t) = t^2 3t 28 = (t 7)(t + 4)$. The roots $\lambda = 7$ and $\lambda = -4$ are the eigenvalues of A. We find corresponding eigenvectors.
 - (i) Subtract $\lambda = 7$ down the diagonal of A to obtain

$$M = \begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix}$$
, corresponding to $\begin{aligned} -2x + 6y &= 0 \\ 3x - 9y &= 0 \end{aligned}$ or $x - 3y = 0$

Here $v_1 = (3, 1)$ is a nonzero solution.

(ii) Subtract $\lambda = -4$ (or add 4) down the diagonal of A to obtain

$$M = \begin{bmatrix} 9 & 6 \\ 3 & 2 \end{bmatrix}$$
, corresponding to $\begin{cases} 9x + 6y = 0 \\ 3x + 2y = 0 \end{cases}$ or $3x + 2y = 0$

Here $v_2 = (2, -3)$ is a nonzero solution.

Then $S = \{v_1, v_2\} = \{(3, 1), (2, -3)\}$ is a maximal set of linearly independent eigenvectors. Because S is a basis of \mathbb{R}^2 , A is diagonalizable. Using the basis S, A is represented by the diagonal matrix D = diag(7, -4).

(b) First find the characteristic polynomial $\Delta(t) = t^2 + 1$. There are no real roots. Thus B, a real matrix representing a linear transformation on \mathbf{R}^2 , has no eigenvalues and no eigenvectors. Hence, in particular, B is not diagonalizable.

(c) First find $\Delta(t) = t^2 - 8t + 16 = (t - 4)^2$. Thus, $\lambda = 4$ is the only eigenvalue of C. Subtract $\lambda = 4$ down the diagonal of C to obtain

$$M = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
, corresponding to $x - y = 0$

The homogeneous system has only one independent solution; for example, x = 1, y = 1. Thus, v = (1, 1) is an eigenvector of C. Furthermore, as there are no other eigenvalues, the singleton set $S = \{v\} = \{(1, 1)\}$ is a maximal set of linearly independent eigenvectors of C. Furthermore, because S is not a basis of \mathbb{R}^2 , C is not diagonalizable.

9.12. Suppose the matrix B in Problem 9.11 represents a linear operator on complex space \mathbb{C}^2 . Show that, in this case, B is diagonalizable by finding a basis S of \mathbb{C}^2 consisting of eigenvectors of B.

The characteristic polynomial of B is still $\Delta(t) = t^2 + 1$. As a polynomial over C, $\Delta(t)$ does factor; specifically, $\Delta(t) = (t - i)(t + i)$. Thus, $\lambda = i$ and $\lambda = -i$ are the eigenvalues of B.

(i) Subtract $\lambda = i$ down the diagonal of B to obtain the homogeneous system

$$(1-i)x - y = 0$$

 $2x + (-1-i)y = 0$ or $(1-i)x - y = 0$

The system has only one independent solution; for example, x = 1, y = 1 - i. Thus, $v_1 = (1, 1 - i)$ is an eigenvector that spans the eigenspace of $\lambda = i$.

(ii) Subtract $\lambda = -i$ (or add i) down the diagonal of B to obtain the homogeneous system

$$(1+i)x - y = 0 2x + (-1+i)y = 0$$
 or $(1+i)x - y = 0$

The system has only one independent solution; for example, x = 1, y = 1 + i. Thus, $v_2 = (1, 1 + i)$ is an eigenvector that spans the eigenspace of $\lambda = -i$.

As a complex matrix, B is diagonalizable. Specifically, $S = \{v_1, v_2\} = \{(1, 1 - i), (1, 1 + i)\}$ is a basis of \mathbb{C}^2 consisting of eigenvectors of B. Using this basis S, B is represented by the diagonal matrix $D = \operatorname{diag}(i, -i)$.

- **9.13.** Let L be the linear transformation on \mathbb{R}^2 that reflects each point P across the line y = kx, where k > 0. (See Fig. 9-1.)
 - (a) Show that $v_1 = (k, 1)$ and $v_2 = (1, -k)$ are eigenvectors of L.
 - (b) Show that L is diagonalizable, and find a diagonal representation D.

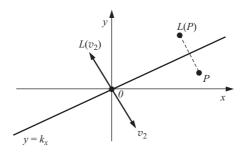


Figure 9-1

(a) The vector $v_1 = (k, 1)$ lies on the line y = kx, and hence is left fixed by L; that is, $L(v_1) = v_1$. Thus, v_1 is an eigenvector of L belonging to the eigenvalue $\lambda_1 = 1$.

The vector $v_2 = (1, -k)$ is perpendicular to the line y = kx, and hence, L reflects v_2 into its negative; that is, $L(v_2) = -v_2$. Thus, v_2 is an eigenvector of L belonging to the eigenvalue $\lambda_2 = -1$.

(b) Here $S = \{v_1, v_2\}$ is a basis of \mathbf{R}^2 consisting of eigenvectors of L. Thus, L is diagonalizable, with the diagonal representation $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (relative to the basis S).

Eigenvalues and Eigenvectors

- **9.14.** Let $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$. (a) Find all eigenvalues of A.
 - (b) Find a maximum set S of linearly independent eigenvectors of A.
 - (c) Is A diagonalizable? If yes, find P such that $D = P^{-1}AP$ is diagonal.
 - (a) First find the characteristic polynomial $\Delta(t)$ of A. We have

$$tr(A) = 4 + 5 + 2 = 11$$
 and $|A| = 40 - 2 - 2 + 5 + 8 - 4 = 45$

Also, find each cofactor A_{ii} of a_{ii} in A:

$$A_{11} = \begin{vmatrix} 5 & -2 \\ 1 & 2 \end{vmatrix} = 12,$$
 $A_{22} = \begin{vmatrix} 4 & -1 \\ 1 & 2 \end{vmatrix} = 9,$ $A_{33} = \begin{vmatrix} 4 & 1 \\ 2 & 5 \end{vmatrix} = 18$

Hence, $\Delta(t) = t^3 - \text{tr}(A)t^2 + (A_{11} + A_{22} + A_{33})t - |A| = t^3 - 11t^2 + 39t - 45$

Assuming Δt has a rational root, it must be among ± 1 , ± 3 , ± 5 , ± 9 , ± 15 , ± 45 . Testing, by synthetic division, we get

$$\begin{array}{c|c}
3 & 1 - 11 + 39 - 45 \\
& 3 - 24 + 45 \\
\hline
& 1 - 8 + 15 + 0
\end{array}$$

Thus, t = 3 is a root of $\Delta(t)$. Also, t - 3 is a factor and $t^2 - 8t + 15$ is a factor. Hence,

$$\Delta(t) = (t-3)(t^2 - 8t + 15) = (t-3)(t-5)(t-3) = (t-3)^2(t-5)$$

Accordingly, $\lambda = 3$ and $\lambda = 5$ are eigenvalues of A.

- (b) Find linearly independent eigenvectors for each eigenvalue of A.
 - (i) Subtract $\lambda = 3$ down the diagonal of A to obtain the matrix

$$M = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 1 & 1 & -1 \end{bmatrix}, \quad \text{corresponding to} \quad x + y - z = 0$$

Here u = (1, -1, 0) and v = (1, 0, 1) are linearly independent solutions.

(ii) Subtract $\lambda = 5$ down the diagonal of A to obtain the matrix

$$M = \begin{bmatrix} -1 & 1 & -1 \\ 2 & 0 & -2 \\ 1 & 1 & -3 \end{bmatrix}, \quad \text{corresponding to} \quad \begin{array}{c} -x + y - z = 0 \\ 2x - 2z = 0 \\ x + y - 3z = 0 \end{array} \quad \text{or} \quad \begin{array}{c} x - z = 0 \\ y - 2z = 0 \end{array}$$

Only z is a free variable. Here w = (1, 2, 1) is a solution.

Thus, $S = \{u, v, w\} = \{(1, -1, 0), (1, 0, 1), (1, 2, 1)\}$ is a maximal set of linearly independent eigenvectors of A.

Remark: The vectors u and v were chosen so that they were independent solutions of the system x + y - z = 0. On the other hand, w is automatically independent of u and v because w belongs to a different eigenvalue of A. Thus, the three vectors are linearly independent.

(c) A is diagonalizable, because it has three linearly independent eigenvectors. Let P be the matrix with columns u, v, w. Then

$$P = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \quad \text{and} \quad D = P^{-1}AP = \begin{bmatrix} 3 & & \\ & 3 & \\ & & 5 \end{bmatrix}$$

- **9.15.** Repeat Problem 9.14 for the matrix $B = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$.
 - (a) First find the characteristic polynomial $\Delta(t)$ of B. We have

$$tr(B) = 0,$$
 $|B| = -16,$ $B_{11} = -4,$ $B_{22} = 0,$ $B_{33} = -8,$ so $\sum_{i} B_{ii} = -12$

Therefore, $\Delta(t) = t^3 - 12t + 16 = (t-2)^2(t+4)$. Thus, $\lambda_1 = 2$ and $\lambda_2 = -4$ are the eigenvalues of B.

- (b) Find a basis for the eigenspace of each eigenvalue of B.
 - (i) Subtract $\lambda_1 = 2$ down the diagonal of B to obtain

$$M = \begin{bmatrix} 1 & -1 & 1 \\ 7 & -7 & 1 \\ 6 & -6 & 0 \end{bmatrix}, \quad \text{corresponding to} \quad \begin{array}{c} x - y + z = 0 \\ 7x - 7y + z = 0 \\ 6x - 6y = 0 \end{array} \quad \text{or} \quad \begin{array}{c} x - y + z = 0 \\ z = 0 \end{array}$$

The system has only one independent solution; for example, x = 1, y = 1, z = 0. Thus, u = (1, 1, 0) forms a basis for the eigenspace of $\lambda_1 = 2$.

(ii) Subtract $\lambda_2 = -4$ (or add 4) down the diagonal of B to obtain

$$M = \begin{bmatrix} 7 & -1 & 1 \\ 7 & -1 & 1 \\ 6 & -6 & 6 \end{bmatrix}, \quad \text{corresponding to} \quad \begin{array}{c} 7x - y + z = 0 \\ 7x - y + z = 0 \\ 6x - 6y + 6z = 0 \end{array} \quad \text{or} \quad \begin{array}{c} x - y + z = 0 \\ 6y - 6z = 0 \end{array}$$

The system has only one independent solution; for example, x = 0, y = 1, z = 1. Thus, v = (0, 1, 1) forms a basis for the eigenspace of $\lambda_2 = -4$.

Thus $S = \{u, v\}$ is a maximal set of linearly independent eigenvectors of B.

- (c) Because *B* has at most two linearly independent eigenvectors, *B* is not similar to a diagonal matrix; that is, *B* is not diagonalizable.
- **9.16.** Find the algebraic and geometric multiplicities of the eigenvalue $\lambda_1 = 2$ of the matrix B in Problem 9.15.

The algebraic multiplicity of $\lambda_1=2$ is 2, because t-2 appears with exponent 2 in $\Delta(t)$. However, the geometric multiplicity of $\lambda_1=2$ is 1, because dim $E_{\lambda_1}=1$ (where E_{λ_1} is the eigenspace of λ_1).

9.17. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x,y,z) = (2x+y-2z, 2x+3y-4z, x+y-z). Find all eigenvalues of T, and find a basis of each eigenspace. Is T diagonalizable? If so, find the basis S of \mathbb{R}^3 that diagonalizes T, and find its diagonal representation D.

First find the matrix A that represents T relative to the usual basis of \mathbb{R}^3 by writing down the coefficients of x, y, z as rows, and then find the characteristic polynomial of A (and T). We have

$$A = [T] = \begin{bmatrix} 2 & 1 & -2 \\ 2 & 3 & -4 \\ 1 & 1 & -1 \end{bmatrix} \quad \text{and} \quad \begin{aligned} & \operatorname{tr}(A) = 4, & |A| = 2 \\ A_{11} = 1, & A_{22} = 0, & A_{33} = 4 \\ & \sum_{i} A_{ii} = 5 \end{aligned}$$

Therefore, $\Delta(t) = t^3 - 4t^2 + 5t - 2 = (t-1)^2(t-2)$, and so $\lambda = 1$ and $\lambda = 2$ are the eigenvalues of A (and T). We next find linearly independent eigenvectors for each eigenvalue of A.

(i) Subtract $\lambda = 1$ down the diagonal of A to obtain the matrix

$$M = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \quad \text{corresponding to} \quad x + y - 2z = 0$$

Here y and z are free variables, and so there are two linearly independent eigenvectors belonging to $\lambda = 1$. For example, u = (1, -1, 0) and v = (2, 0, 1) are two such eigenvectors.

(ii) Subtract $\lambda = 2$ down the diagonal of A to obtain

$$M = \begin{bmatrix} 0 & 1 & -2 \\ 2 & 1 & -4 \\ 1 & 1 & -3 \end{bmatrix}, \quad \text{corresponding to} \quad \begin{array}{c} y - 2z = 0 \\ 2x + y - 4z = 0 \\ x + y - 3z = 0 \end{array} \quad \text{or} \quad \begin{array}{c} x + y - 3z = 0 \\ y - 2z = 0 \end{array}$$

Only z is a free variable. Here w = (1, 2, 1) is a solution.

Thus, T is diagonalizable, because it has three independent eigenvectors. Specifically, choosing

$$S = \{u, v, w\} = \{(1, -1, 0), (2, 0, 1), (1, 2, 1)\}$$

as a basis, T is represented by the diagonal matrix D = diag(1, 1, 2).

- **9.18.** Prove the following for a linear operator (matrix) T:
 - (a) The scalar 0 is an eigenvalue of T if and only if T is singular.
 - (b) If λ is an eigenvalue of T, where T is invertible, then λ^{-1} is an eigenvalue of T^{-1} .
 - (a) We have that 0 is an eigenvalue of T if and only if there is a vector $v \neq 0$ such that T(v) = 0v—that is, if and only if T is singular.
 - (b) Because T is invertible, it is nonsingular; hence, by (a), $\lambda \neq 0$. By definition of an eigenvalue, there exists $v \neq 0$ such that $T(v) = \lambda v$. Applying T^{-1} to both sides, we obtain

$$v = T^{-1}(\lambda v) = \lambda T^{-1}(v),$$
 and so $T^{-1}(v) = \lambda^{-1}v$

Therefore, λ^{-1} is an eigenvalue of T^{-1} .

- **9.19.** Let λ be an eigenvalue of a linear operator $T: V \to V$, and let E_{λ} consists of all the eigenvectors belonging to λ (called the *eigenspace* of λ). Prove that E_{λ} is a subspace of V. That is, prove
 - (a) If $u \in E_{\lambda}$, then $ku \in E_{\lambda}$ for any scalar k. (b) If $u, v, \in E_{\lambda}$, then $u + v \in E_{\lambda}$.
 - (a) Because $u \in E_{\lambda}$, we have $T(u) = \lambda u$. Then $T(ku) = kT(u) = k(\lambda u) = \lambda(ku)$, and so $ku \in E_{\lambda}$. (We view the zero vector $0 \in V$ as an "eigenvector" of λ in order for E_{λ} to be a subspace of V.)
 - (b) As $u, v \in E_{\lambda}$, we have $T(u) = \lambda u$ and $T(v) = \lambda v$. Then $T(u+v) = T(u) + T(v) = \lambda u + \lambda v = \lambda (u+v)$, and so $u+v \in E_{\lambda}$
- **9.20.** Prove Theorem 9.6: The following are equivalent: (i) The scalar λ is an eigenvalue of A.
 - (ii) The matrix $\lambda I A$ is singular.
 - (iii) The scalar λ is a root of the characteristic polynomial $\Delta(t)$ of A.

The scalar λ is an eigenvalue of A if and only if there exists a nonzero vector v such that

$$Av = \lambda v$$
 or $(\lambda I)v - Av = 0$ or $(\lambda I - A)v = 0$

or $\lambda I - A$ is singular. In such a case, λ is a root of $\Delta(t) = |tI - A|$. Also, v is in the eigenspace E_{λ} of λ if and only if the above relations hold. Hence, v is a solution of $(\lambda I - A)X = 0$.

9.21. Prove Theorem 9.8': Suppose v_1, v_2, \ldots, v_n are nonzero eigenvectors of T belonging to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Then v_1, v_2, \ldots, v_n are linearly independent.

Suppose the theorem is not true. Let v_1, v_2, \ldots, v_s be a minimal set of vectors for which the theorem is not true. We have s > 1, because $v_1 \neq 0$. Also, by the minimality condition, v_2, \ldots, v_s are linearly independent. Thus, v_1 is a linear combination of v_2, \ldots, v_s , say,

$$v_1 = a_2 v_2 + a_3 v_3 + \dots + a_s v_s \tag{1}$$

(where some $a_k \neq 0$). Applying T to (1) and using the linearity of T yields

$$T(v_1) = T(a_2v_2 + a_3v_3 + \dots + a_sv_s) = a_2T(v_2) + a_3T(v_3) + \dots + a_sT(v_s)$$
 (2)

Because v_i is an eigenvector of T belonging to λ_i , we have $T(v_i) = \lambda_i v_i$. Substituting in (2) yields

$$\lambda_1 v_1 = a_2 \lambda_2 v_2 + a_3 \lambda_3 v_3 + \dots + a_s \lambda_s v_s \tag{3}$$

Multiplying (1) by λ_1 yields

$$\lambda_1 v_1 = a_2 \lambda_1 v_2 + a_3 \lambda_1 v_3 + \dots + a_s \lambda_1 v_s \tag{4}$$

Setting the right-hand sides of (3) and (4) equal to each other, or subtracting (3) from (4) yields

$$a_2(\lambda_1 - \lambda_2)v_2 + a_3(\lambda_1 - \lambda_3)v_3 + \dots + a_s(\lambda_1 - \lambda_s)v_s = 0$$
(5)

Because v_2, v_3, \dots, v_s are linearly independent, the coefficients in (5) must all be zero. That is,

$$a_2(\lambda_1 - \lambda_2) = 0,$$
 $a_3(\lambda_1 - \lambda_3) = 0,$..., $a_s(\lambda_1 - \lambda_s) = 0$

However, the λ_i are distinct. Hence $\lambda_1 - \lambda_j \neq 0$ for j > 1. Hence, $a_2 = 0$, $a_3 = 0, \dots, a_s = 0$. This contradicts the fact that some $a_k \neq 0$. The theorem is proved.

9.22. Prove Theorem 9.9. Suppose $\Delta(t) = (t - a_1)(t - a_2) \dots (t - a_n)$ is the characteristic polynomial of an *n*-square matrix A, and suppose the *n* roots a_i are distinct. Then A is similar to the diagonal matrix $D = \text{diag}(a_1, a_2, \dots, a_n)$.

Let v_1, v_2, \ldots, v_n be (nonzero) eigenvectors corresponding to the eigenvalues a_i . Then the n eigenvectors v_i are linearly independent (Theorem 9.8), and hence form a basis of K^n . Accordingly, A is diagonalizable (i.e., A is similar to a diagonal matrix D), and the diagonal elements of D are the eigenvalues a_i .

9.23. Prove Theorem 9.10': The geometric multiplicity of an eigenvalue λ of T does not exceed its algebraic multiplicity.

Suppose the geometric multiplicity of λ is r. Then its eigenspace E_{λ} contains r linearly independent eigenvectors v_1, \ldots, v_r . Extend the set $\{v_i\}$ to a basis of V, say, $\{v_i, \ldots, v_r, w_1, \ldots, w_s\}$. We have

Then $M = \begin{bmatrix} \lambda I_r & A \\ 0 & B \end{bmatrix}$ is the matrix of T in the above basis, where $A = [a_{ij}]^T$ and $B = [b_{ij}]^T$.

Because M is block diagonal, the characteristic polynomial $(t - \lambda)^r$ of the block λI_r must divide the characteristic polynomial of M and hence of T. Thus, the algebraic multiplicity of λ for T is at least r, as required.

Diagonalizing Real Symmetric Matrices and Quadratic Forms

9.24. Let $A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$. Find an orthogonal matrix P such that $D = P^{-1}AP$ is diagonal.

First find the characteristic polynomial $\Delta(t)$ of A. We have

$$\Delta(t) = t^2 - \text{tr}(A) \ t + |A| = t^2 - 6t - 16 = (t - 8)(t + 2)$$

Thus, the eigenvalues of A are $\lambda = 8$ and $\lambda = -2$. We next find corresponding eigenvectors. Subtract $\lambda = 8$ down the diagonal of A to obtain the matrix

$$M = \begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix}$$
, corresponding to $\begin{aligned} -x + 3y &= 0 \\ 3x - 9y &= 0 \end{aligned}$ or $x - 3y = 0$

A nonzero solution is $u_1 = (3, 1)$.

Subtract $\lambda = -2$ (or add 2) down the diagonal of A to obtain the matrix

$$M = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$$
, corresponding to $\begin{cases} 9x + 3y = 0 \\ 3x + y = 0 \end{cases}$ or $3x + y = 0$

A nonzero solution is $u_2 = (1, -3)$.

As expected, because A is symmetric, the eigenvectors u_1 and u_2 are orthogonal. Normalize u_1 and u_2 to obtain, respectively, the unit vectors

$$\hat{u}_1 = (3/\sqrt{10}, 1/\sqrt{10})$$
 and $\hat{u}_2 = (1/\sqrt{10}, -3/\sqrt{10})$

Finally, let P be the matrix whose columns are the unit vectors \hat{u}_1 and \hat{u}_2 , respectively. Then

$$P = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \quad \text{and} \quad D = P^{-1}AP = \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix}$$

As expected, the diagonal entries in D are the eigenvalues of A.

9.25. Let
$$B = \begin{bmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{bmatrix}$$
. (a) Find all eigenvalues of B .

- (b) Find a maximal set S of nonzero orthogonal eigenvectors of B.
- (c) Find an orthogonal matrix P such that $D = P^{-1}BP$ is diagonal.
- (a) First find the characteristic polynomial of B. We have

$$tr(B) = 6$$
, $|B| = 400$, $B_{11} = 0$, $B_{22} = -60$, $B_{33} = -75$, so $\sum_{i} B_{ii} = -135$

Hence, $\Delta(t) = t^3 - 6t^2 - 135t - 400$. If $\Delta(t)$ has an integer root it must divide 400. Testing t = -5, by synthetic division, yields

Thus, t + 5 is a factor of $\Delta(t)$, and $t^2 - 11t - 80$ is a factor. Thus,

$$\Delta(t) = (t+5)(t^2 - 11t - 80) = (t+5)^2(t-16)$$

The eigenvalues of B are $\lambda = -5$ (multiplicity 2), and $\lambda = 16$ (multiplicity 1).

(b) Find an orthogonal basis for each eigenspace. Subtract $\lambda = -5$ (or, add 5) down the diagonal of B to obtain the homogeneous system

$$16x - 8y + 4z = 0$$
, $-8x + 4y - 2z = 0$, $4x - 2y + z = 0$

That is, 4x - 2y + z = 0. The system has two independent solutions. One solution is $v_1 = (0, 1, 2)$. We seek a second solution $v_2 = (a, b, c)$, which is orthogonal to v_1 , such that

$$4a - 2b + c = 0$$
, and also $b - 2c = 0$

One such solution is $v_2 = (-5, -8, 4)$.

Subtract $\lambda = 16$ down the diagonal of B to obtain the homogeneous system

$$-5x - 8y + 4z = 0$$
, $-8x - 17y - 2z = 0$, $4x - 2y - 20z = 0$

This system yields a nonzero solution $v_3 = (4, -2, 1)$. (As expected from Theorem 9.13, the eigenvector v_3 is orthogonal to v_1 and v_2 .)

Then v_1, v_2, v_3 form a maximal set of nonzero orthogonal eigenvectors of B.

(c) Normalize v_1, v_2, v_3 to obtain the orthonormal basis:

$$\hat{v}_1 = v_1/\sqrt{5},$$
 $\hat{v}_2 = v_2/\sqrt{105},$ $\hat{v}_3 = v_3/\sqrt{21}$

Then P is the matrix whose columns are $\hat{v}_1, \hat{v}_2, \hat{v}_3$. Thus,

$$P = \begin{bmatrix} 0 & -5/\sqrt{105} & 4/\sqrt{21} \\ 1/\sqrt{5} & -8/\sqrt{105} & -2/\sqrt{21} \\ 2/\sqrt{5} & 4/\sqrt{105} & 1/\sqrt{21} \end{bmatrix} \quad \text{and} \quad D = P^{-1}BP = \begin{bmatrix} -5 & \\ & -5 & \\ & & 16 \end{bmatrix}$$

9.26. Let $q(x,y) = x^2 + 6xy - 7y^2$. Find an orthogonal substitution that diagonalizes q.

Find the symmetric matrix A that represents q and its characteristic polynomial $\Delta(t)$. We have

$$A = \begin{bmatrix} 1 & 3 \\ 3 & -7 \end{bmatrix}$$
 and $\Delta(t) = t^2 + 6t - 16 = (t - 2)(t + 8)$

The eigenvalues of A are $\lambda = 2$ and $\lambda = -8$. Thus, using s and t as new variables, a diagonal form of q is

$$q(s,t) = 2s^2 - 8t^2$$

The corresponding orthogonal substitution is obtained by finding an orthogonal set of eigenvectors of A.

(i) Subtract $\lambda = 2$ down the diagonal of A to obtain the matrix

$$M = \begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix}$$
, corresponding to $\begin{aligned} -x + 3y &= 0 \\ 3x - 9y &= 0 \end{aligned}$ or $-x + 3y = 0$

A nonzero solution is $u_1 = (3, 1)$.

(ii) Subtract $\lambda = -8$ (or add 8) down the diagonal of A to obtain the matrix

$$M = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$$
, corresponding to $\begin{cases} 9x + 3y = 0 \\ 3x + y = 0 \end{cases}$ or $3x + y = 0$

A nonzero solution is $u_2 = (-1, 3)$.

As expected, because A is symmetric, the eigenvectors u_1 and u_2 are orthogonal.

Now normalize u_1 and u_2 to obtain, respectively, the unit vectors

$$\hat{u}_1 = (3/\sqrt{10}, 1/\sqrt{10})$$
 and $\hat{u}_2 = (-1/\sqrt{10}, 3/\sqrt{10}).$

Finally, let P be the matrix whose columns are the unit vectors \hat{u}_1 and \hat{u}_2 , respectively, and then $[x,y]^T = P[s,t]^T$ is the required orthogonal change of coordinates. That is,

$$P = \begin{vmatrix} 3/\sqrt{10} & -1/\sqrt{10} \\ 1/\sqrt{10} & 3/\sqrt{10} \end{vmatrix} \quad \text{and} \quad x = \frac{3s - t}{\sqrt{10}}, \quad y = \frac{s + 3t}{\sqrt{10}}$$

One can also express s and t in terms of x and y by using $P^{-1} = P^{T}$. That is,

$$s = \frac{3x + y}{\sqrt{10}}, \qquad t = \frac{-x + 3t}{\sqrt{10}}$$

Minimal Polynomial

9.27. Let
$$A = \begin{bmatrix} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5 \end{bmatrix}$. The characteristic polynomial of both matrices is

$$\Delta(t) = (t-2)(t-1)^2$$
. Find the minimal polynomial $m(t)$ of each matrix.

The minimal polynomial m(t) must divide $\Delta(t)$. Also, each factor of $\Delta(t)$ (i.e., t-2 and t-1) must also be a factor of m(t). Thus, m(t) must be exactly one of the following:

$$f(t) = (t-2)(t-1)$$
 or $g(t) = (t-2)(t-1)^2$

(a) By the Cayley–Hamilton theorem, $g(A) = \Delta(A) = 0$, so we need only test f(t). We have

$$f(A) = (A - 2I)(A - I) = \begin{bmatrix} 2 & -2 & 2 \\ 6 & -5 & 4 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 & 2 \\ 6 & -4 & 4 \\ 3 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, $m(t) = f(t) = (t-2)(t-1) = t^2 - 3t + 2$ is the minimal polynomial of A.

(b) Again $g(B) = \Delta(B) = 0$, so we need only test f(t). We get

$$f(B) = (B - 2I)(B - I) = \begin{bmatrix} 1 & -2 & 2 \\ 4 & -6 & 6 \\ 2 & -3 & 3 \end{bmatrix} \begin{bmatrix} 2 & -2 & 2 \\ 4 & -5 & 6 \\ 2 & -3 & 4 \end{bmatrix} = \begin{bmatrix} -2 & 2 & -2 \\ -4 & 4 & -4 \\ -2 & 2 & -2 \end{bmatrix} \neq 0$$

Thus, $m(t) \neq f(t)$. Accordingly, $m(t) = g(t) = (t-2)(t-1)^2$ is the minimal polynomial of B. [We emphasize that we do not need to compute g(B); we know g(B) = 0 from the Cayley–Hamilton theorem.]

9.28. Find the minimal polynomial m(t) of each of the following matrices:

(a)
$$A = \begin{bmatrix} 5 & 1 \\ 3 & 7 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}$, (c) $C = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$

- (a) The characteristic polynomial of A is $\Delta(t) = t^2 12t + 32 = (t 4)(t 8)$. Because $\Delta(t)$ has distinct factors, the minimal polynomial $m(t) = \Delta(t) = t^2 12t + 32$.
- (b) Because B is triangular, its eigenvalues are the diagonal elements 1, 2, 3; and so its characteristic polynomial is $\Delta(t) = (t-1)(t-2)(t-3)$. Because $\Delta(t)$ has distinct factors, $m(t) = \Delta(t)$.
- (c) The characteristic polynomial of C is $\Delta(t) = t^2 6t + 9 = (t 3)^2$. Hence the minimal polynomial of C is f(t) = t 3 or $g(t) = (t 3)^2$. However, $f(C) \neq 0$; that is, $C 3I \neq 0$. Hence,

$$m(t) = g(t) = \Delta(t) = (t-3)^2.$$

9.29. Suppose $S = \{u_1, u_2, \dots, u_n\}$ is a basis of V, and suppose F and G are linear operators on V such that [F] has 0's on and below the diagonal, and [G] has $a \neq 0$ on the superdiagonal and 0's elsewhere. That is,

$$[F] = \begin{bmatrix} 0 & a_{21} & a_{31} & \dots & a_{n1} \\ 0 & 0 & a_{32} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{n,n-1} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \qquad [G] = \begin{bmatrix} 0 & a & 0 & \dots & 0 \\ 0 & 0 & a & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

Show that (a) $F^n = 0$, (b) $G^{n-1} \neq 0$, but $G^n = 0$. (These conditions also hold for [F] and [G].)

(a) We have $F(u_1) = 0$ and, for r > 1, $F(u_r)$ is a linear combination of vectors preceding u_r in S. That is,

$$F(u_r) = a_{r1}u_1 + a_{r2}u_2 + \dots + a_{r,r-1}u_{r-1}$$

Hence, $F^2(u_r) = F(F(u_r))$ is a linear combination of vectors preceding u_{r-1} , and so on. Hence, $F^r(u_r) = 0$ for each r. Thus, for each r, $F^n(u_r) = F^{n-r}(0) = 0$, and so $F^n = 0$, as claimed.

- (b) We have $G(u_1) = 0$ and, for each k > 1, $G(u_k) = au_{k-1}$. Hence, $G^r(u_k) = a^r u_{k-r}$ for r < k. Because $a \ne 0$, $a^{n-1} \ne 0$. Therefore, $G^{n-1}(u_n) = a^{n-1}u_1 \ne 0$, and so $G^{n-1} \ne 0$. On the other hand, by (a), $G^n = 0$.
- **9.30.** Let B be the matrix in Example 9.12(a) that has 1's on the diagonal, a's on the superdiagonal, where $a \neq 0$, and 0's elsewhere. Show that $f(t) = (t \lambda)^n$ is both the characteristic polynomial $\Delta(t)$ and the minimum polynomial m(t) of A.

Because A is triangular with λ 's on the diagonal, $\Delta(t) = f(t) = (t - \lambda)^n$ is its characteristic polynomial. Thus, m(t) is a power of $t - \lambda$. By Problem 9.29, $(A - \lambda I)^{r-1} \neq 0$. Hence, $m(t) = \Delta(t) = (t - \lambda)^n$.

9.31. Find the characteristic polynomial $\Delta(t)$ and minimal polynomial m(t) of each matrix:

(a)
$$M = \begin{bmatrix} 4 & 1 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$
, (b) $M' = \begin{bmatrix} 2 & 7 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4 \end{bmatrix}$

(a) M is block diagonal with diagonal blocks

$$A = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$$

The characteristic and minimal polynomial of A is $f(t) = (t-4)^3$ and the characteristic and minimal polynomial of B is $g(t) = (t-4)^2$. Then

$$\Delta(t) = f(t)g(t) = (t-4)^5$$
 but $m(t) = LCM[f(t), g(t)] = (t-4)^3$

(where LCM means least common multiple). We emphasize that the exponent in m(t) is the size of the largest block.

(b) Here M' is block diagonal with diagonal blocks $A' = \begin{bmatrix} 2 & 7 \\ 0 & 2 \end{bmatrix}$ and $B' = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$ The characteristic and minimal polynomial of A' is $f(t) = (t-2)^2$. The characteristic polynomial of B' is $g(t) = t^2 - 5t + 6 = (t-2)(t-3)$, which has distinct factors. Hence, g(t) is also the minimal polynomial of B. Accordingly,

$$\Delta(t) = f(t)g(t) = (t-2)^3(t-3)$$
 but $m(t) = LCM[f(t), g(t)] = (t-2)^2(t-3)$

9.32. Find a matrix A whose minimal polynomial is $f(t) = t^3 - 8t^2 + 5t + 7$.

Simply let $A = \begin{bmatrix} 0 & 0 & -7 \\ 1 & 0 & -5 \\ 0 & 1 & 8 \end{bmatrix}$, the companion matrix of f(t) [defined in Example 9.12(b)].

9.33. Prove Theorem 9.15: The minimal polynomial m(t) of a matrix (linear operator) A divides every polynomial that has A as a zero. In particular (by the Cayley–Hamilton theorem), m(t) divides the characteristic polynomial $\Delta(t)$ of A.

Suppose f(t) is a polynomial for which f(A) = 0. By the division algorithm, there exist polynomials q(t) and r(t) for which f(t) = m(t)q(t) + r(t) and r(t) = 0 or $\deg r(t) < \deg m(t)$. Substituting t = A in this equation, and using that f(A) = 0 and m(A) = 0, we obtain r(A) = 0. If $r(t) \neq 0$, then r(t) is a polynomial of degree less than m(t) that has A as a zero. This contradicts the definition of the minimal polynomial. Thus, r(t) = 0, and so f(t) = m(t)q(t); that is, m(t) divides f(t).