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Another method is to notice that the values being added are 2k + 12, fork = 1 to 44.

The sum can thus also be written as

44
Z (2k +12)

k=1
Now Work Problem 9 <

Since summation notation is used to express the addition of terms, we can use
the properties of addition when performing operations on sums written in summation
notation. By applying these properties, we can create a list of properties, and formulas
for summation notation.

By the distributive property of addltlon
cay +cay+---+ca, =clay +ay +--- +ay,)

So, in summation notation,

an,— = cZa; (6)

Note that ¢ must be constant with respect to i for Equation (6) to be used.
By the commutative property of addition,

ai+bi+ay+by+ - tay+b,=a+a+---+a,+by+ba+ -+ by

So we have
n n n
Z(ai+bi)=2ai+zbi (7)
i=m i=m i=m
Sometimes we want to change the bounds of summation.

p+n—m

Zai: Z Qitm—p (8)
i=p

i=m

A sum of 37 terms can be regarded as the sum of the first 17 terms plus the sum of the
next 20 terms. The next rule generalzes this observation.

St Zax—Zf ©)

i=m i=m

In addition to these four basic rules, there are some other rules worth noting.

Z 1=n 10

i=1

This is because Z;’zl 1 is a sum of n terms, each of which is 1. The next follows from
combining Equation (6) and Equation (10).

n

C=cCn (11)
>

i=1

Similarly, from Equations (6) and (7) we have

Z(ai_bi)zzai“zbi (12)

i=m f==m i=m
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Establishing the next three formulas is best done by a proof method called mathe-
matical induction, which we will not demonstrate here.

° n(n+1)
Zz == (13)
i=1
Ziz _ nn+ DH2n+1) (14)
- 6
i=1 .
Z 3 n*(n + 1)~ 1s)

However, we can deduce Equatlon (13). If we add the following equations,
“vertically,” term by term,

D i=14243+-+n

i=1

Zi:ll+(il—1)+(n—-2)+...+1
i=l1

we get

n
2Y i=+D+@+ D+ @+ D+ o+ @+ 1)
i=1
and since there are n terms on the right, we conclude

Z .onan+1)

[ =

i=1 2
Observe that if a teacher assigns the task of finding

1+2+34+4+54+6+4+74+---4+1044105

as a punishment and if he or she knows the formula given by Equation (13), then a
student’s work can be checked quickly by

105

Z 105(106)
T2

= 105 - 53 = 5300 4 265 = 5565

XAMPLE 3 Applying the Properties of Summation Notation

Evaluate the given sums.

100 100 200
a. ) 4 b. Y (5k+3) ¢ > 9K
=30 k=1 k=1
Solutions:
a. ) 100
24 ZA, by Equation (8)
j—-30 _]_.
=4.71 by Equation (11)
= 284
b. 100 100 100
Z 5k + 3) = Z 5k + Z 3 by Equation (7)
k=1 »._.

100
=5 (Z k) +3 (Z ) by Equation (6)
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100 - 101
=5 (%) +3(100)

= 25,250 + 300
= 25,550

C. 200

Do =9) K
k=1 k=1

PROBLEMS 1.5

In Problems I and 2, give the bounds of summation and the index
of summation for each expression.
17 450

1 Z (82 — 51 +3) 2. Z (8m — 4)

=12 m=3

In Problems 3-6, evaluate the given sums.
5 4

3.) 3 4. 10p
i=1

p=0
9
5. Z(mk+ 16)

11
6. Z(2n —-3)

k=3 n=1
In Problems 7—-12, express the given sums in summation notation.
7. 36+37+384+39+--- 460
8. 1+8+27+644125
9. 53 45" +5° 456+ 5" 458
10. 11+ 154+194+234--- 471
11. 2+4 48416432464 4 128 4256
12. 104100 4 1000 -+ - - - 4+ 100,000,000

In Problems 13-26, evaluate the given sums.

875 135
13. Z 10 14. Z 2
k=1 k=35

Objective

arithmetic and geomeiric sequences, Introduction

and their sums.

200

(200 - 201 - 401

6.

= 24,180,300

17.

19.

21.

23.

24.

25.

26.

1.6 Sequences

20

2 (5k* + 3k)

k=1
100

,,
i

e

Consider the following list of five numbers:

by‘Eguations (13) and (10)

by Equation (6)

) by Equation (14)

Now Work Problem 19 <

200

16. Z(k — 100)
k=1

n

1
18. K
Z n+41

k=1
100 )
3k — 200k
20. ; o

50
22. Z (k + 50)
k=1

. n+1H2n+1)

2, 24+/3, 2423, 2433, 2443 1)

If it is understood that the ordering of the numbers is to be taken into account, then
such a list is called a sequence of length 5 and it is considered to be different from

2, 2433, 2443, 2443, 24243 ©))
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Both rearrangements and repetitions do
affect a sequence.
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which is also a sequence of length 5. Both of these sequences are different again from
2, 2, 24++/3, 2423, 24343, 2+4/3 3)

which is a sequence of length 6. However, each of the sequences (1), (2), and (3) takes
on all the numbers in the 5-element set

{2, 2++/3, 2423, 24+3V3, 2+4/3}

In Section 0.1 we emphasized that “a set is determined by its elements, and neither

repetitions nor rearrangements in a listing affect the set”. Since both repetitions and

rearrangements do affect a sequence, it follows that sequences are not the same as sets.
We will also consider listings such as

2, 2++/3, 24243, 243V3, 24+4V3, .- 24kV3, .- €)
and
13 “19 1: _'13 la Tty (—1)k+l’ e (5)

Both are examples of what is called an infinite sequence. However, note that the
infinite sequence (4) involves the infinitely many different numbers in the set

2+ k3lk a nonnegative integer}
while the infinite sequence (5) involves only the numbers in the finite set
{11}

For n a positive integer, taking the first n numbers of an infinite sequence results
in a sequence of length n. For example, taking the first five numbers of the infinite
sequence (4) gives the sequence (1). The following more formal definitions are helpful
in understanding the somewhat subtle idea of a sequence.

- Definition
For n a positive integer, a sequence of length n is a rule which assigns to each
element of the set {1,2,3, - -, n} exactly one real number. The set {1,2;3,---;n}is

called the domain of the sequence of length n. A ﬁnu‘e sequence is a sequence of
lenoth n for some positive integer n.

Definition ,
~An infinite sequence is a rule which assigns to each element of the set of all posi-

tive integers {1,2,3,- - -} exactly one real number. The set {1,2,3,- -} is called the
domain of the infinite sequence.

The word rule in both definitions may appear vague but the point is that for any
sequence there must be a definite way of specifying exactly one number for each of the
elements in its domain. For a finite sequence the rule can be given by simply listing the
numbers in the sequence. There is no requirement that there be a discernible pattern
(although in practice there often is). For example,

99, —m, 3 102.7
5
is a perfectly good sequence of length 4. For an infinite sequence there should be some
sort of procedure for generating its numbers, one after the other. However, the procedure
may fail to be given by a simple formula. The infinite sequence

2, 3, 5, 7,11, 13,17, 19, 23,

is very important in number theory but its rule is not given by a mere formula. (What
is apparently the rule which gives rise to this sequence? In that event, what is the next
number in this sequence after those displayed?)
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APPLY IT >

4. A chain of hip coffee shops has 183
outlets in 2009. Starting in 2010 it plans
to expand its number of outlets by 18
each year for five years. Writing ¢; for.
the number of coffee shops in year k,

~measured from 2008, list the terms in

 the sequence (c)¢_,;-

APPLY IT »

5. A certain inactive bank account which

- bears interest at the rate of 6% com--
‘pounded yearly shows year-end ‘bal--
ances, for four consecutive years, of
$9.57,$10.14,$10.75, $11.40, Write the
sequence of amounts in the form (a;)}_;.

We often use letters like a, b, ¢, and so on, for the names of sequences. If the
sequence is called a, we write a; for the number assigned to 1, a; for the number
assigned to 2, a3 for the number assigned to 3, and so on. In géneral, for k in the domain
of the sequence, we write a;, for the number assigned to k and call it the kth term of the
sequence. (If you have studied Section 1.5 on summation, you will already be familiar
with this notation.) In fact, rather than listing all the numbers of a sequence by

a),az,as,...,04,
or an indication of all the numbers such as
ay,a,a3, ..., 40k, ...

a sequence is often denoted by (a;). Sometimes (ax);_,; is used to indicate that the
sequence is finite, of length n, or (ax)i2, is used to emphasize that the sequence is
infinite. The range of a sequence (a;) is the set

{ar|k is in the domain of a}
Notice that
{(—=1)*"k is a positive integer} = {—1,1}
so an infinite sequence may have a finite range. If a and b are sequences, then, by

definition, a = b if and only if a and & have the same domain and, for all & in the
common domain, a; = by.

PLE1 Listing the Terms in a Sequence

a. List the first four terms of the infinite sequence (a;)72; whose kth term is given by
ap = 2k> + 3k + 1.
Solution: We have a; = 2(1) +3(1)+1 = 6,4y = 22») +3(2) + 1 = 15,
as = 2(3%)+3(3)+1 = 28, and a4 = 2(4%) +3(4) + 1 = 45. So the first four terms
are

6, 15, 28, 45

k+1\*
b. List the first four terms of the infinite sequence (e;.), where ¢, = (%) .

1 1 1 2 1 2 2 2
Solution: Wehavee; = i+l =|=-] =2,es= 2+l = 3 =2,
1 1 2 2 4
341\ /4\° 64 4+1\* /5 625
o= B = — I e @I e = — I e
¢ 3 3 27° & 4 4 256

3 \6
¢. Display the sequence <—)

2k—1 .
k=1
Solution: Noting that 20 = 1, we have
3 33 3 3 3
27478 167 32

Now Work Problem 3 <

MPLE 2 Giving a Formula for a Sequence

a. Write 41, 44, 47, 50, 53 in the form (a)]_,.

Solution: Each term of the sequence is obtained by adding three to the previous
term. Since the first term is 41, we can write the sequence as (41 + (k — 1)3);_,.
Observe that this formula is not unique. The sequence is also described by (38 +
3k);_; and by (32 + (k + 2)3);_,, to give just two more possibilities.

b. Write the sequence 1, 4, 9, 16, ... in the form (a;).
Solution: The sequence is apparently the sequence of squares of positive integers

so that (k) or (k?)._, would be regarded as the correct answer by most people.
But the sequence described by (k* — 10k + 36k* — 50k + 24) also has its first four
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terms given by 1, 4, 9, 16 and yet its fifth term is 49. The sixth and seventh terms
are 156 and 409, respectively. The point we are making is that an infinite sequence
cannot be determined by finitely many values alone.

On the other hand, it is correct to write

1,4,9,16,... .k, ... = (k%)

because the display on the left side of the equation makes it clear that the general
term is k2. '

Now Work Problem 9 <

MPL§3 Demonstrating Equality of Sequences

Show that the sequences ((i + 3)2),?2l and (j* + 6/ + 9)19'21 are equal.

Solution: Both ((i +3)*)2; and (j> + 6] +9)2, are explicitly given to have the same
domain, namely {1, 2, 3, ...}, the infinite set of all positive integers The names 7 and j
being used to name a typical element of the domain are unimportant. The first sequence
1s the same as ((k+3)2),‘f__1 and the second sequence is the same as (k” + 6k + N2, -The
first rule assigns, to any positive integer k, the number (k+3)* and the second assigns, to
any positive integer k, the number k*+6k-+9. However, for all k, (k+3)? = k2 +6k+9,
so by the definition of equality of sequences the sequences are equal.

Now Work Problem 13

Recursively Defined Sequences
Suppose that a is a sequence with
a, = 1 and, for each positive integer k, ap.; = (k + Dag (6)

Taking k = 1, we see that a; = (2)a; = (2)1 = 2, while with k = 2 we have
a3 = (3)ap = (3)2 = 6. A sequence whose rule is defined in terms of itself evaluated at
smaller values, and some explicitly given small values, is said to be recursively defined.
Thus we can say that there is a sequence a recursively defined by (6) above.

Another famous example of a recursively defined sequence is the Fibonacci sequence:

Ey = 1and Fy = 1 and, for each positive integer k, Fiyo = Fry + Fi )

Takingk = l,weseethat Fs; = Fo +F =1+ 1 =2, F4y=F3+F,=2+1=3,
Fs = Fy+ F3 = 34 2 = 5. In fact, the first ten terms of (¥}) are

1,1,2,3,5,8, 13, 21, 34, 55

MPLE4 Applying a Recursive Definition

a..Use the recursive definition (6) to determine as (without referring to the earlier
calculations).
Solution: We have

as = (5)ay
= (5)@)as
= (5)D(3)az
= S)DB)Dax
= S)DHB)2)(D)
= 120

The standard notation for a; as defined by (6) is k! and it is read “k factorial”. We
also define 0! = 1.
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APPLY IT >

‘ HIUh

6In 2009 the enrollment at Springfield.
High was 1237, and demographic stud-
ies suggest that it will decline by 12 stu-
dents a year for the next seven years. List:
the pro_]ected enro]lments of Spnnoﬁeldi

b. Use tl}e recursive definition (7) to determine Fg.
Solution: Fo=Fs+F,

= Fy+ F3)+ (F3+ F?)
=Fy+2F3+F,
=F3+FR)+2(FR+F)+F
= F3 +4F, +2F,
= (Fy + Fy) + 4F, + 2F;
= 5F 4+ 3F}
= 5(1) + 3(1)
=8 __.

Now Work Problem 17 <

In Example 4 we deliberately avoided making any numerical evaluations until all
terms had been expressed using only those terms whose values were given explicitly in
the recursive definition. This helps to illustrate the structure of the recursive definition
in each case.

‘While recursive definitions are very useful in applications, the computations above
underscore that, for large values of k, the computation of the kth term may be time-
consuming. It is desirable to have a simple formula for a; that does not refer to a,, for
I < k. Sometimes it is possible to find such a closed formula. In the case of (6) it is
easy toseethatay =k-(k—1)-(k—2)-...-3-2-1. On the other hand, in the case
of (7), it is not so easy to derive

oo L 1+45)° 1 (1-45)
AL 2 NAWE

Arithmetic Sequences and Geometric Sequences

De. inition :
An arzthmetzc sequence 1s a sequence (bk) deﬁned recursively by

b = a and, for each positive mteger k, by =d+ ,bk,m S (8)

for fixed real numbers g and d.

In words, the definition tells us to start the sequence at a and get the next term
by adding d (no matter which term is currently under consideration). The number a
is simply the first term of the arithmetic sequence. Since the recursive definition gives
brr1— by = d, for every positive integer k, we see that the number 4 is the difference
between any pair of successive terms. It is, accordingly, called the common difference
of the arithmetic sequence. Any pair of real numbers a and 4 determines an infinite
arithmetic sequence. By restricting to a finite number of terms, we can speak of finite
arithmetic sequences.

5 Listing an Arithmetic Sequence

Write explicitly the terms of an arithmetic sequence of length 6 with first term a = 1.5
and common difference d = 0.7.

Solution: Let us write (b;) for the arithmetic sequence. Then
by = 1.5
by =074+0b,=07+15=22
b3 =074+b=07+22=29
be =074+bs=07+43=5.0
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7. The population of the rural area sur-
-rounding: Springfield is-declining as a
result' of movement to the urban core.

+~In 2009 it was 23,500 and each year, for .

the next four years, it is expected to be
- only 92% of the previous year’s popula-
~ tion. List the anticipated annual popula-
. tion numbers for the rural area:

Section 1.6 Sequences 71

Thus the required sequence is

1.5, 2.2, 2.9, 3.6, 4.3, 5.0
Now Work Problem 21 <
D?e nition L
A geometrzc sequence is a’'sequence (cL) defined recursively by
¢ = aand, for each positive mteaer kicipi= ck r %)
for ﬁxed real numbers a and F. :

In words, the definition tells us to start the sequence at a and get the next term by
multiplying by r (no matter which term is currently under consideration). The number
a is simply the first term of the geometric sequence. Since the recursive definition gives
cr+1/cx = r, for every positive integer k with ¢ % 0, we see that the number r is the
ratio between any pair of successive terms, with the first of these not 0. It is, accordingly,
called the common ratio of the geometric sequence. Any pair of real numbers a and r
determines an infinite geometric sequence. By restricting to a finite number of terms,
we can speak of finite geometric sequences.

(AMPLE 6 Listing a Geometric Sequence

Write explicitly the terms of a geometric sequence of length 5 with first term a = +/2
and common ratio r = 1/2.

Solution: Let us write (¢i) for the geometric sequence. Then

Cy = 2
a=@)-1/2= WD1/2 = V2/2
=(c2)-1/2=(2/D1/2 = /2/4

cs=(c3)-1/2 = (V2/9)1/2 = /2/8
cs = (ca) - 1/2 = (V2/8)1/2 = +/2/16

Thus the required sequence is

V2, V2/2, 274, V278, 2/16
Now Work Problem 25 <

We have remarked that sometimes it is possible to determine an explicit formula for
the kth term of a recursively-defined sequence. This is certainly the case for arithmetic
and geometric sequences.

MPLE 7 . Finding the kth term of an Arithmetic Sequence
Find an exphclt formula for the kth term of an arithmetic sequence (by) with first term
a and common difference d.

Solution: We have
b = a=0d+a
by=d+ (b)) = d+a=1d+a
by =d+b)=d+(d+a)=2d+a
bi=d+by)=d+Q2d+a)=3d+a
bs=d+ (b)) =d+@Bd+a)=4d +a

It appears that, for each positive integer k, the kth term of an arithmetic sequence (by)
with first term @ and common difference d is given by

—(k—1)d+a (10)
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’ 8.Ifa company has.an. annual revenue,
- of 27M$ 1n ’7009 and Tevenue grows by:

- 1.5MS each year, find the total revenue. . . . . . .
: ~ Solution: Since the arithmetic sequence (b) in question has, by Example 7, by =

'throuoh 2009-’7015 mclusxve

This is true and follows easily via the proof method called mathematical induction,
which we will not demonstrate here.

Now Work Problem 29 <

Finding the kth term of a Geometric Sequence

Find an explicit formula for the kth term of a geometric sequence (c;) with first term a
and common ratio r.

Solution: We have

c) = a=ar®
- c=() - r= ar=ar h
= () -r=ar'r=ar?
cs = (c3)-r = ar’r =ar’
cs = (cg)-r = ar*r =ar*

It appears that, for each positive integer k, the kth term of a geometric sequence (cy)
with first term a and common difference r is given by

o = ar™! (11)

This is true and also follows easily via mathematical induction.

Now Work Problem 31 <

It is clear that any arithmetic sequence has a unique first term @ and a unique
common difference d. For a geometric sequence we have to be a little more careful.
From (11) we see that if any term ¢ is 0, then eithera = O or r = 0. If @ = 0, then every
term in the geometric sequence is 0. In this event, there is not a uniquely determined r
because 1 - 0 = 0, for any r. If a 0 but r = 0, then every term except the first is 0.

Sums of Sequences
For any sequence (c;) we can speak of the sum of the first k terms. Let us call this sum
s¢. Using the summation notation introduced in Section 1.5, we can write
k
=ZC,~=C1+C2+"'+CI¢ (12)

i=1

We can regard the s, as terms of a new sequence (s ), of sums, associated to the original
sequence (s;). If a sequence (cy) is finite, of length 1 then s,, can be regarded as the sum
of the sequence.

Finding the Sum of an Arithmetic Sequence

Find a formula for the sum s, of the first # terms of an arithmetic sequence (b;) with
first term a and common difference d.

(k — 1)d + a, the required sum is given by

o= bi=) (k—Dd+a)=) (dk—(d-a)=) dk— Y (d—a)
k=1

k=1 k=1 ’ k=1 k=1

- - « nn+1) n
:de—(d-a)Zl =d——2— —d-an = 5 (1= 1)d +2a)
k=1 k=1

Notice that the equality labeled * uses both (13) and (10) of Section 1.5. We remark that
the last term under consideration in the sum is b, = (1 — 1)d -+ a so that in our formula
for s, the factor ((n — 1)d + 2a) is the first term a plus the last term (n — 1)d + a. If we

e R
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9 Mrs. Sunpson put $IOOO ina specwli
_account for Bart on each of his first 21
 birthdays. The account earned interest at.

 the rate of 7% compounded annually. Tt

 follows (see Chapter 5) that the amount:

- deposited on Bart’s.(22 — k)th birthday

is worth $1000(1. 07)‘“ on Bart’s 21st.

b1rthday Fmd the total’ amount m the
specxal account on Bart s 21st blrthday
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write z = (n — 1)d -+ a for the Iast term, then we can summarize with
= *((ll — Dd +2a) = -(a +2) (13)

Note that we could also have found (13) by the same technique used to find (13) of
Section 1.5. We preferred to calculate using summation notation here. Finally, we should
remark that the sum (13) in Section 1.5 is the sum of the first n terms of the special
arithmetic sequence witha = land d = 1.

Now Work Problem 33 <

0 Finding the Sum of a Geometric Sequence

Find a formula for the sum s,, of the first 2 terms of a geometric sequence (c;) with first
term a and common ratio r.

Solution: Since the geometric sequence (c¢;) in question has, by Example 8, ¢, =
ar*~!, the required sum is given by

Sy = Z cr = z:arl""l =a+ar+ar’+---+ar! (14)
It follows that if we multiply (14) by r we have

n
ISy =17 ch =T Zark“ = Zark =ar+ar’ 4+ +a™ +ar" 15)
: k=1
If we subtract (15) from (14) we get
Sy — ISy = a — ar” so that (1 — »r)s, = a(l — ")
Thus we have
a(l —r")
n = 1—r
(Note that if r = 1, then each term in the sum is a and, since there are n terms, the
answer in this easy case is s, = na)

forr #1 (16)

Now Work Problem 37 <

k o
For some infinite sequences (c;)g2, the sequence of sums (si)eo; = (Z c,-)
appears to approach a definite number. When this is indeed the case we write the num%er

as Z c;. Here we consider only the case of a geometric sequence. As we see from (16),
i=1

: k—1 a(l—r k

if cp = ar*™ ' then, forr # 1, s = I Observe that only the factor 1 — r

depends on k. If || > 1, then for large values of k, {#*| will become large, as will
|1 — r*|. In fact, for |[r| > 1 we can make the values |1 — r*]| as large as we like by

taking k to be sufficiently large. It follows that, for |r| > 1, the sums —S-—) do not
approach a definite number. If r = 1, then s, = ka and, again, the sums do not approach
a definite number.

However, for [r| < 1 (thatis for —1 < r < 1), we can make the values r* as close
to 0 as we like, by taking k to be sufficiently large. (Be sure to convince yourself that
this is true before reading further because the rest of the argument hinges on this point.)
Thus, for || < 1, we can make the values 1 — r* as close to 1 as we like by taking k to

1 — "3
be sufficiently large. Finally, for |[r| < 1, we can make the values f’_(_L_) as close to
—r

as we like by taking & to be sufficiently large. In precisely this sense, an infinite

geometric sequence with |r| < 1 has a sum and we have

o0
forlr <1, Y ar™' = 1 a a7
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Finding the Sum of an Infinite Geometric Sequence

A rich woman would like to leave $100,000 a year, starting now, to be divided equally
among all her direct descendants. She puts no time limit on this bequeathment and
is able to invest for this long-term outlay of funds at 2% compounded annually. How
much must she invest now to meet such a long-term commitment?

Solution: Let us write R = 100,000, set the clock to 0 now, and measure time in
years from now. With these conventions we are to account for payments of R at times
0,1,2,3,...,k,...bymaking a single investment now. (Such a sequence of payments
is called a perpetuity.) The payment now simply costs her R. The payment at time 1
has a present value of R(1.02)~!. (See Chapter 5.) The payment at time 2 has a present
value of R(1.02)"2. The payment at time 3 has a present value of R(1.02)3, and, quite
generally, the payment at time k has a present value of R(1.02)*. Her investment now
must exactly cover the present value of all these future payments. In other words, the
investment must equal the sum

R+R1.02)7' +R1.02)Z+R1.02) 3+ +R1.02)* +...

We recognize the infinite sum as that of a geometric series, with firstterma = R =
100,000 and common ratio = (1.02)7!. Since |r| = (1.02)"! < 1, we can evaluate
the required investment as

a 100,000 100,000  100,000(1.02)
_ - = = 5,100,000
T—r - _ 1 0.02 0.02
102  1.02

In other words, an investment of a mere $5,100,000 now will allow her to leave $100,000
per year to her descendants forever!

Now Work Problem 57 <

PROBLEMS 1.6

In Problems 1-8, write the indicated ferm of the given sequence.

3
1. a=+/2, - 2.3, 57, a3

18. a1 =1, apy =a,; ay

19. by =1, b= ',;3; b

=1, 13, =09, 2, 100, 39; bg 0. =1, g =k+D+as a

@iy = 3Y); ag 4 (chey =B 440
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In Problems 21-24, write the first five terms of the arithmetic

(@) =Q+*k—-13) au 6 B)=(G-22"1 b
(@)= =22+ 1); a
(@)=0+k>=2k+7); a3

In Problems 9-12, find a general term, (a;), description that fits
the displayed terms of the given sequence.

U

9. -1,2,5,8 10. 5,3, 1, —1, ...
11. 2, —4, 8, —16 55 5

o7 12. 5, =, =, —, ...
39 27

In Problems 13-16, determine whether the given sequences are
equal to each other.

13, (i +3Y)and (> — 972 + 95 —27)
14, (k2 —4) and ((k + 2)(k — 2))

1\~ T\%®
15. (ﬂ—zk_1> _ and <§E)k=1

k:
16. (/2 —9j* +27j — 27)2, and ((k — 3))2,

In Problems 17-20, determine the indicated term of the given
recursively defined sequence.

7. ey =1, a2 =2, G2 =41 - @5 a7

sequence with the given first term a and common difference d.

21. a=1225,d =09
23. a=96,d=-1.5

22. a=0,d=1

24. a=A,d=D

In Problems 25-28, write the first five terms of the geometric
sequence with the given first term a and common ratio r.

25. a=-2,r=-05 26. a =50, r = (1.06)""

1

27. a=100,r = 1.05 28. a=3,r=§

In Problems 29-32, write the indicated term of the arithmetic
sequence with given parameters a and d or of the geometric
sequence with given parameters a and r.

29, 27thterm,a=3,d =2
30. 9thterm,a =2.7,d = —0.3

31. 1lthtermya=1,r=2 32. 7thterm,a=2,r =10

In Problems 33-40, find the required sums.

7 9
33, Z((k—1)3+5) 34. 3 (k-2+9)

k=1 k=1
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6 34
35. Z((k— 1)0.5 +2.3) 36. Z((kw D10+ 5)
k=1 k=1
10 10
37. Y 100(1/2)" 38. ) 50(1.07)""
k=1 k=1
10 7
39. 250(1.07)'-k 40. 25 Lok

k=1 k=1

In Problems 41-46, find the infinite sums, if possible, or state why
this cannot be done.

. oo 1 k-1

41. Z3<3>
k=1 -
21

43. ~(17)!
2.3

o0 o0
45. 250(1.05)‘—" 46. 275(1.09)“!‘

k=1 Jj=1

47. Inventory Every thirty days a grocery store stocks 90 cans
of elephant noodle soup and, rather surprisingly, sells 3 cans each
day. Describe the inventory levels of elephant noodle soup at the
end of each day, as a sequence, and determine the inventory level
19 days after restocking.

48. Inventory If a corner store has 95 previously viewed
DVD movies for sale today and manages to sell 6 each day,

write the first seven terms of the store’s daily inventory sequence
for the DVDs. How many DVDs will the store have on hand after
10 days?

49. Checking Account A checking account, which earns no
interest, contains $125.00 and is forgotten. It is nevertheless
subject to a $5.00 per month service charge. The account is
remembered after 9 months. How much does it then contain?

50. Savings Account A savings account, which earns interest
at a rate of 5% compounded annually, contains $125.00 and is
forgotten. It is remembered 9 years later. How much does it then
contain?

51. Population Change A town with a population of 50,000 in
2009 is growing at the rate of 8% per year. In other.words, at the
end of each year the population is 1.08 times the population at the
end of the preceding year. Describe the population sequence and
determine what the population will be at the end of 2020, if this
rate of growth is maintained.

52. Population Change Each year 5% of the inhabitants of a
rural area move to the city. If the current population is 24,000, and
this rate of decrease continues, give a formula for the population k
years from now.

53. Revenue Current daily revenue at a campus burger
restaurant is $12,000. Over the next seven days revenue is
expected to increase by $1000 each day as students return for the
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fall semester. What is the projected total revenue for the eight days
for which we have projected data?

54. Revenue A car dealership’s finance department is going to
receive payments of $300 per month for the next 60 months to pay
for Bart’s car. The kth such payment has a present value of
$300(1.01)7*. The sum of the present values of all 60 payments
must equal the selling price of the car. Write an expression for the
selling price of the car and evaluate it using your calculator.

55. Future Value Six years from now, Nicole will need a new
tractor for her farm. Starting next month, she is going to put $100
in the bank each month to save for the inevitable purchase. Six
years from now the kth bank deposit will be worth
$100(1.005)"** (due to compounded interest). Write a formula
for the accumulated amount of money from her 72 bank deposits.
Use your calculator to determine how much Nicole will have
available towards her tractor purchase.

56. Future Value Lisa has just turned seven years old. She
would like to save some money each month, starting next month,
so that on her 21st birthday she will have $1000 in her bank
account. Marge told her that with current interest rates her kth
deposit will be worth, on her 21st birthday, (1.004)'65~* times the
deposited amount. Lisa wants to deposit the same amount each
month. Write a formula for the amount Lisa needs to deposit each
month to meet her goal. Use your calculator to evaluate the
required amount.

57. Perpetuity Brad’s will includes an endowment to
Dalhousie University that is to provide each year after his death,
forever, a $500 prize for the top student in the business
mathematics class, MATH 1115. Brad’s estate can make an
investment at 5% compounded annually to pay for this
endowment. Adapt the solution of Example 11 to determine how
much this endowment will cost Brad’s estate.

58. Perpetuity Rework Problem 57 under the assumption that
Brad’s estate can make an investment at 10% compounded
annually.

59. The Fibonacci sequence given in (7) is defined recursively
using addition. Is it an arithmetic sequence? Explain.

60. The factorial sequence given in (6) is defined recursively
using multiplication. Is it a geometric sequence? Explain.

61. The recursive definition for an arithmetic sequence (b;) called
for starting with a number a and adding a fixed number d to each
term to get the next term. Similarly, the recursive definition for a
geometric sequence (ci) called for starting with a number a and
multiplying each term by a fixed number r to get the next term. If
instead of addition or multiplication we use exponentiation, we get
two other classes of recursively defined sequences:

dy = a and, for each positive integer &, dj.; = (di )P
for fixed real numbers « and p and
e, = a and, for each positive integer k, ey = b*

for fixed real numbers a and b. To get an idea of how sequences can
grow in size, take each of the parameters a, d, r, p, and b that have
appeared in these definitions to be the number 2 and write the first
five terms of each of the arithmetic sequence (by), the geometric
sequence (¢;), and the sequences (dy) and (e;) defined above.



