13, Iff(L k) = 3PKS — 22k, find fi (2, 1) _

14. Iff(x,y) = 23y + x%y — x%y?, find firy (2, 3) and fi. (2, 3).
15, Iff(x,y) = y’e* + In (xy), find fo,(1,1).

16. If f(x,y) = x* — 6xy* +x2 — 33, find fiy (1, —1).

17. Cost Function  Suppose the cost ¢ of producing g4 units of
product A and gg units of product B is given by

c= (3qi + qg —i~4)1/3

and the coupled demand functions for the products are given by

Section 17.5 Chain Rule

18. For f(x,y) = x*y* 4+ 3xy* — 7x - 4, show that
S, ¥) = foo(x, ¥)
19. Forf(x,y) = e~ +9+" show that
folr, ) = fiulx, y)
20. For f(x,y) = &%, show that
Fux, 3) +fo (6, 9) + fi(, ) + iy, 3)
=f (x NG+ +2)

765

=10 — pa +Pp Pz &z
A P Pe 21. Forz =In(x*+ y‘) show that St = 0.
and ox dy?
2z
gp =20+ pa — 1lpp 722, ¥ - -y - —y> =0, ﬁndaz
"""" Find the value of 8z
326‘ l723. If"' 3.2, +)"’ = 0 ﬁnd —a;.
g Ogs 3%z
17 0,2 ,

when ps = 25 and pp = 4. U128 ="+ 2+t ﬁnd x By’

17.5 Chain Rule®

Objective

To show how to find partial derivatives
of composite functions by using the
chain rule.

Suppose a manufacturer of two related products A and B has a joint-cost function
given by

¢ =f(qa,q8)

where ¢ is the total cost of producing quantities g4 and gg of A and B, respectively.
Furthermore, suppose the demand functions for the products are

ga = g(pa,ps) and gp = h(pa,ps)

where ps and pp are the prices per unit of A and B, respectively. Since ¢ is a function
of ga and gg, and since both g, and gp are themselves functions of p, and pg, ¢ can be
viewed as a function of pa and pg. (Appropriately, the variables g, and gp are called
intermediate variables of c¢.) Consequently, we should be able to determine dc/dpa,
the rate of change of total cost with respect to the price of A. One way to do this is
to substitute the expressions g(pa,pg) and h(pa, pg) for g and gp, respectively, into
¢ = f(ga, gs). Then c is a function of p, and pg, and we can differentiate ¢ with respect
to pa directly. This approach has some drawbacks—especially when f, g, or ki is given
P by a complicated expression. Another way to approach the problem would be to use
the chain rule (actually a chain rule), which we now state without proof.

Cham Rule

Letz = f(x,y), where both x and y are functions of r and s given by x = x(r, s) and
y= y(z s). If f x, and y have continuous partial derivatives, then z is a function of
r and s, and ,

, ;Bz 0z ox Bz ay
L ‘ :81 C oxor - dyor
and '

'az az'ax  Bdy

ds  0xds ' dyds

70Omit if Section 17.3 was not covered.
18This section can be omitted without loss of continuity.
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Use the partial derivative symbols and
the ordinary derivative symbols
appropriately.

Note that in the chain rule, the number of intermediate variables of z (two) is the
same as the number of terms that compose each of dz/dr and dz/3s.
Returning to the original situation concerning the manufacturer, we see that if f,
ga. and gp have continuous partial derivatives, then, by the chain rule,
dc _ ac aga dc dqgp
dpa  Oga dpa  3gm Opa

(AMPLE 1 Rate of Change of Cost

For a manufacturer of cameras and film, the total cost ¢ of producing gc cameras and
gr units of film is given by

¢ = 30gc + 0.015gcgr + g + 900

The demand functions for the cameras and film are given by

9000
qc = and gp = 2000 — pc — 400pE
Pc+/PF
where pc is the price per camera and pr is the price per unit of film. Find the rate of
change of total cost with respect to the price of the camera when pc = 50 and pg = 2.

Solution: We must first determine dc/dpc. By the chain rule,
dc  0c dgc | dc g
pc  dqcdpc ' dgr dpc
—-9000

= (30 +0.015 . + (0.015g¢ + 1)(~1
( qp)[pé\/ﬁg] ( qc (=1

When pc = 50 and pg = 2, then g¢c = 90+/2 and gr = 1150. Substituting these values
into dc/0dpc and simplifying, we have

dc
dpc

~ —123.2
pc=50
pr=2

Now Work Problem 1 <

The chain rule can be extended. For example, suppose z = f(v,w,x,y) and v, w,
x, and y are all functions of r, s, and . Then, if certain conditions of continuity are
assumed, z is a function of r, s, and ¢, and we have

dz 9z dv 0z dw Oz dx 9z dy
ar ~ovor owar oxar | ayor
0z 0zdv 0z dw 9z dx 3z dy
8s  ovds  Owads  Oxds  dyds
and
8z 0zOv 0z ow dzdx Oz dy
o ovar  awar  axor  dyor

Observe that the number of intermediate variables of z (four) is the same as the number
of terms that form each of dz/dr, dz/3s, and dz/ot.
Now consider the situation where z = f(x,y) such that x = x(¢) and y = y(1).
Then
dz dzdx Ozdy

@ " axad oy
Here we use the symbol dz/dt rather than 3z/ 8¢, since z can be considered a function
of one variable . Likewise, the symbols dx/dt and dy/dt are used rather than dx/at
and dy/dr. As is typical, the number of terms that compose dz/dt equals the number of
intermediate variables of z. Other situations would be treated in a similar way.
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(AMPLE2  Chain Rule
a. If w = f(x,y,2) = 3x%y + xyz — 4y°2%, where

x=2r—3s y=6r+s z=r-—s
determine dw/dr and dw/ds.

Solution: Since x, y, and z are functions of » and s, then, by the chain rule,

0w dwodx | owdy  Owdz

ar  ox or ay or 9z or
= (6xy + y2)(2) + (3% + xz — 8y2)(6) + Gy — 12y°22)(1)

= x(18x + 13y + 62) + 2yz(1l — 247> — 6yz)

Also,
dw Owdx Owdy Owdz
ds  Oxds dyds 0z ds
= (6xy + y2)(—3) + (3x* + xz — 8y2°)(1) + (xy — 12y*2)(—1)
= x(3x — 19y + z) — yz(3 + 82% — 12y2)
x+e
b. Ifz = , Where x = rs + se” and y = 9 + rt, evaluate 9z/3s when r = —2,
s=25,and r = 4,

Solution: Since x and y are functions of r, s, and ¢ (note that we can write y =
9+ rt + 0 - 5), by the chain rule,

dz 9z dx 09z dy
ds  0xds dyads

1 0z e
- <") (r+eM+ o (0)=
y ay
Ifr=-2,5s=25,andt =4, theny = 1. Thus,
0z —2 4 g8 8
e TR — —-2 -
ds| =72 1 te
§==)
=4
Now Work Problem 13 <
Chain Rule

a. Determine dy/dr if y = x*In (x* + 6) and x = (r + 35)S.
Solution: By the chain rile,

dy dyox
ar  dxor

_[‘2 pd +2x-1 (“+6)}[6( +35)°]
= | x x4+6 In (x r S

4
= 12x(r + 3s)° I:x—%—ﬁ- +In(x* + 6)]
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b. Giventhatz = e¥,x =r —4s,andy = r — s, find 82[8)‘ in terms of r and s.

Solution:

Sincex=r—4sandy =r — s,

PROBLEMS 17.5

In Problems 1-12, find the indicated derivatives by using the
chain rule.

1. z=5x+3y,x=2r+43s,y=r—2s; 0z/or,0z/0s

2. 2=22 43y + 2% x=r2 =52, y=r>+s% 0z/0r,0z/0s
3z=eP x=1+3,y=+1; d/dt

4. 7= /8 Fy,x=02+3t+4, y=13+4; dz/dt

5. w=xlyz+xy’z+xyt, x=é,y=te, z=1%; dw/dt

6. w=InG +y'+2), x=2-3t,y=1>+3,z=4—1t;dw/dt
7. 2=+, x=r+s+1, y=2r—3s+8 0dz/ot

8. z=m,x=r2+s—~t, y=r—s+1 09z/0r

9. w=xlt+xz+x=r1—s, y=rs,z=r>+s% 0w/ds
10, w=In(xyz),x = rs,y=rs,z= rs?;  aw/or

11 y=x* — Tx +5,x = 19rs + 251*;  dy/or

12. y=4—x*,x=2r+35—4r; dy/ot

13. Ifz = (dx + 3y)?, where x = r’s and y = r — 2s, evaluate
dz/or whenr =0ands = L.

14. Ifz = /Zx + 3y, wherex = 3t +5andy = > + 2t + 1,
evaluate dz/dr whent = 1.

15. Ifw = G2 + 2 + 22), where x = (r — 52, y = (r + 5)°,
and z = (s — r)?, evaluate dw/ds when r =l and s = 1.

16. If y = x/(x — 5), where x = 2> — 3rs — r’t, evaluate dy/dt
whenr=0,5s=2,and t = —1.

17. Cost Function Suppose the cost ¢ of producing g, units of

product A and g units of product B is given by

c=QGg +q+ D

b _dudx  dady
or oxdr dyor
= (ye”)(1) + (xe”)(1)
= (x+y)e”
Bz (r—4s5)(r—-s)
== [(r — 48) + (r — 5)]e
or

2 2
— (2’, = SS)?r Srs-+4s

Now Work Probiem 15 <

and the coupled demand functions for the products are given by
qa =10—pa+pg
and

gs =20+pa — 1lpp

a d
Use a chain rule to evaluate % and 2 when pa =25 and
apa dpn
PB = 4.
18. Suppose w = f(x,y), where x = g(t) and y = h(z).
(a) State a chain rule that gives dw/dr.
(b) Suppose h(f) = t, so that w = f(x, 1), where x = g(t). Use part
(a) to find dw/dr and simplify your answer.

19. (a) Suppose w is a function of x and y, where both x and y are
functions of s and . State a chain rule that expresses dw/df in
terms of derivatives of these functions. .

(b) Let w == 2x2 In |3x — 5y|, where x = s+/> + 2 and

y =t — 3¢>~*. Use part (a) to evaluate dw/dt when s = 1 and
t=0.

20. Production Function In considering a production function
P = f(l,k), where [ is labor input and k is capital input, Fon,
Boulier, and Goldfarb!® assume that [ = Lg(h), where L is the
number of workers, # is the number of hours per day per worker,
and g(h) is a labor effectiveness function. In maximizing profit p
given by

p=aP —whL

where a is the price per unit of output and w is the hourly wage
per worker, Fon, Boulier, and Goldfarb determine dp/9L and
dp/8h. Assume that % is independent of L and h, and determine
these partial derivatives.

Objective

To discuss relative maxima and relative
minima, to find critical points, and to
apply the second-derivative test for a
function of two variables.

17.6 Maxima and Minima for Functions
of Two Variables

We now extend the notion of relative maxima and minima (or relative extrema) to
functions of two variables.

19y, Fon, B. L. Boulier, and R. S. Goldfarb, “The Firm’s Demand for Daily Hours of Work: Some Implications,”
Atlantic Economic Journal, X111, no. 1 (1985), 36-42.
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 Definition o .

A functlon 7= f (x y) is sa1d to have a relatzve maximum at the pomt (a, b) if, for
all pomts (x;y)in the plane that are sufﬁmently close to (a, b), we have

f@b)=fEy sy

For a relatzve mmtmum, we replace > by <in Equatlon 0.

To say that z = f(x,y) has a relative maximum at (a, b) means, geometrically,
that the point (a, b, f(a, b)) on the graph of f is higher than (or is as high as) all other
points on the surface that are “near” (a, b, f(a, b)). In Figure 17.4(a), f has a relative
maximum at (a, b). Similarly, the function f in Figure 17.4(b) has a relative minimum
when x = y = 0, which corresponds to a low point on the surface.

Relative
maximum
point

Graph of f

y
Relative

minimum
point

(a) ®
FIGURE 17.4 Relative extrema.

>\ Graph of f

(a,b,0)

Recall that in locating extrema for a function y = f(x) of one variable, we examine
those values of x in the domain of f for which f'(x) = 0 or f'(x) does not exist. For
functions of two (or more) variables, a similar procedure is foliowed. However, for the
functions that concern us, extrema will not occur where a derivative does not exist, and
such situations will be excluded from our consideration.

z
Tangent N (a, b, f(a, b))

Surface \‘

/ Tangent

X

(a, b, 0)
(a) (b)
FIGURE 17.5 At relative extremum, f;(x,y) = 0 and f;(x,y) = 0

Suppose z = f(x, y) has a relative maximum at (a, b), as indicated in Figure 17.5(a).
Then the curve where the plane y = b intersects the surface must have a relative
maximum when x = a. Hence, the slope of the tangent line to the surface in the
x-direction must be 0 at (a, b). Equivalently, f,(x,¥) = 0 at (a, b). Similarly, on the
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cauTion]\

Rule 1 does not imply that there must be
an extremurm at a critical point. Just as in
the case of functions of one variable; a
critical point can give rise to a relative
maximum, a relative minimum, or
neither. A critical point is only a
candidate for a relative extremum.

curve where the plane x = a intersects the surface [Figure 17.5(b)], there must be a
relative maximum when y = b. Thus, in the y-direction, the slope of the tangent to the
surface must be 0 at (a, b). Equivalently, S(x,y)=0at(a, b) Since a similar discussion
applies to a relative minimum, we can combine these results as follows:

TRme1‘ -

Iiz= f (x, y) has a re]atlve maxmlum or minimum at (a,b), and if both £, and 5 are
. deﬁned for all points close to (a b) itis necessary that (e, b) be a solution of the
;,system . - :

[ren=o0

A point (a, b) for which f(a,b) = fy(a,b) = 0 is called a critical point of f. Thus,
from Rule 1, we infer that, to locate relative extrema for a function, we should examine
its critical points.

Two additional comments are in order: First, Rule 1, as well as the notion of a
critical point, can be extended to functions of more than two variables. For example,
to locate possible extrema for w = f(x, y, z), we would examine those points for which
wy = wy = w; = 0. Second, for a function whose domain is restricted, a thorough
examination for absolute extrema would include a consideration of boundary points.

MPLE 1 Finding Critical Points

Find the critical points of the following functions.
a. f(x,y) = 2x* +y? — 2xy + 5x — 3y+1.
Solution: Sincef,(x,y) = 4x—2y+5 and f,(x, y) = 2y — 2x — 3, we solve the system

4x—2y+5=0
—2x4+2y—-3=0

This gives x = —1 and y = 3. Thus, (—1, 1) is the only critical point.
b. fUk) =P+ — Ik
Solution: k) =3% k=0 (2)
{ Sl k) =3k —1=0 3)
From Equation (2), k = 3/%. Substituting for k in Equation (3) gives
0=271* —1=1Q27P — 1)

Hence, either = Qorl = -;— Hl=0,thenk =0;ifl = %, then k = % The critical

points are therefore (0, 0) and (3, 5).
c. f(x,y,2) = 2x* + xy +y* 4+ 100 — z(x + y — 100).
Solution: Solving the system

ey )=4x+y—z=
[y, =x+42y—z= 0
fy,2)=-x—y+100=0

gives the critical point (25, 75, 175), as the reader should verify.
Now Work Probliem 1 <

Finding Critical Points

Find the critical points of

fey) =2 —4x 427 +4y+7
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Solution: We have f(x,y) = 2x — 4 and f;(x, y) = 4y + 4. The system
2x—4=0
4y +4=0

gives the critical point (2, —1). Observe that we can write the given function as
fey) =x —4x+ 44207 + 2y + 1)+ 1
=@ -2 +20+ 1)’ +1
and f(2,~1) = 1. Clearly, if (x,y) # (2,—1), then f(x,y) > 1. Hence, a relative

minimum occurs at (2, —1). Moreover, there is an absolute minimum at (2, —1), since
fCe,y) > @2, —1) forall (x,y) # (2,—1).

Now Work Problem 3 <

Although in Example 2 we were able to show that the critical point gave rise
to a relative extremum, in many cases this is not so easy to do. There is, however, a
second-derivative test that gives conditions under which a critical point will be a relative
maximum or minimum. We state it now, omitting the proof.

Rule 2 Second Denvatlve Test for Functlons of Two Variables

: Suppose z= f (x y) has continuous partlal derivatives fx, fyy, and fy, at all points
,, V(x y) near a cntlcal pomt (a b). Let D be the function deﬁned by

" D(x,y) = fu (6, )y (0, 3) — (Fiy (1, ))°

, Then

Lif D(a b) >0 and f(a, b) < 0, then f has arelatlve maximum at (a; b);

2. if D(a,b) > 0 and f.(a,b) > 0, then f has a relative minimum at (a; b);
3. if D(a,b) < 0, then f has a saddle point at (a, b) (see Example 4);
4

.. if D(a, b) = 0, thenno conclusion about an extremum at (a,b) canbe drawn and
o ffurther analys1s is requ1red '

We remark that when D(a, b) > 0, the sign of f.(a, b) is necessarily the same as
the sign of fy,(a, b). Thus, when D(a,b) > 0 we can test either fi.(a, b) or fi(a,b),
whichever is easiest, to make the determination required in parts 1 and 2 of the second
derivative test.

XAMPLE3 Applying the Second-Derivative Test

Examine f(x,y) = 23 4+ y* — xy for relative maxima or minima by using the second-
derivative test.

Soluiion: First we find critical points:

flaey) =32 -y £ =37 —x

In the same manner as in Example 1(b), solving f;(x,y) = fy(x, y) = 0 gives the critical
points (0, 0) and (3, 1). Now,

faG,y)=6x  fiu(r,y) =6y  fol,y)=—
Thus,
D(x,y) = (6x)(6y) — (—1)* = 36xy—1

Since D(0, O) = 36(0)(0) — 1 = —1 < 0, there is no relative extremum at (0, 0).
Also, since D (5,5) =36(3) (}) - 1=3> 0 and fu (3,3) =6 (3) =2 > 0, there
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The surface in Figure 17.6 is called a
hyperbolic paraboloid.

is a relative minimum at (3, 1). At this point, the value of the function is
3 3
FGH=0+6)" -GG =—%

Now Work Problem 7 <

PLE4 A Saddle Point

Examine f(x,y) = y* — x? for relative extrema.
Solution: Solving
fy)=-2x=0 and f(x,y)=2y=0

we get the critical point (0, 0). Now we éﬁply the second-derivative test. At (0, 0), and
indeed at any point,

Sat,y) = =2 fue, ) =2 fio(x,y) =0

Because D(0,0) = (—2)(2) — (0)?> = —4 < 0, no relative extremum exists at 0,0). A
sketch of z = f(x,y) = y* — x* appears in Figure 17.6. Note that, for the surface curve
cut by the plane y = 0, there is a maximum at (0, 0); but for the surface curve cut by the
plane x = 0, there is a minimum at (0, 0). Thus, on the surface, no relative extremum
can exist at the origin, although (0, 0) is a critical point. Around the origin the curve is
saddle shaped, and (0, 0) is called a saddle point of f.

Now Work Problem 11 <«

&~

e=fmn) =2

Saddle point
at (0, 0)

fr(o? 0) = f:‘Y(Oy 0) =0

FIGURE 17.6 Saddle point.

MPLE 5 Finding Relative Extrema

Examine f(x,y) = x* + (x — y)* for relative extrema.

- Solution: If we set

[, y) =48 +4(x -y =0 (4)
and
fey) =—4(x~y* =0 (5)

then, from Equation (5), we havex —y = 0, or x = y. Substituting into Equation (4)
gives 4x> = 0, orx = 0. Thus, x = y = 0, and (0, 0) is the only critical point. At (0, 0),

ftt(xsy) = 12x2 + 12(): '—‘y)z frowand O
f)'_v(’x:)’) = 12(x — ,V)2 =0
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and

fot,y)=—12(x —y* =0

Hence, D(0,0) = 0, and the second-derivative test gives no information. However, for
all (x,y) # (0,0), we have f(x,y) > 0, whereas f(0,0) = 0. Therefore, at (0, 0) the
graph of f has alow point, and we conclude that f has a relative (and absolute) minimum
at (0, 0).

Now Work Problem 13 <1

Applications

In many situations involving functions of two variables, and especialily in their appli-
cations, the nature of the given problem is an indicator of whether a critical point is
in fact a relative (or absolute) maximum or a relative (or absolute) minimum. In such
cases, the second-derivative test is not needed. Often, in mathematical studies of applied
problems, the appropriate second-order conditions are assumed to hold.

AMPLE 6 Maximizing Output
Let P be a production function given by
P =f(l,k) = 0.541*> — 0.021* + 1.89k* — 0.094>

where [ and k& are the amounts of labor and capital, respectively, and P is the quantity
of output produced. Find the values of [ and k that maximize P.

Solution: To find the critical points, we solve the system P; = 0 and P = 0:

P; = 1.08] — 0.0612 P = 3.78k — 0.27k>
=0.06/(18— ) =0 =0.27k(14 — k) =0
1=0,l=18 k=0,k=14

There are four critical points: (0, 0), (0, 14), (18, 0), and (18, 14).
Now we apply the second-derivative test to each critical point. We have

Py=108~0.12] Py =378—-054k Pyp=0
Thus,
D(l,k) = PyPu — [Py)”
= (1.08 — 0.12)(3.78 — 0.54k)
At (0, 0),

D(0,0) = 1.08(3.78) > 0
Since D(O, 0) > O and Py = 1.08 > 0, there is a relative minimum at (0, 0). At (0, 14),
D(0,14) = 1.08(—~3.78) < 0
Because D(0, 14) < 0, there is no relative extremum at (0, 14). At (18, 0),
D(18,0) = (—1.08)(3.78) < 0
Since D(18,0) < 0, there is no relative extremum at (18, 0). At (18, 14),
D(18,14) = (—1.08)(—3.78) > 0

Because D(18,14) > 0 and P; = —1.08 < 0, there is a relative maximum at (18, 14).
Hence, the maximum output is obtained when [ = 18 and k = 14.

Now Work Problem 21 <
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Profit Maximization

A candy company produces two types of candy, A and B,\{for which the average costs
of production are constant at $2 and $3 per pound, respectively. The quantities g, gg (in
pounds) of A and B that can be sold each week are given by the joint-demand functions

ga = 400(pg — pa)
and

gs = 40009 + pa — 2pg)

where pa and pg are the selling prices (in dollars per pound) of A and B, respectively.
Determine the selling prices that will maximize the company’s profit P.

Solution: The total profit is given by
profit pounds profit pounds
P = | per pound of A | + | per pound of B
of A sold of B sold
For A and B, the profits per pound are py — 2 and pp — 3, respectively. Thus,
P = (pa —2)qa + (pr — 3)gB
= (pa — 2)[400(ps — pa)] + (5 — 3)[400(9 + pa — 2pp)]

Notice that P is expressed as a function of two variables, p and pa. To maximize P,
we set its partial derivatives equal to 0:

aP

o (pa — 2)[400(=1)] + [400(ps — pa)1(1) + (pr — 3)[400(1)]
=0

aP

F (pa — 2)[400(1)] + (B — 3)[400(—2)] + 400(9 + p4 — 2pp)1(1)
=0

Simplifying the preceding two equations gives

—20a+2pg—1=0
2pa —4pg +13 =0

whose solution is pa = 5.5 and pg = 6. Moreover, we find that

2P 92pP 3P
— =—800 — = —1600 = 800
apa opg pBopA

Therefore,

D(5.5,6) = (—800)(—1600) — (800)* > 0

~ Since P/ dp; < 0, we indeed have a maximum, and the company should sell candy

A at $5.50 per pound and B at $6.00 per pound.
Now Work Problem 23 <

Profit Maximization for a Monopolist?®

Suppose a monopolist is practicing price discrimination by selling the same product
in two separate markets at different prices. Let g4 be the number of units sold in market

200mit if Section 17.5 was not covered.
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A, where the demand function is pa = f(ga), and let gg be the number of units sold in
market B, where the demand function is pg = g(gs). Then the revenue functions for
the two markets are

ra = qaf(ga) and rg = gpglgr)

Assume that all units are produced at one plant, and let the cost function for producing
g = ga -+ gg units be ¢ = ¢(g). Keep in mind that r, is a function of g5 and rg is a
function of gg. The monopolist’s profit P is

P=rs+rmp—c

To maximize P with respect to outputs ga and gp, we set its partial derivatives equal to
zero. To begin with,

opP _ﬂ 0 dc

8ga  dga dga
= il}l — fgﬁl_ =0 chain rule
dga  dqdga
Because
dq ]
e T fed 1
N (ga + gB)
we have
oP dr d
of _dra ac 0 (6)
dqa dga dq
Similarly,
oP dr d
o 4B Ay )
dgs  dgs dq
From Equations (6) and (7), we get
dra _ dc _ drg
dgan  dg  dgs

But dra/dga and drg/dgg are marginal revenues, and dc/dq is marginal cost. Hence,
to maximize profit, it is necessary to charge prices (and distribute output) so that the
marginal revenues in both markets will be the same and, loosely speaking, will also be

equal to the cost of the last unit produced in the plant.

PROBLEMS 17.6 «

In Problems 1-6, find the critical points of the functions.
1. fx,y) =x* —3y* — 8x + 9y + 3xy

2. f(x,y) = x* +4y* — 6x + 16y

1

5, 2 5
3. flx,y) = §x3+§y3 - -E—xz+y2 —4y 47

4 fy)=xy—x+y
5. f(x,y,2) = 2x%* + xy + y* + 100 — z(x +y — 200)
6. fx,y,zw)=x*+y? +22 +wx+y+z—23)

In Problems 7-20, find the critical points of the functions. For
each critical point, determine, by the second-derivative test,
whether it corresponds to a relative maximum, to a relative
minimum, or to neither, or whether the test gives no information.

7. f(x,y)=x2+3yz+4x'79y+3
8. f(x,y) =22 +8x ~3y* +- 24y + 7
9 f(x,y)=y—y —3x—6x°

10
11

12

13

14

15

16

18
19

20.

Now Work Problem 25 <

, 3
. flxy) =227 + —é-yz +3xy — 10x — 9y +2

Cfay =243y +y —9x—11y+3
-f(xa)’)=x'§3+)’2—2x+2y—2xy
F) = 5048 26 4+ 1
Cfay) =24yt -y 2

2

. k) = % + 20k 4 3k* — 691 — 164k + 17

11
17. f.q) =pqg— — — —
P q

. LK) = 12 + 4k — Alk

L fE) =G -3 -3Nx+y-3)
fE) =02 -4 - 1)
fG,y) =In(xy) +2x% —xy — 6x
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21. Maximizing Output -~ Suppose

P =f(l,k) = 2.18 — 0.02° + 1.97k* — 0.03%>

is a production function for a firm. Find the quantities of inputs [
and k that maximize output P,

22. Maximizing Output In a certain office, computers C and
D are utilized for ¢ and d hours, respectively. If daily output Q
is a function of ¢ and 4, namely,

Q = 18c+20d — 2¢* — 4d* — ¢d
find the values of ¢ and d that maximize Q.

In Problems 2335, unless otherwise indicated, the variables p,
and pg denote selling prices of products A and B, respectively.
Similarly, ga and gy denote quantities of A and B that are
produced and sold during some time period. In all cases, the
variables employed will be assumed to be units of output, input,
money, and so on.

23. Profit A candy company produces two varieties of candy,
A and B, for which the constant average costs of production are 60
and 70 (cents per 1b), respectively. The demand functions for

A and B are given by

ga =5(pg —pa) and gg =500+ 5(ps — 2pp)
Find the selling prices pa and pg that maximize the company’s
profit.

24. Profit - Repeat Problem 23 if the constant costs of
production of A and B are a and b (cents per Ib), respectively.

25. Price Discrimination  Suppose a monopolist is practicing
price discrimination in the sale of a product by charging different
prices in two separate markets. In market A the demand function is

pa =100 —ga
and in B it is
pe =84 —gp
where g, and gp are the quantities sold per week in A and B, and

Pa and pp are the respective prices per unit. If the monopolist’s
cost function is

¢ == 600+ 4(ga + gB)

how much should be sold in each market to maximize profit? What
selling prices give this maximum profit? Find the maximum profit.

26. Profit A monopolist sells two competitive products, A and
B, for which the demand functions are

gan=16—pa+ps and gg =24+ 2p, —4pg

If the constant average cost of producing a unit of A is 2 and a unit
of B is 4, how many units of A and B should be sold to maximize
the monopolist’s profit?

-27. Profit  For products A and B, the joint-cost function for a
manufacturer is

3
¢ =345 +3q
and the demand functions are ps = 60 — g3 and pg = 72 — 243.
Find the level of production that maximizes profit.
28. Profit For a monopolist’s products A and B, the joint-cost

function is ¢ = 2(ga + ¢ + gags), and the demand functions are
ga = 20 — 2p4 and g = 10 — pg. Find the values of p and pg

that maximize profit. What are the quantities of A and B that
correspond to these prices? What is'the total profit?

29. Cost An open-top rectangular box is to have a volume of

6 ft>. The cost per square foot of materials is $3 for the bottom, $1
for the front and back, and $0.50 for the other two sides. Find the
dimensions of the box so that the cost of materials is minimized.
(See Figure 17.7.)

x = width
y = length
Y z = height

&~

Front

FIGURE 17.7

30. Collusion Sﬁppose A and B are the only two firms in the
market selling the same product. (We say that they are duopolists.)
The industry demand function for the product is

pP=92—qa—gs

where g, and gg denote the output produced and sold by A and B,
respectively. For A, the cost function is ¢4 = 10g,; for B, it is

cg = 0.5¢3. Suppose the firms decide to enter into an agreement
on output and price control by jointly acting as a monopoly. In this
case, we say they enter into collusion. Show that the profit
function for the monopoly is given by

P = pga —ca +pgs — ¢

Express P as a function of g and gg, and determine how output
should be allocated so as to maximize the profit of the monopoly.

31. Suppose f(x,y) = x? + 3y* + 9, where x and y must satisfy
the equation x 4 y = 2. Find the relative extrema of f, subject to
the given condition on x and y, by first solving the second
equation for y (or x). Substitute the result in the first equation.
Thus, f is expressed as a function of one variable. Now find where
relative extrema for f occur.

32. Repeat Problem 31 if f(x, y) = x* + 4y% + 6, subject to the
condition that 2x — 8y = 20.

33. Suppose the joint-cost function
¢ = g4 +3q5 +2qaqs + aga + bgg + d

has a relative minimum value of 15 when g4 = 3 and g3 = 1.
Determine the values of the constants a, b, and d.

34. Suppose that the function f(x, y) has continuous partial
derivatives fi., fiy, and f;, at all points (x, y) near a critical point
(a,b). Let D(x,y) = fiur (x, )i (2, ¥) — (folx, ¥))? and suppose that
D(a,b) > 0.

(a) Show that fi.(a, b) < 0 if and only if f,(a,b) < 0.

(b) Show that fi.(a, b) > 0 if and only if Jfi(a,b) > 0.

35. Profit from Competitive Products A monopolist sells two
competitive products, A and B, for which the demand equations
are :

pa=35-2q; +qs




