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DIFFRACTION OF WAVES BY CRYSTALLINE 

SOLIDS
� We know that a crystal is a periodic structure with unit 

cells that are repeated regularly. 

Crystal Structure Information
can be obtained by understanding the diffraction 
patterns of waves (of appropriate wavelengths)
interacting with the solid. Analysis of such diffraction 
patterns is a main topic of this chapter. patterns is a main topic of this chapter. 

It is common to study crystal structures with 

X-rays, Neutrons & Electrons.
Of course, the general principles are the same for each type of wave.



� The results of crystal diffraction depend on 
the crystal structure and on the wavelength.

�At optical wavelengths such as 5,000 Ǻ, 
the superposition of waves scattered 
elastically by the individual atoms of a 
crystal
results in ordinary optical refractionresults in ordinary optical refraction.

�When the wavelength of the radiation is 
comparable to or smaller than the lattice 
constant, diffracted beams occur in 
directions quite different from the 
direction of the incident radiation.



Wavelength vs Energy
Quantum Mechanical Result

The energy & momentum of a 

particle with De Broglie 
Wavelength λ are

E = (hc/λ)  &   p = (h/ λ)
(h = Planck’s constant) ( ) 

Diffraction from crystal planes 

requires λ to be of the same 

order of magnitude as the 

distance d between planes: 

d ≈ a few Ångstroms
so λ must also be in that range. 

This gives 

Photons: E ≈ keV
Neutrons: E ≈ 0.01 eV
Electrons: E ≈ 100 eV



Typical X-Ray Experiment & Data

X-Ray Diffraction Resultsfor Powdered Si

Monochromator

Ray Diffraction Resultsfor Powdered Si
(Relative Intensities are Due to the 2 Atom Basis.)



� Crystal Structure can be found by studying the Diffraction 
Pattern of a beam of radiation incident on the crystal. 

� Beam diffraction takes place only in certain specific 
directions, much as light is diffracted by a grating.

� By measuring the directions of the diffraction and the 
corresponding intensities, information about the 
Crystal Structure responsible for the diffraction.

X-Ray Diffraction
� W.H. & W.L. Bragg (father & son!) were the first to 

develop a simple explanation of the X-Ray
diffracted beams from a crystal.

� The Bragg derivation is simple but it is convincing 
since only it reproduces the result that agrees with 
observations.



X-RAY DIFFRACTION & THE BRAGG EQUATION

� English physicists Sir W.H. Bragg 
& his son W.L. Bragg developed a 
theory in 1913 to explain why the 
cleavage faces of crystals
appear to reflect X-rays 

ONLY at certain angles ofangles of

incidence θ.
This is an example of 
X-Ray Diffraction

Sir William H. Bragg
(1862-1942)

Sir William L. Bragg
(1890-1971) 

In 1915, the father & son were awarded the Nobel prize in physics

“For their services in the analysis of  

crystal structure by means of X-Rays".
(The younger Bragg was fighting in WWI when he received the Nobel Prize!)



CRYSTAL STRUCTURE 

DETERMINATIONA Crystal behaves as a 3-D

Diffraction Grating for X-Rays
� In a diffraction experiment, the spacing of lines on the 

grating can be found from the separation of the 
diffraction maxima. Also, information about the 
structure of the lines on the grating can be obtained 
by measuring the relative intensities of different orders

� Similarly, measurement of the separation of the X-Ray
diffraction maxima from a crystal enables the 
determination of the unit cell size. Also, from the 
intensities of diffracted beams, information can be 
obtained about the arrangement of atoms within the cell.



� For X-Rays, the wavelength λ is 
typically ≈ a few Ångstroms, 
which is comparable to the 
interatomic spacing (distances 
between atoms or ions) in crystals.

� So, for crystal structure 

X-Ray Crystallography

determination, the X-Rays
have to be of energy:
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BRAGG LAW
� Consider crystals as made up of parallel planes of 

atoms. Incident waves are reflected specularly 
from parallel planes of atoms in the crystal, with 
each plane reflecting only a very small fraction of 
the radiation, like a lightly silvered mirror.

� In mirrorlike reflection, the angle of incidence is 
equal to the angle of reflection.

өө



DIFFRACTION CONDITION
� The diffracted beams are found to have maximum intensity when the

Reflections from Planes of Atoms

Interfere Constructively.
Assume elastic scattering, in which the X-Ray energy isn’t changed on reflection.

� So, when X-Rays strike a crystal, we want the condition for constructive 
interference between reflected rays from different planes. That is, we 

want the condition for the reflected X-rays to be in-phase with 

one another so that they that add together constructively. one another so that they that add together constructively. 

θ

Incident Angle ≡ θ
Reflected  angle ≡ θ

X-ray Wavelength ≡ λ

Total Diffracted

Angle ≡ 2θ

θ 2θ



� The two X-Ray beams travel different distances. The difference in the 
distances traveled is related to the distance between the adjacent layers.

� See Figure. Connecting the two beams with perpendicular lines shows the 
difference in the distance traveled between top & bottom beams.

� In the figure, the length DE is the same as EF, so the total distance traveled 
by the bottom wave is expressed by:

� Constructive interference of the radiation from successive planes occurs 
when the path difference is an integral number of wavelengths.

� Note that line CE = d = distance between the 2 layers
� So:

Bragg Law

� So:
� Giving: 2 sinDE EF d θ+ =sinDE d θ= sinEF d θ=

2 sinn dλ θ= This is called the Bragg Law



BRAGG LAW (BRAGG EQUATION)

d = Spacing of the Planes
n = Order of Diffraction.

� Because sin θ ≤ 1,
Bragg reflection can only occur for

λθ nd =sin2

Bragg reflection can only occur for

wavelengths satisfying:
� This is why visible light can’t be used. No diffraction 

occurs when this condition is not satisfied.
� The diffracted beams (reflections) from any set 

of lattice planes can only occur at particular 
angles predicted by Bragg’s Law.

dn 2≤λ



�Now, a similar, but slightly different treatment: 
�See Figure: Consider X-Rays incident at angle θ on 

one of the lattice planes. Look at the
Scattering of these X-Rays from

Adjacent Lattice Points
� There will be Constructive Interference of the waves 

scattered from the two successive lattice points A & B in 
the plane if the distances AC and DB are equal.the plane if the distances AC and DB are equal.

θθ

A B

CD

2θ



SO, LOOK AT THE CONDITIONS FOR

CONSTRUCTIVE INTERFERENCE
OF WAVES SCATTERED FROM THE SAME PLANE.

� If the scattered wave makes the same angle with the plane as the incident wave (see figure on the previous slide):

The diffracted wave will look as if it was reflected from the The diffracted wave will look as if it was reflected from the 
plane.

• It is common to consider

Scattering from Lattice Points Rather than Atoms

because it is the basis of atoms associated with each 
lattice point that is the true repeat unit of the crystal.

• The lattice point is an analogue of the line on an optical 
diffraction grating. The basis represents the structure of 



DIFFRACTION MAXIMA

� Coherent scattering from a single plane is not sufficient 
to obtain a diffraction maximum. It is also necessary

That Successive Planes also 

Scatter in Phase.

• This will be the case if the path difference for 

scattering off of two adjacent planes is an 

integral number of wavelengths. That is, if

λθ nd =sin2



Additional Notes on Bragg Reflections
• Although the reflection from each plane is 

specular,

Only for certain values of θ will the 

reflections from all planes add up in

phase to give a strong reflected beam.phase to give a strong reflected beam.
• Each plane reflects only 10-3 to 10-5 of the 

incident radiation, i.e. it is not a perfect reflector.

• So, 103 to 105 planes contribute to the formation 
of the Bragg-reflected beam in a perfect crystal.

• The composition of the basis determines the relative 

intensity of the various orders of diffraction.



• Now, consider X-Ray Scattering from 

crystals & analyze the

Amplitude of the Scattered Waves.
• The electronic number density n(r) in the 

Scattered Wave Amplitude ⇒
Reciprocal Lattice Vectors

• The electronic number density n(r) in the 

crystal is a periodic function in space:

n(r) = n(r +T)
with period T equal to a

Direct Lattice Translation Vector:
T = n1a1 + n2a2 + n3a3



• The electronic number density n(r) in the crystal is 

periodic in space: n(r) = n(r +T), with T equal to a 

Direct Lattice Translation Vector:
T = n1a1 + n2a2 + n3a3

• So, n(r) can be expressed as a (spatial) Fourier series 

expansion. So, for a one-dimensional model crystal, n(x)
can be represented ascan be represented as

where the p’s are integers and the Fourier coefficient of 

the number density can be written as:

[ ] apxi

p
p

p
pp enapxSapxCnxn

/2

0
0 )/2sin()/2cos()(

π

>
∑=∑ π+π+=

∫= π−a
apxi

ap exdxnn
0

/21 )(



• In 3 Dimensions, the Fourier coefficient of the

number density has the form:
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Reciprocal Lattice Vectors
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Reciprocal Lattice Vectors
• As we said, the electronic density n(r) is required

to be invariant (periodic) under lattice translations:

n(r) = n(r +T)          (2)
• That is, it must satisfy: 

(3)



• Only The Set of Reciprocal Lattice Vectors G that

satisfy both (1) & (3) (previous slide) lead to an electronic
number density n(r) that is invariant under lattice translations. 

• It’s not too hard to show that the set of G’s that meet this

requirement are of the form

332211 bbbG vvv ++=
where υ1, υ2 & υ3 are integers & the bi’s are vectors
which are defined as:
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• The aj’s are the primitive lattice vectors for the crystal 

structure. It also can be shown that

The Set of Reciprocal Lattice Vectors

G is a Bravais Lattice!

which are defined as:



The Diffraction Condition (Bragg’s 
Law) in the Reciprocal Lattice

• An X-Ray diffraction pattern of the lattice

Can be interpreted as a map of the

reciprocal lattice of the crystal.reciprocal lattice of the crystal.
This statement is consistent with the following theorem:

The Set of Reciprocal Lattice 

Vectors G determines 

the possible X-ray reflections.



• An X-Ray diffraction pattern of the lattice

Can be interpreted as a map of the

reciprocal lattice of the crystal.
In other words

The Set of Reciprocal Lattice Vectors G
determines the possible X-ray reflections.

Wavevector  Representation The scattered wave Wavevector  Representation
of  X-ray Scattering: k → k´
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The scattered wave 

amplitude is:

When G = k (wavevector),
then F = V nG.
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This result is called 

The Laue Condition

•Now, look at this condition for elastic 

scattering (specular reflection):

The Laue Condition.
It’s not too difficult to show that

it is 100% equivalent to

The Bragg Law!



The result that k = G can also be expressed to give the relations that 

are called The Laue Relations or the Laue Equations. These are 

obtained by taking the dot product of both Δk & G with 

a1, a2 & a3. The Laue Equations are:
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The Laue Condition is:.

This is 100% equivalent to The Bragg Law!

G
�

2θ

k
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By changing θ, X-Ray diffraction 

can be used to map all

Reciprocal Lattice Vectors.

This geometric method of finding

Reciprocal Lattice Vectors is called

The Ewald Construction



Brillouin Zones & Reciprocal Lattices
for the SC, BCC & FCC Lattices

Brillouin Zones
The First Brillouin Zone (BZ) is defined as the Wigner-

Seitz primitive cell in the reciprocal lattice. It gives a geometric 

interpretation, in the reciprocal lattice, of the diffraction condition.

• The Brillouin construction exhibits 

all wavevectors k that can beall wavevectors k that can be

Bragg reflected
by the crystal.

• The constructions divide the 

reciprocal space into fragments, out 

of which 

The First Brillouin Zone
is of the greatest importance.



Reciprocal Lattices for the SC, FCC & BCC Lattices
Direct Lattice Reciprocal Lattice Volume
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BRILLOUIN ZONES: SQUARE LATTICE



First 4 Brillouin Zones: Square Lattice



“All” Brillouin Zones: Square Lattice??



First Brillouin Zone: BCC Lattice



First Brillouin Zone: FCC Lattice



Reciprocal Lattice for Aluminium



Fourier Analysis of a Basis
Structure Factor & Atomic Form Factor.

• Earlier, we said that the scattering amplitude for a unit 

cell has the form:
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The quantity SG is called The Structure Factor. It is defined 
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where s is the # of atoms in the unit cell.

The quantity G
as an integral over a single unit cell. If the electron density is 

written as a superposition of the electron densities in the cell, 

taking into account the # of atoms in the basis, it has the form:



Using this, The Structure Factor has the form:
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The quantity fj is called The Atomic Form Factor. 

Now specifying G and rj as
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Now specifying j

gives:

Note that SG can be complex, because the scattering 

intensity involves the magnitude squared of SG.



• If (& only if!) the electron density of the 

atom is spherically-symmetric, the atomic 

form factor fj can be written:
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This means that when the electronic density has the formThis means that when the electronic density has the form

n(r) = Zg(r), then fj = CZ
(C = constant, Z = atomic charge,)

That is, in this case, fj is the ratio of radiation 

amplitude scattered by the electron distribution 

to that scattered by a localized electron. 



Examples of Structure Factor Calculations
BCC lattice

In a BCC lattice, there are 2 atoms per cubic unit cell 

located at (000) & (½½ ½). The structure factor is then:
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This structure factor has its Maximum SG = 2fThis structure factor has its Maximum, SG = 2f
when the sum of the indices is even. That is when:

υ1+ υ2+ υ3 =  2n (n = integer)

This structure factor Vanishes, SG = 0 when the 

sum of the indices is odd. That is when:

υ1+ υ2+ υ3 =  2n + 1 (n = integer)



Examples of Structure Factor Calculations
FCC lattice

For a FCC lattice, there 4 atoms per cubic unit cell 

located at (000), (0½½), (½ 0½) & (½½0). The structure 

factor is then:
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This structure factor has its Maximum, SG = 4f
when all indices υ1, υ2, υ3 are even or odd,

This structure factor Vanishes, SG = 0 when the 

indices are partially even & partially odd.

To summarize, in a FCC lattice, no reflections occur 

when the indices are partially even and partially odd.



Observed & Calculated 
Atomic Form Factor for Aluminium



From Ch. 1:
Lattice Planes & Miller Indices

• A Lattice Plane is any plane containing at least 

three non-colinear Bravais lattice points.

• Generally, a lattice plane is described by giving a 

vector normal to that plane, & there happens to be vector normal to that plane, & there happens to be 

reciprocal lattice vectors normal to any lattice plane.  

• Choose the the shortest such reciprocal lattice 

vector to arrive at the Miller indices of the plane.

• Thus a plane with Miller indices h, k, l, is normal 

to the reciprocal lattice vector hb1 + kb2 + lb3.



Imagine representing a crystal structure on a grid

(lattice) which is a 3D array of points (lattice

points). Now, imagine dividing the grid into sets

of “planes” in different orientations:

Review of Miller Indices Continued



Recall That
• All planes in a set are identical.

• The perpendicular distance between pairs of 

adjacent planes is the d-spacing.

• Miller Indices define the orientation of the plane 

within the unit cell.

Review of Miller Indices Continued

within the unit cell.

• The Miller Indices define a set of planes parallel 

to one another: (002) planes are parallel to (001) 

planes, and so on.

• So, in analyzing crystal diffraction results, the 

lattice planes are labeled with their Miller 
Indices (hkl) for their identification.



LABELLING THE REFLECTION PLANES

Label reflections with the Miller
indices of the planes.

� A beam corresponding to a diffraction order of n >1
could be identified by a statement such as
“The nth-order reflections from the (hkl) planes”

or a

“(nh nk nl) reflection”.“(nh nk nl) reflection”.

p

Example
A 3rd order reflection from the (111) plane is 

“a (333) reflection”



NTH ORDER DIFFRACTION OFF OF (HKL) PLANES

�Rewrite the Bragg Law in the form:

l

� This makes
the nth order diffraction off of (hkl) 

planes of spacing “d” look like

λθ =







sin2

n

d

planes of spacing “d” look like
the 1st order diffraction off planes of 

spacing (d/n).
�Planes of this reduced spacing would 

have Miller indices (nh nk nl).



X-RAY STRUCTURE ANALYSIS OF NACL & KCL

General Prıncıples of X-Ray Structure Analysıs
Applied to Find the Crystal Structures

of NaCl & KCl
� The Braggs measured the intensity of specular reflection 

from cleaved faces of NaCl & KCl crystals.
� They found 6 values of  θ for which a sharp peak in 

intensity occurred, corresponding to 3 characteristic intensity occurred, corresponding to 3 characteristic 
wavelengths (K,L and M X-Rays) in 1st & 2nd order (n = 1 
& n = 2 in the Bragg Law)

� By repeating the experiment with a different crystal face 
they could use the Bragg Equation to find, for example,
the ratio of (100) & (111) plane spacings, information 
that confirmed the cubic symmetry of the atomic 
arrangement.



DETAILS OF THE STRUCTURE
� Details of the crystal structure were then found. They 

also discovered some surprising differences between 
the diffraction patterns for NaCl and KCl.

A Major Difference

was the absence of (111) reflections in 
KCl compared to weak but detectable 
(111) reflections in NaCl.(111) reflections in NaCl.

• The explanation for this is that the K 
and Cl ions both have the argon electron 
shell structure and hence scatter x-rays 
almost equally. However, the Na and Cl 
ions have very different scattering 
strengths. The (111) reflection in NaCl 
corresponds to a one wavelength path 
difference between neighboring (111) 
planes



XRD Pattern
for NaCl

Measurement Results

XRD Pattern
for KCl



d - Spacing Formula

Orthogonal
Crystal Systems

d ≡ Distance between Parallel Lattice

Planes with Miller Indices (hkl)
Its not difficult to prove the following:

Cubic
Crystal Systems

(α = β = γ = 90°)
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(a = b = c)

A cubic crystal system is a special case of an 

orthogonal crystal system.



BRAGG EQUATION
� Since Bragg's Law applies to all sets of crystal planes,

the lattice structure can be found from the diffraction 
pattern, making use of general expressions for the 
spacing of the planes in terms of their Miller 
indices (hkl), along with the Bragg Law. 

� For cubic structures:

2 sind nθ λ
a

d =2 sind nθ λ= 2 2 2
d

h k l
=

+ +
• Note that the smaller the spacing, the higher 

the angle of diffraction, i.e. the spacing of peaks in 
the diffraction pattern is inversely proportional to the 
spacing of the planes in the lattice. The diffraction 
pattern will reflect the symmetry properties of the 
lattice. 



SOME RESULTS FOR D-2

FOR SOME NON-CUBIC LATTICES



BRAGG EQUATION
� A simple example is the difference between the 

series of (n00) reflections for a simple cubic and 

a body centred cubic lattice. For the simple cubic 
lattice, all values of n will give Bragg peaks.

� However, for the body centered cubic lattice the (100) 
planes are interleaved by an equivalent set at the 
halfway position. At the angle where Bragg's Law 
would give the (100) reflection the interleaved planes 
will give a reflection exactly out of phase with that will give a reflection exactly out of phase with that 
from the primary planes, which will 

Exactly cancel the signal.

• So, in the BCC lattice, there is no signal from (n00) 

planes with odd values of n. This kind of argument 
leads to rules for identifying the lattice symmetry from 
"missing" reflections, which are often quite simple. 



Another (Equivalent) Treatment
of The Reciprocal Lattice

• From another internet source. Slightly different notation, sorry! 

• Suppose we have a Bravias Lattice, with translational 
vector R, & a plane wave, eik·r.  Generally, for a given k, 

the plane wave will not have the periodicity of the 

Bravais lattice, R.  However,

for a given R, there will be a set of wavefor a given R, there will be a set of wave

vectors, K, that will yield plane waves with 

the periodicity of the Bravais lattice.

eiK·r = eiK·(r + R) = eiK·r eiK·R

thus,

eiK·R = 1 or K·R = 2nπ



The Reciprocal Lattice
• The Reciprocal lattice is a Bravais lattice.

A brief proof:

bi = 2π(aj × ak )/(ai • aj × ak) then bi • aj = 2 π δij.
Furthermore, any vector, k, can be written as

k = k1b1 + k2b2 + k3b3.
For any vector in the direct lattice, R,

k • R = 2 π(k1n1 + k2n2 + k2n2 ),
so for eik • R to be unity for all R, k • R must be 2π times an 

integer n. So the coefficients ki must also be integers.

Therefore, the set of Reciprocal 

Lattice Vectors, K are themselves a 

Bravais lattice



The Reciprocal Lattice:
Some other comments.

• The reciprocal lattice of the reciprocal lattice?

• It is just the direct lattice!

Brillouin Zone
• Brillouin Zones are primitive cells that 

arise in the theories of electronic levels

Band Theory &
Lattice Vibrations - Phonons.

• The first Brillouin Zone (BZ) is the Wigner-
Seitz primitive cell of the reciprocal lattice.



Another (Equivalent) Treatment 
Von Laue Formulation of Crystal Diffraction

• From another internet source. Slightly different notation, sorry!

• Doesn’t  assume specular reflection.
• No sectioning by planes

• Rather, at each point on the Bravais lattice the 

incident ray is allowed to be scattered in all directions



θ

k = kn

k´ = kn´

First, consider only two scatterers.

θ

θ´

k = kn
d

The path difference is then

d cosθ + d cosθ´ = d • (n - n´)
The condition for constructive 

interference is, 

d • (n - n´) = mλ

k = 2πn/λ
k´ = 2πn´/λ



• With an array of scatterers; one at each point of the 

Bravais lattice,

• The results on the last slide must hold for each d that is a 

Bravais lattice vector, so

R•(k - k´) = 2πm
(m = integer) or

eiR•(k - k´) = 1!!eiR•( ) = 1!!
• Compare this to the definition for the reciprocal lattice!

This is just The Laue Condition:

Constructive interference will occur 

provided that the change in wave vector, 

K = k´ - k, is a vector in the reciprocal lattice.



Ewald Construction
• The condition for constructive interference is that

K = k´ - k, is a vector of the reciprocal lattice. 

Doing this for all k & k´ generates the Reciprocal Lattice


