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Objective

To define the differential, interpret

it geometrically, and use it in
approximations. Also, 1o restate the .
reciprocal relationship between dx/dy
and dy/dx.

TO REVIEW functions of several
variables, see Section 2.8.

14.1 Differentials

We will soon give a reason for using the symbol dy/dx to denote the derivative of y
with respect to x. To do this, we introduce the notion of the differential of a function.

, Definition

AXx can be any real number Then the dtﬂerentlal of y, denoted dy or d( f(x)) 1s
given by ;

- ,dy —ﬁf’(x)A’x'_ |

Note that dy depends on two variables, namely, x and Ax. In fact, dy is a function of
two variables.

LE1 Computing a Differential
Find the differential of y = x> —2x2+3x—4, and evaluate it whenx = 1 and Ax = 0.04.
Solution: The differential is

d

dy = —(@* —2x* +3x — 4) Ax
dx
= (3x" —4x +3) Ax
When x = 1 and Ax = 0.04,
dy = [3(1)* — 4(1) + 3](0.04) = 0.08
Now Work Problem 1

If y = x, then dy = d(x) = 1 Ax = Ax. Hence, the differential of x is Ax. We
abbreviate d(x) by dx. Thus, dx = Ax. From now on, it will be our practice to write dx
for Ax when finding a differential. For example,

dx* +5) = %(x2 +5)dx = 2xdx

Summarizing, we say that if y = f(x) defines a differentiable function of x, then
dy f (x) dx
where dx is any real number. Prov1ded that dx # 0 we can divide both sides by dx:

—’f()

That is, dy/dx can be viewed either as the quotient of two differentials, namely, dy
divided by dx, or as one symbol for the derivative of f at x. It is for this reason that we
introduced the symbol dy/dx to denote the derivative.

Finding a Differential in Terms of dx
a. If f(x) = /x, then
1

d(‘\/-i:) = 'C_;Z;('\/;)dx = -l/qu = -?:-fdx

b. If u = (x* + 3)°, then du = 5(x% + 3)*(2x) dx = 10x(x*> + 3)* dx.
Now Work Problem 3

Lety =f(x)bea d1fferent1ab1e fllIlCthIl of x, andlet Ax denote a change in x, where '
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FIGURE 14.1 Geometric interpretation of dy and Ax.

The differential can be interpreted geometrically. In Figure 14.1, the point
P(x,f(x)) is on the curve y = f(x). Suppose x changes by dx, a real number, to the
new value x + dx. Then the new function value is f(x + dx), and the corresponding
point on the curve is Q(x + dx,f(x -+ dx)). Passing through P and Q are horizontal
and vertical lines, respectively, that intersect at S. A line L tangent to the curve at P
intersects segment OS at R, forming the right triangle PRS. Observe that the graph of
f near P is approximated by the tangent line at P. The slope of L is f'(x) but it is also
given by SR/PS so that

SR
!
X) = —
) 75
Since dy = f'(x) dx and dx = PS,
SR —.
dy =f'(x)dx = =— - PS = SR
y =f(x) 73
Thus, if dx is a change in x at P, then dy is the corresponding vertical change along
the tangent line at P. Note that for the same dx, the vertical change along the curve

is Ay = SO = f(x+dx)—f(x). Do not confuse Ay with dy. However, from Figure 14.1,
the following is apparent:

When dx is close to 0, dy is an approximation to Ay. Therefore,

My dy
This fact is useful in estimating Ay, a change in y, as Example 3 shows.

3 Using the Differential to Estimate a Change in a Quantity

A governmental health agency examined the records of a group of individuals who
were hospitalized with a particular iliness. It was found that the total proportion P that

" are discharged at the end of ¢ days of hospitalization is given by

300 \?
P=P{)=1—
® (300+r>

Use differentials to approximate the change in the proportion discharged if ¢ changes
from 300 to 305. ’

Solution: The change in f from 300 to 305 is At = df = 305 — 300 = 5. The change
in P is AP = P(305) — P(300). We approximate AP by dP:

3 2 3 3003
AP~ dP =P ({t)dt = -3 00 ) (~ 00 7)ah‘:B———&— t
300+t (300 +1)? (300 + n*




Formula (1) is used to approximate a
function value, whereas the formula

Ay == dy is used to approximate a change
in function values.
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When ¢ = 300 and dt = 5,

300° 15 1
6004 23600 2340 320
For a comparison, the true value of AP is
P(305) — P(300) = 0.87807 — 0.87500 = 0.00307

(to five decimal places).

~ 0.0031

Now Work Problem 11 <1.

We said that if y = f(x), then Ay = dy if dx is close to zero. Thus,
Ay =f@x+dx)—fx)=dy
so that

e o

This formula gives us a way of estimating a function value f(x + dx). For example,
suppose we estimate In(1.06). Letting y = f(x) = Inx, we need to estimate f(1.06).
Since d(Inx) = (1/x) dx, we have, from Formula (1),

F&+dx) = f(x)+dy
1

In(x+dy)~Inx+ —dx
X

We know the exact value of In 1, so we will let x = 1 and dx = 0.06. Then
x+dx = 1.06, and dx is close to zero. Therefore,

1
In(140.06) = 1n (1) + -1~(0.O6)

In (1.06) =~ 0+ 0.06 = 0.06
The true value of In(1.06) to five decimal places is 0.05827.

IPLE4 = Using the Differential to Estimate a Function Value

The demand function for a product is given by

p=f@=20-./q
where p is the price per unit in dollars for g units. By using differentials, approximate
the price when 99 units are demanded.

Solution: We want to approximate £(99). By Formula (1),

flg+dg) =~ f(q)+dp

where
1 dp 1 5
. dp = ——— d, 112
D 272 q dq 74
We choose g = 100 and dg = —1 because g -+ dg = 99, dg is small, and it is easy to
compute (100) = 20 — +/100 = 10. We thus have

f(99) = f1100 + (—1)] ~ f(100) — (=D

1
2+/100
f(99) ~ 104-0.05 = 10.05
Hence, the price per unit when 99 units are demanded is approximately $10.05.

Now Work Problem 17 <

The equation y = x> + 4x + 5 defines y as a function of x. We could write f(x) =
%3 +4x + 5. However, the equation also defines x implicitly as a function of y. In fact,
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if we restrict the domain of f to some set of real numbers x so that y = f(x) is a one-to-
one function, then in principle we could solve for x in terms of y and get x = f~1(y).
[Actually, no restriction of the domain is necessary here. Since f/(x) = 3x> +4 > 0,
for all x, we see that f is strictly increasing on (—oo, c0) and is thus one-to-one on
(—00,00).] As we did in Section 12.2, we can look at the derivative of x with respect
to y, dx/dy and we have seen that it is given by

s Temuee

Since dx/dy can be considered a quotient of differentials, we now see that it is the
reciprocal of the quotient of differentials dy/dx. Thus

dx 1
dy  3x24+4
1t is important to understand that it is not necessary to be able to solve y = x> 4+ 4x +5
for x in terms of y, and the equation —— = holds for all x.
¥ d dy 3214

Finding dp/dq from dg/dp

d
Find d—p if ¢ = /2500 — 2.
q

Solution:

i"Strategy There area ‘iinber of ways to find dp/dg. One approach is to solve the ,:
 given equation for p explicitly in terms of ¢ and then differentiate dlrectly Another -
: approach to find dp/dq is to use implicit differentiation. However, since g is given
 explicitly as a function of p, we can easily find dg/dp and then use the preceding
remprocal relatlon to ﬁnd dp /dq We w111 take this approach o

We have
%9 _ 12500 p?y P (2p) = — B
dp 2 /2500 — p?
Hence,

dp 1 /2500~ p?
dg dq p
dp

Now Work Problem 27 <1

PROBLEMS 14.1
In Problems 1-10, find the differential of the function in terms of x 13 y=22+5x—7;x=-2,dc = 0.1

and dx. , 4. y=Cx+2)%x=—1,dv = —0.03
L.y=ax+b 2. y=2
- 15. y =32 —x%;x =4,dx = —0.05 Round your answer to
3 f@)=Vx-9 4. f(x) = (4x* = 5x +2)° three decimal places.
. 1
5. u—-;— 6. u=./x 16. y=1Inx;x = 1,dx =0.01
=In@r+7) 8. p=e¢ 4205 17. Letf(x) = -——~+ >
9. y = (9x +3)e>H 10. y=In/x2+12 x4+ 1
(a) Evaluate f’(l).
In Problems 11-16, find Ay and dy for the given values of x (b) Use differentials to estimate the value of f(1.1).
and d. 18. Letf(x) = x*.
11. y = ax + b; for any x and any dx (a) Evaluate f'(1).
12, y=5xx = —1,dx = —0.02 (b) Use differentials to estimate the value of f(0.98).




In Problems 19-26, approximate each expression by using
differentials. '

19. /288 (Hint: 17% = 289)) 20. /122
21. V9 22. Y163
23. 1In 0.97 . 24. 1n 1.01
25. (0001

26. 6“0‘002

In Problems 27-32, find dx/dy or dp/dq.

27. y=2x—1 28, y=5x+3x+2
29, g = (p*+5) 30. g=/p+5

1
3. g=— 32 g=é&7

e

33. Ify = 7x* — 6x + 3, find the value of dx/dy when x = 3.
34. Ify = Inx?, find the value of dx/dy when x = 3.

In Problems 35 and 36, find the rate of change of q with respect to
p for the indicated value of q.

500

3. p=——;9g=18 36. p=60— ./2q;q = 50
q+2

37. Profit  Suppose that the profit (in dollars) of producing

g units of a product is
P =397g — 2.3 — 400

Using differentials, find the approximate change in profit if the
level of production changes from ¢ = 90 to g = 91. Find the true
change.

Given the revenue function
r =250 +45¢* — ¢*

use differentials to find the approximate change in revenue if the
number of units increases from g = 40 to ¢ = 41. Find the true
change.

38. Revenue

39. Demand The demand equation for a product is

10

‘P=ﬁ

Using differentials, approximate the price when 24 units are
demanded.

40. Demand Given the demand function .
200

b= Jg+8
use differentials to estimate the price per unit when 40 units are
demanded.

41. If y = f(x), then the proportional change in y is defined to be
Ay/y, which can be approximated with differentials by dy/y. Use
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this last form to approximate the proportional change in the cost
function

,
1
2

c=f(q) = = + 5¢ + 300

when g = 10 and dg = 2. Round your answer to one decimal
place.

42. Status/Income  Suppose that S is a numerical value of
status based on a person’s annual income / (in thousands of
dollars). For a certain population, suppose S = 20+/T. Use
differentials to approximate the change in § if annual income
decreases from $45,000 to $44,500.

43. Biology The volume of a spherical cell is given by
V= %mj, where r is the radius. Estimate the change in volume
when the radius changes from 6.5 x 10~ cm to 6.6 x 107* cm.

44. Muscle Contraction The equation

P+av+b)=k

is called the “fundamental equation of muscle contraction.”! Here
P is the load imposed on the muscle, v is the velocity of the
shortening of the muscle fibers, and a, b, and k are positive
constants. Find P in terms of v, and then use the differential to
approximate the change in P due to a small change in v.

45. Demand The demand, ¢, for a monopolist’s product is
related to the price per unit, p, according to the equation

2 4000
2+ cl = —
200 p*

(a) Verify that 40 units will be demanded when the price per unit
is $20.
dq

(b) Show that — = —2.5 when the price per unit is $20.

. D.
(c) Use differentials and the results of parts (a) and (b) to
approximate the number of units that will be demanded if the
price per unit is reduced to $19.20.

46. Profit The demand equation for a monopolist’s product is

1
p= ;)~q2 — 66q + 7000

and the average-cost function is

(a) Find the profit when 100 units are demanded.
(b) Use differentials and the result of part (a) to estimate the
profit when 101 units are demanded.

Objective

To define the antiderivative and the
indefinite integral and to apply basic
integration formulas.

14.2 The Indefinite Integral

Given a function f, if F is a function such that
F'(x) = f(x) 1)

then F is called an antiderivative of f. Thus,

An antiderivative of f is simply a function whose derivative is f. |

IR.W. Stacy et al., Essentials of Biological and Medical Physics (New York: McGraw-Hill,- 1953).
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Multiplying both sides of Equation (1) by the differential dx gives F’(x) dx = f(x) dx.
However, because F'(x) dx is the differential of F, we have dF = f(x) dx. Hence, we
can think of an antiderivative of f as a function whose differential is f(x) dx.

Definion = L0
An antiderivative of a function f ,iS;?l functxon E suph thk’a,t"’ , =
Equivalently,in differential notation,

For example, because the derivative of x? is 2x, x> is an antiderivative of 2x.
However, it is not the only antiderivative of 2x: Since

d d
Z;(x2+ D=2x  and a;(xz —5)=2x

both x2 + 1 and x> — 5 are also antiderivatives of 2x. In fact, it is obvious that because
the derivative of a constant is zero, x>+ C is also an antiderivative of 2x for any constant
C. Thus, 2x has infinitely many antiderivatives. More importantly, all antiderivatives
of 2x must be functions of the form x> 4 C, because of the following fact:

 Any two antiderivatives of a function differ only by a constant,

Since x? + C describes all antiderivatives of 2x, we can refer to it as being the most
general antiderivative of 2x, denoted by [ 2x dx, which is read “the indefinite integral
of 2x with respect to x.” Thus, we write

fmw=£+c

The symbol [ is called the integral sign, 2x is the integrand, and C is the constant of
integration. The dx is part of the integral notation and indicates the variable involved.
Here x is the variable of integration.

More generally, the indefinite integral of any function f with respect to x is
written f f(x) dx and denotes the most general antiderivative of f. Since all antideriva-
tives of f differ only by a constant, if F is any antiderivative of f, then

f fx)dx = F(x) + C, where C is a constant

To integrate f means to find [ f(x)dx. In summary,

' 'ff(x)'dx = F(x)+ C  ifand onl‘yki-f' F’(x)’=f('x)ﬁ”,;i
Thus we have

d ) d
E(/f(x)dX> =f(x) and ‘/-&X—(F(A))dA=F(X)+C

which shows the extent to which differentiation and indefinite integration are inverse
procedures.




APPLY IT »

‘L If the rna:ginal cost for a company. is
F(g) = 28.3;find [ 28.3 dg, which gives
the form of the cost function. :

cautiol]\

A common mistake is to omit C, the
constant of integration.
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MPLE1 Finding an Indefinite Integral

Find f 5dx.
Soluticon:

Strategy First we must find (perhaps better words are guess at) a function whose
derivative is 5. Then we add the constant of integration. ‘

Since we know that the derivative of 5x is 5, 5x is an antiderivative of 5. Therefore,

dex=5x+C

Now Work Problem 1 <

Using differentiation formulas from Chapters 11 and 12, we have compiled a list of
elementary integration formulas in Table 14.1. These formulas are easily verified. For
example, Formula (2) is true because the derivative of x+!/(a + 1) is x% fora # —1.
(We must have a 3 —1 because the denominator is 0 when @ = —1.) Formula (2) states
that the indefinite integral of a power of x, other than x~!, is obtained by increasing the
exponent of x by 1, dividing by the new exponent, and adding a constant of integration.
The indefinite integral of x~! will be discussed in Section 14.4.

To verify Formula (5), we must show that the derivative of k f Fx)dx is kf(x).
Since the derivative of k [ f(x) dx is simply k times the derivative of [ f(x) dx, and the
derivative of f f) dxisf(x), Formula (5) is verified. The reader should verify the other

formulas. Formula (6) can be extended to any number of terms.

Indefinite Integrals of a Constant and of a Power of x

a. Find f ldx.

Solution: By Formula (1) withk =1
/1dx= x4+ C=x+C

Usually, we write [ 1dx as [ dx. Thus, [ dx =x+ C.
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APPLY IT »

E12 If the rate of chanae ofa company s
j dR
: revenues can be modeled by o ==

0127, then find [0.127dr, which
~gives the form of the cornpany ’s Tevenue

: funcmon

cauTion\

Only a constant factor of the integrand
can pass through an integral sign.

APPLY T >

' 3 Due to new competmon the number ,

of subscriptions to a certain maoazgloe
4

vis declining at'a rate of — = —__
: dt t3

subscnptlons per.month, where ¢ is the

number of months since the competition

“entered the market. Find the form of the -

i equation for the number of subscribers
to the magazine. :

b. Find / x° dx.

Solution: By Formula (2) with n = 5,

S5+1 6

5 X X
dx = c=%.1c
/x =iy teTgt

Now Work Problem 3 <

Indefinite Integral of a Constant Times a Function

Find / Txdx.

Solution: By Formula (5) with k = 7 and f(x) = x,

f7xdx:7/xdx

Since x is x!, by Formula (2) we have

, RS 2
dx = Ci=—+C
/x 1+1+ 1 2+ 1

where C; is the constant of integration. Therefore,

x? 7,
Txdx =7 | xdx =7 —2—-}—C1 :§x”+7C1

Since 7C; is just an arbitrary constant, we will replace it by C for simplicity. Thus,

7
/7xdx=—2-x2+C

It is not necessary to write all intermediate steps when integrating. More simply,
we write

2 7 .
f7xdx=(7)%+C:§x2+C

Now Work Problem 5 <

Indefinite Integral of a Constant Times a Function

Find/-—ge‘dx.

: 3 3
Solution: /——gerdx = —3 f e dx Formula (3)
3.
= —gef‘ +C Formula (4)

Now Work Problem 21 <

(AMPLE 5 Finding Indefinite Integrals
a. Find / —dt.

Solution: Here t is the variable of i integration. We rewrite the integrand so that a basic
formula can be used. Since 1//7 = 172 , applying Formula (2) gives

/ p / vy =172+ 12
—dl = e dt =

+C_T+C-9«/+C
S | -
2" 2
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1
b. Find | — dx.
n /6x3

) 1 1 [ 1\ x~3!
Solution: /@dngfx dx:(g> _3+1+C
- e
12 12x2

Now Work Problem 9 <

AMPLE 6 Indefinite Integral of a Sum

APPLY IT »

4. The rate of growth of the population of

Lol AN Find / (x% + 2x) dx.
~anew city is-estimated by e 500+

-300+/1, where  is inyears. Find - - Solution: By Formula (6),
/(500+300;/?)dr /(x2+2x)dx:/x2dx+[2xdx

Now,

x2+l X3
/xzdxz +Ci=—+C(C

241 3
and
RS
/2xdx=2/xdx:(2) +C =24+ C
141
Thus,
2 % 2
/(x”+2x)dx: ?+X"+C1 + Cy
When integrating an expression involving For convenience, we will replace the constant C, + C, by C. We then have

more than one term, only one constant of
integration is needed.

3
/(x2+2x)dx=%+x2+c

Omitting intermediate steps, we simply integrate term by term and write

x3 2

3
/(x2+2x)dx=—§+(2)%+C=%+x2+C

Now Work Problem 11 <

APPLY IT & AMPLE 7 Indefinite Integral of a Sum and Difference
5. Slyipposei the rate of :Savingsj'
in the United States is given by
: ‘;—f = 2.1 — 65.4t +491.6, where tis  Solution:

 the time in years and S is the amount of 5 3
money saved in billions of dollars. Find / (2Vx* —Tx" + 10e" — 1) dx

 the form of the equation for the amount

Find_ / @Vx* = Tx* + 10 — 1) dx.

. of money saved. - =2 f P dx —7 / dx+ 10] e dx — / ldx  Formulas (5) and (6)
i Ve o
i =) - (7)1— + 10" —x+C Formulas (1), (2), and (4)

wi

10 7
= —9—x9/5 - Zx“ +10e —x+C

Now Work Problem 15 <
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cauTion\

In Example 8, we first multiplied the
factors in the integrand. The answer
could not have been found simply in
terms of [ y*dy and [ (y + $)dy. There
is not a formula for the integral of a
general product of functions.

Another algebraic approach to part (b) is

.\'3 -] 3 _1a
—dv= | (&7 — I)x""dx
x?
= /(.\'—,\'"z)d.\'

and so on.

PROBLEMS 14.2 <

- In Problems 1-52, find the indefinite integrals.

2. /ldx
X
4. /5x24dx
2-3
f—S—dZ
. f%dx 8./

1. / 7dx
/ Bdx
. f 5x dx 6.

W

94}

q

Sometimes, in order to apply the basic integration formulas, it is necessary first to
perform algebraic manipulations on the integrand, as Example 8 shows.

Using Algebraic Manipulation to Find an
Indefinite Integral

2
Find fyz (y + -5) dy.

Solution: The integrand does not fit a familiar integration form. However, by multi-
plying the integrand we get

2 2 / .3 2,
it —Vdy = [y —v- | dv
f} <}’+3> y ¥+ 3 )@

4 2 3 4 2,3
:%+(§)1+C:)_+_.)__+C

Now Work Problem 41 <

AMPLE 9  Using Algebraic Manipulation to Find an
Indefinite Integral

a. Find f @_——16)(&3)(1&

Solution: By factoring out the constant % and multiplying the binomials, we get

[EE R w [t s-sar

__1_((7)£+(5)£_3 )—!-C
s\ 2

.3_1
b. Find/“ —~ dx.
=

Soluiion: We can break up the integrand into fractions by dividing each term in the
numerator by the denominator:

_3_1 3 1
/‘A > dx:f(é——;) dx:/(x—x"z)dx
x? x* 0 x?

S S S
T2 - T2 x

Now Work Problem 49 <

1
9. /z—"/_“d[

11. f(4+ ndt

7
10. /mdx

12. / (717 +4r* + D dr

13. f o° —5y)dy 14. f (5 — 2w — 6w dw

7

- 2
S 15. / (3r* — 41 + 5) dr

16. /(1 + 2+ Sdr
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17. /(\/j’l_—i—e)dx 18. /(5-2")(1;- 39 f I CS PR I
. ; s T e
19 / ("' 3#) dx 20 / 27 _ 84 1
. = — = b 20. — — =x" ] dx 2
7 4 7 3 40. / (S/E+ 7:) du 41. /(r +5)(x —3)dx
u
21. | wetdx 22. Y+ 337 + 2x) dx 2
! /Tg dx f(" +3x0 4+ ) 42. fﬁ(.r YSr4d 43, /ﬁ(x+3)¢\-
23. / (57— 0x® 4307 ) dx 44. / (z+2Ydz 45. / Gu +2)* du
3 2
24. / 0.7y + 10 + 2y ) dy 46. / 2 1) dx 47. / x72(3x% + 4 — 5)dx
2% VA '
= LY ) - 4 23
= [ SEa 2 [ a a8, [ 6o i+ au . [
5 —4 -
2 . ‘.4 — 5; -2 2% X 2x
7 f sk B | Gy ® 50. f e PN 51. / £EE
33 Lo > ¢
X
29. T 30. — — — | dx 2 3
G 2 (mg) o [EEV,
5 x
31. f (2‘; — 2 7) dw 32. / Te* ds 53. If F(x) and G(x) are such that F’(x) = G'(x), is it true that
2 3w? F(x) — G(x) must be zero?
33. / 3u—4 du 34. / .L (lg‘) dx 54. (a) Find a function F such that f Fx)ydy =xe* + C.
5 12\3 (b) Is there only one function F satisfying the equation given in
¥ ions?
35, /' W + ) du 36. / (3_)’3 P % ) dy part (a), or arc; there mlany such functions?
3 55. Flnd‘/z (_7——) dx.
37. / (—- - 12@&) dx 38. /om YAV A+
Jx

Objective

To find a particular antiderivative of
a function that satisfies certain
conditions. This involves evaluating
constants of integration.

14.3 Integration with Initial Conditions

If we know the rate of change, f', of the function f, then the function f itself is an
antiderivative of ' (since the derivative of f is ). Of course, there are many antideriva-
tives of f*, and the most general one is denoted by the indefinite integral. For example, if

£/ =2x

then
fx) = / fx)dx = f 2xdx = x>+ C. (1)

That is, any function of the form f(x) = x>+ C has its derivative equal to 2x. Because of
the constant of integration, notice that we do not know f(x) specifically. However, if f
must assume a certain function value for a particular value of x, then we can determine
the value of C and thus determine f(x) specifically. For instance, if f(1) = 4, then, from
Equation (1),

fH=1>+cC
4=1+C
C=3
Thus,
f) =x"+3

That is, we now know the particular function f(x) for which f’(x) = 2x and f(1) = 4.
The condition f(1) = 4, which gives a function value of f for a specific value of x, is
called an initial condition.
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APPLY 1T >

6. The rate of growth ofa specxes of bac- .

,, dN
teriais estlmated by — =~800+2003

‘ where N is the number of bactena (m
thousands) after r hours. If N(5) =
40,000, find N(z). '

APPLY IT >

7. The acceleration of an object after ¢
seconds is given by y” = 84¢ + 24, the

velocity at 8 seconds is given by y/(8). =
2891 ft/s, and the position at 2 seconds

~1s given by ¥(2) =185 ft. Find y(t).

Initial-Condition Problem

If y is a function of x such that y’ = 8x — 4 and y(2) = 5, find y. [Note: y(2) = 5 means
that y = 5 when x = 2.] Also, find y(4).

Solution: Here y(2) = 5is theinitial condition. Since y’ = 8x—4, yis an antiderivative
of 8&x — 4:
2

=:/(8x—4)dx=8~%—4x+C:4x2—4x+C )

We can determine the value of C by using the initial condition. Because y = 5 when
x = 2, from Equation (2), we have

5= 4@ —42)+C
5=16—-8+C
C=-3
Replacing C by —3 in Equation (2) gives the function that we seek:
y=4x* —4x -3 3)
To find y(4), we let x = 4 in Equation (3):
y(4) =44 —4(4) -3 =64 — 16 — 3 =45
Now Work Problem 1 <

Initial-Condition Problem Involving y’

Given that y” = x> — 6,y'(0) = 2, and y(1) = —1, find y.
Solution:
S{raiegy To go from ¥ to y, two 1ntegrat10ns are needed the ﬁrst to take us from ,

)" toy" and the other to take us from y' to y. Hence, there w111 be two constants of
mtegratmn wh1ch we w1ll denote by C1 and C’) s

d "
Since y" = ;1;()/) = x?> — 6,y is an antiderivative of x2 — 6. Thus,

3
y = w~®w:%—m+a )

Now, y'(0) = 2 means that y’ = 2 when x = 0; therefore, from Equation (4), we have

3

0
2=—3——6(0)+C1

Hence, C; = 2, so

SO

X
y=1~7—3x +2x 4 C; (5)
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Now, since y = —1 when x = 1, we have, from Equation (5),

4

1
-1=5 — 32 +2(1) + G

Now Work Problem 5 <

Integration with initial conditions is applicable to many applied situations, as the
next three examples illustrate.

Income and Education

For a particular urban group, sociologists studied the current average yearly income y
(in dollars) that a person can expect to receive with x years of education before seeking
regular employment. They estimated that the rate at which income changes with respect
to education is given by

d
210032 4<x<16
where y = 28,720 when x = 9. Find y.
Solution: Here y is an antiderivative of 100x3/2. Thus,
y= f 100532 dx = 100/)53/2 dx

3/"

= (100)

2
y =40+ C (6)

The initial condition is that y = 28,720 when x = 9. By putting these values into
Equation (6), we can determine the value of C:

28,720 = 40(9)*%* + C
=40(243) + C
28,720 = 9720 4 C
Therefore, C = 19,000, and
y = 40x°>/% 4+ 19,000
Now Work Problem 17 <

Finding the Demand Function from Marginal Revenue

If the marginal-revenue function for a manufacturer’s product is
d "
& 2000 — 20g — 34
dq

find the demand function.

Solutlon

, Straiegy By 1ntegrat1n0 dr/dq and using an 1n1t1a1 condmon we can find
i’ evenue funcnon r. But revenue is also given by the general relanons
here pis the price per unit. Thus p=r/q. Replacmo rin this equatlon by the
 Tevenue function yields the demand function ,
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Revenue is 0 when ¢ is 0.

Although g = 0 gives C = 0, this is not
true in general. It occurs in this section
because the revenue functions are
polynomials. In later sections, evaluating
at g = 0 may produce a nonzero value
for C.

When ¢ is 0. total cost is equal to
fixed cost.

Although ¢ = 0 gives C a value equal to
fixed costs, this is not true in general. It
occurs in this section because the cost
functions are polynomials. In later
sections, evaluating at ¢ = 0 may
produce a value for C that is different,
from fixed cost.

Since dr/dq is the derivative of total revenue r,

r= / (2000 — 20 — 3¢®)dg

7> 7
= 2000g — Qo) - (3)-3- +C
so that
r=2000g — 10¢>* - ¢* + C (7

We assume that when no units are sold, there is no revenue; that is, r = 0 when
g = 0. This is our initial condition. Putting these values into Equation (7) gives

0 = 2000(0) — 10(0)* — 0* + C
Hence, C =0, and
r = 2000g — 104> — ¢°
To find the demand function, we use the fact that p = r/q and substitute for r:
r 2000q — 10¢> — ¢°
q q
p = 2000 — 10g — ¢

Now Work Probiem 11 <

XAMPLE 5 Finding Cost from Marginal Cost
In the manufacture of a product, fixed costs per week are $4000. (Fixed costs are costs,

such as rent and insurance, that remain constant at all levels of production during a
given time period.) If the marginal-cost function is

d
29 = 0.000001(0.002¢2 — 25¢) +0.2
q

where c is the total cost (in dollars) of producing g pounds of product per week, find
the cost of producing 10,000 ib in 1 week.

Solution: Since dc/dg is the derivative of the total cost c,
clg) = f [0.000001(0.002¢° — 25q) + 0.2)dg

= 0.000001 / (0.002¢> — 25¢) dg + f 0.2dg

0.0024> 2547
2

c(g) = 0.000001 ( ) +029+C
Fixed costs are constant regardless of output. Therefore, when ¢ = 0,c = 4000,

which is our initial condition. Putting ¢(0) = 4000 in the last equation, we find that
C = 4000, so '

0.002¢°> 25¢°
2

c(g) = 0.000001 < ) +0.2q + 4000 )

From Equation (8), we have ¢(10,000) = 5416%. Thus, the total cost for producing
10,000 pounds of product in 1 week is $5416.67.

Now Work Problem 15 <




PROBLEMS 14.3

In Problems 1 and 2, find y subject to the given conditions.

L dy/dx=3x—4; y-1)=2

2. dyjdx =x* —x; y(3)= 129

In Problems 3 and 4, if y satisfies the given conditions, find y(x)
for the given value of x. ‘

9
3.y = — y(16) = 10; x=9
Y Sﬁ}() x

4 y=—x+2,y2)=1 x=1

In Problems 5-8, find y subject to the given conditions.

5.y ==3x*4+4x; Yy1)=2, y(1)=3

6. y=x+1 y0)=0y0=5

7. y" =2 Y'(=1)=3,y(3)=10, y0)=13

8.y =2e+3; Y'(0)=T,Y(0) =530 =1

In Problems 9-12, dr/dq is a marginal-revenue function. Find the
demand function.

1
9. dr/dg = 0.7 10. dr/dg =10~ —q

11. dr/dq =275 — q — 0.3¢*> 12. dr/dg = 5,000—3(2g+2¢%)
In Problems 13-16, dc/dq is a marginal-cost function and fixed
costs are indicated in braces. For Problems 13 and 14, find the

total-cost function. For Problems 15 and 16, find the total cost for
the indicated value of q.

13. dc/dg =247, {159}  14. dc/dg=2q+75; {2000}
15. dc/dg = 0.08¢> — 1.6q +6.5; {8000}; g =25
16. dc/dg = 0.000204¢ — 0.046g +6; {15,000}; g = 200

17. Diet for Rats A group of biologists studied the nutritional
effects on rats that were fed a diet containing 10% protein.? The
protein consisted of yeast and corn flour.

Over a period of time, the group found that the (approximate) rate

of change of the average weight gain G (in grams) of a rat with
respect to the percentage P of yeast in the protein mix was
£=-—£+2 0<P=<100
dapP 25
If G = 38 when P = 10, find G.
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18. Winter Moth A study of the winter moth was made in
Nova Scotia.? The prepupae of the moth fall onto the ground from
host trees. It was found that the (approximate) rate at which
prepupal density y (the number of prepupae per square foot of
soil) changes with respect to distance x (in feet) from the base

of a host tree is

dy
dx
Ify =59.6 whenx =1, find y.
19. Fluid Flow In the study of the flow of fluid in a tube of
constant radius R, such as blood flow in portions of the body, one
can think of the tube as consisting of concentric tubes of radius r,
where 0 < r < R. The velocity v of the fluid is a function of r and

is given by*
. (P = Pyr &
21y

where P; and P, are pressures at the ends of the tube, i (a Greek
letter read *eta”) is fluid viscosity, and / is the length of the tube.
If v = 0 when r = R, show that

_ B =P)R -1

B 4y
20. Elasticity of Demand The sole producer of a product has
determined that the marginal-revenue function is

dr \
— = 100 — 3q~
dg 1

=—15-x 1<x<9

Determine the point elasticity of demand for the product when
g = 5. (Hint: First find the demand function.)

21. Average Cost A manufacturer has determined that the
marginal-cost function is

d
& 0.003¢% — 0.4q + 40
dq

where g is the number of units produced. If marginal cost is
$27.50 when g = 50 and fixed costs are $5000, what is the
average cost of producing 100 units?

22, If f"(x) = 30x* + 12x and f'(1) = 10, evaluate
f(965.335245) — f(—965.335245)

Objective

To learn and apply the formulas for
[udu, [ e du, and f —du.
“ The formula

M.éf More Integration Formulas

Power Rule for Integration

X = +
lZ-{ 1

ifa#~1

2Adapted from R. Bressani, “The Use of Yeast in Human Foods,” in Single-Cell Protein, eds. R. 1. Mateles and
S. R. Tannenbaum (Cambridge, MA: MIT Press, 1968).

3Adapted from D. G. Embree,“The Population Dynamics of the Winter Moth in Nova Scotia, 1954-1962,"
Memoirs of the Entomological Society of Canada, no. 46 (1965).

4R.W. Stacy et al., Essentials of Biological and Medical Physics (New York: McGraw-Hill, 1955).
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After integrating, you may wonder what
happened to 3x*. We note again that
du = 3x% dx.

which applies to a power of x, can be generalized to handle a power of a function
of x. Let u be a differentiable function of x. By the power rule for differentiation, if
a # —1, then '

\ya+-1 a0y
d ((u(x)) * ) _ @ DY w0 osa i

dx a+1 a+1
Thus,
a+1
/ W) - v'(x)dx = Q)™ +C a#-1
a+1

We call this the power rule for integration. Note that i/'(x)dx is the differential of u,
namely du. In mathematical shorthand, we can replace u(x) by 1 and #'(x) dx by du:

V 'Poukve'rf Rulé for !niegratioh -
. Ifuis diﬁ”éi‘eﬂﬁdblé, then

getl e . S o
Ydui—= — -+ ifazt=1 s 1)
fu dua+1+ a# ()

It is important to appreciate the difference between the power rule for integration and
the formula for f x*dx. In the power rule, 1 represents a function, whereas in f x% dx,
X is a variable.

Applying the Power Rule for Integration

a. Find f (x + 1) dx.

Solution: Since the integrand is a power of the function x + 1, we will set u = x + 1.
Thendu = dx,and [ (x+1)* dx has the form [ 4*° du. By the power rule for integration,

21 . 21
x+1D
c+ DPdx= [ Wdu=2—+C="2"_4¢C
(x Y dx /u i X C o

Note that we give our answer not in terms of u, but explicitly in terms of x.

b. Find / 323 4+ 7)Y dx.

Solution: We observe that the integrand contains a power of the function x> + 7. Let
u = x*>+7. Then du = 3x* dx. Fortunately, 3x” appears as a factor in the integrand and
we have

f 3x2(F° + T dx = / o7+ 7Y [Bx% dx] = f u® du

4 3 Ty
:y__I.C:u
4 4

Now Work Problem 3 <

+C

In order to apply the power rule for integration, sometimes an adjustment must be
made to obtain du in the integrand, as Example 2 illustrates.

AMPLE 2 Adjusting for du
Find ‘/x\/x2 + 5 dx.

Solution: We can write this as [ x(x*> + 5)!/? dx. Notice that the integrand contains
a power of the function x> + 5. If u = x> + 5, then du = 2xdx. Since the con-
stant factor 2 in du does not appear in the integrand, this integral does not have the




| :

cauTioN\

The answer to an integration problem
must be expressed in terms of the original
variable.

cauTion\

We can adjust for constant factors, but
not variable factors.
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" du
form f i du. However, from du = 2x dx we can write x dx = - 80 that the integral
becomes -

fx(x2+5)‘/2dx=/(x2+5)’/2[xdx]=fu‘/2?

Moving the constant factor 4 in front of the integral sign, we have

/x(x2+5)‘/2d4v= ‘l‘fu’/zafuzl wl? ro=lpr
2 2\72 3

which in terms of x (as is required) gives

3/2
/MM + 5dx —-( +5) +C

Now Work Problem 15 <

In Example 2, the integrand x+/x> + 5 missed being of the form (u(x))!/2u/'(x)
‘(%)

u
by the constant factor of 2. In general, if we have / (u(x))“-Td\ for k a nonzero
constant, then we can write

/(l( ))" dJ\ —f C:[ = %/u“ du

to simplify the integral, but such adjustments of the integrand are not possible for

variable factors.
When using the form [ u“ du, do not neglect du. For example,

4x + 1)
/(4x+ 1) dx (—‘—;“——3-+c
The correct way to do this p‘rioblem is as follows. Let u = 4x - 1, from which it follows
that du = 4 dx. Thus dx = —Zg and

_ 2, 5 [ du _I 2 1 2 _(4.\‘-{-1)3
f(4,\+1) dx—/zt [z—]_zfzt du—-zl—-?—va-———t)———{-C

a. Find / J6ydy.

Solution: The integrand is (6y)!/ 3a power of a function. However, in this case the
obvious substitution u = 6y can be avoided. More simply, we have

3 6
/\3/6—}7(1]:-/‘61/3},1/3[1‘,_\/‘/),!/361), fL,+C_ {‘,4/3_,_(:

223 4+ 3x
Gt + 322 474

Solution: We can write this as [ (x* + 3x* + 7)~*(2x + 3x) dx. Let us try to use the
power rule for integration. If u = x* + 3x% 4+ 7, then du = (4x> + 6x) dx, which is two

b. Firid"

times the quantity (2x> + 3x) dx in the integral. Thus (2x® +3x) dx = 7“ and we again
illustrate the adjustment technique:

/ G 4327 + DT+ 30 dx] = fll_4 [%j] = 5]:"/‘1!_4 du

1 u‘3+c_ 1 fC= 1 iy,
2 -3 T 6 T 60t + 32+ 7)3

Now Work Problem 5«
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In using the power rule for integration, take care when making a choice for u. In
Example 3(b), letting u = 2x3 4 3x does not lead very far. At times it may be necessary
to try many different choices. Sometimes a wrong choice ‘will provide a hint as to
what does work. Skill at integration comes only after many hours of practice and
conscientious study.

An Integral to Which the Power Rule Does Not Apply
Find f 4 (x* + 1)? dx

Solution: If we set u = x* + 1, then du = 4x> dx. To get du in the integral, we need an
additional factor of the variable x. However, we can adjust only for constant factors.

Thus, we cannot use the power rule. Instead, to find the integral, we will first expand
ot 4+ 1%

/4x2(x4+ 1)2dx=4fx2(x8+2x4+ Ddx
—~4f(x’°+2xﬁ+x2)dx

xll 2x7 x3
= = c
(11 Tt 3>+

Now Work Problem 67 <

integrating Natural Exponential Functions

We now turn our attention to integrating exponential functions. If « is a differentiable
function of x, then

du
ell —
( )= ¢
c AUTIO@ Corresponding to this differentiation formula is the integration formula |
Do not apply the power-rule formula for du
Jutduto [e'du. f —dx=¢e"+C
du | . .
But = dx is the differential of 1, namely, du. Thus,
f e du = e" + C 2
APPLY IT »> T

~' 8 When an object is moved from one; .
f~‘env1ronment to another, its. tempera—':
‘ture’ T changes at a' rate given by
dl
= kCe™, wh(?re ¢ is the time (in: a. Find /‘ ertz .
hours) after changing environments, C
is the temperature difference (original
minus new) between the environments,*
and k is a constant. If the original envi-

Integrals Involving Exponential Functions

Solution: Let u# = x%. Then du = 2x dx, and, by Equation (2),

ronment. is 70°, the new. environment f 26" dx = / gxl [2x dx] = / e du
is. 602, andk = —0. 3; find the general i
- form of T(t)

—e"+C=¢" +C




R A S St

APPLY IT »

9. If the rate of vocabulary memoriza-

- tion of the average student in a foreign

e Lo ay
- languageisgivenby — = ——— where

dt = t+1

v is the number of vocabulary wode'
‘memorized in  hours of study, find the

general form of v(1).
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b. Find / G2 + 1)e" 3 gy,
J

Solution: If u = x3 + 3x, then du = (3x% + 3)dx = 3(x? + 1) dx. If the integrand
contained a factor of 3, the integral would have the form [ e du. Thus, we write

f @+ e dx = f e + 1) di]

._1‘/‘lld_]‘ll+c
—3 4 ll—-3€

1 o4s
= e &l C
3¢ T

1 1
where in the second step we replaced (x> + 1)dx by 3 du but wrote - outside the
integral.

Now Work Problem 41 <

Integrals Involving Logarithmic Functions
As we know, the power-rule formula [ u® du = u**! /(a+ 1) + C does not apply when

a = —1. To handle that situation, namely, uldu = | = du, we first recall from
124
Section 12.1 that

d 1d
—(In Ju)) = ZZ}L% for i # 0

which gives us the integration formula

a;y/—’lduzlnwl +C foru#0 3
; i

In particular, if u# = x, then du = dx, and

'f’-dx=1n'lx|+C forx#0 @

MPLE 6 Integrals Involving — du

u

7
a. Find / - dx.
X
Solution: From Equation (4),

7 1
/—dx=7/—¢t=7ln|x|+C
X X
Using properties of logarithms, we can write this answer another way:

7
f—dx:lnlx7{+C
X

2
b. Find / = dx.
x*+5

Solution: Let u = x> + 5. Then du = 2x dx. From Equation (3),

2x 1 1
dx = 2xdx}= | —d
fx2+5 * ,/x2+5[ o /u "

=Ihul+C=lx*+5+C

Since x? + 5 is always positive, we can omit the absolute-value bars:
ysp

’7.
fxz”isdlen(x2+5)+c

Now Work Problem 31 <<
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PROBLEMS 14.4
In Problems 1-80, find the indefinite integrals.

2. f 15(x + 2)* dx

1. f(x+5)7cbc

[

: f2.x(x2 +3Ydx

w

6. /(1512 —6t+ )52 =32+ 07 ar

4x
8. f ———-(21_2 0 dx

5
7. f@;-—_l)idx
. /\/7x+3dx

&

11. / (7x — 6)* dx

13. f11(5142 - gy

Integration

4, /(4x+3)(21:2+3x+1)d\'

' / Gy +6y)0° +3y* + ) dy

1
An Integral Involving — du
U

(2x% + 3x) dx
xt 432477
Solution: If u = x* + 3x2 4+ 7, then du = (4x> + 6x)dx, which is two times the

Find

numerator giving (2x> + 3x)dx = —211 To apply Equation (3), we write

2x3 + 3x 1 1
T = -4
/x4+3x2+7 2_/11 "

Inful+C _

Inp*+3x2+7|+C Rewrite 1 in terms of x.

InG*+32+7+C 4322 +7>0 forallx

N = DO = N

Now Work Problem 51 <

An Integral Involving Two Forms

1 1
Find dw.
n f((l — w)? + W — 1) Y

Solution:

1 1 S 1
f((l—yv)'l+w—1>dw:/(l~w) dw+‘/‘w__1dw
=——1/(1—w)'2[-a’w]+f !
w—1

1
The first integral has the form f 1~2 du, and the second has the form f — dv. Thus,
v

/ TR W el ) TS
A—wy? w—1)® =" T |

dw

1
= ——+Inw—1+C
I —w

joy
%4

5. / 4427 + ) gy 16. / 4 — 5x)° dx
17. f 363 dx 18.
19. f (3t + DU+ gy 20.

21. f xe™ dx 22.

/
/
/
23. f 4™ dy 24, / 24x°e™> gy
f .
/
/

. 1 127 4+ dx + 2
25. / dx 26. dx
10'/ 1 sdx X+5 A+\2+2\3 *
v —

3x2 4 443 6x? — 6x

12. f B3+ 7 dx 27. f PR dx 28. 1—32+r20 %
87 3
; -/ 12 dy 29, —dz ¢
14 /,\ 34 5x2dx /(22_5)7 (Bv—1)# dh

.




1
83. y'==; Y2 =3y1)=2
165 — 4 Y=g Y2 =350

s " ’ 572

3_os+as 84. ' = (x+ D% y(8) =19, y(24) = Z2
85. Real Estate The rate of change of tg?/ value of a house that
cost $350,000 to build can be modeled by I = 8¢%%" where t is
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4 3 r 1
31. —dx 32. dy - (2 — 16)% — :
/x f1+2)’ 'y 68. ‘/‘“l(x 16) 2x+5] dx
s* 3243 69./( = = >¢—70.f[ 3 S
33.fmds 34, /md) x2+1 (x2+1)2 X x_1+(x_1)2 X
5 7t i
3s. dx 36. | —dt ] C (442 953 — OV B gy
f4~2¥ X /51‘2 6 71 / i (4x 8x7)(x® —x%) } dx
37. f V/5x dx 38. / BN 72. f (r +5)dr 73. / VIR FI— | dx-
(3x)° X243
X 9 2
39. f——--—dx 40. / dx X -xT
vax* +b L—=3x 7 _/(7x2+2 3 +2)4) =
41. / 23 dy 42. f 24/2x — 1dx eVF .
75. 7 dx 76. /‘(e3 —3%dx
5 Px+tl x
43. / Ve 2 H gy 44, / —Yw——aﬁ\ 1+4e* 2 /1
‘ i + 32 4 3 77. / o dx 78. /t—z,/7+9dt
P
« “Sc | o ; 4x +3
l 45. f(e 3% 4 2e%) dx 46. /43/}+1dy 79, / f+ @2 +30d 80, /ﬁemdx
| 2x? 4 3x
- — 2y — 53 In Problems 81-84, find y subject to the given conditions.
i 47. | (8x+ 10)(7 — 2x? — 5x)° dx
X
L 8l. y =(3—2x)% y0)=1 8.y = ; y(1)=0
g 48, /2)’e3"ldy 49 f6xz+8dx FoOmE 0 P Tere MY
t ) ¥ ax

50. f (€ +2eF - yadx 51 /

52. f 6 +40E + 12+ D0 dr

53. f x(2x 4+ 1)~ dx the time in years since the house was built and V is the value (in
thousands of dollars) of the house. Find V(¢).

54. / (45w* + 18w2 + 12)(3w> + 2w° + 4)™* dw 86. Life Span  If the rate of change of the expected life span /
at birth of people born in the United States can be modeled by

. dl 12
55, / —(x% = 20) (o — %0 x pr vt where ¢ is the number of years after 1940 and the
3 2y 3 . expected life span was 63 years in 1940, find the expected life
56. / 5(1’ —2)e ™ dy 57. /(2X + )" +x%) dx span for people born in 1998.
3142 9+ 18x 87. Oxygen in Capillary In a discussion of the diffusion of

58. / (e™') dx 59. G_x—x2)7 X oxygen from capillaries,” concentric cylinders of radius r are used
as a model for a capillary. The concentration C of oxygen in the

60. / (¢ — ™) dx 61. / X(2x + 1)+ gy capillary is given by

N Rr Bl
62. / @ — ue®>")du 63. / x/(8 — 5x2)3 dx C= f (QE + 7) dr

ax 1 i where R is the constant rate at which oxygen diffuses from the
64. / e dx 65. _/ («/ix—- @) dx capillary, and K and B, are constants. Find C. (Write the constant
o ‘ s of integration as B,.)
. 2 2.
66. / S 67. / O+ 1)dx 88. Find f(2)iff (3) = 2 and f'(x) = €2 — 3y,

Objective 14.5 Technigues of Integration

To discuss technigues of handling We turn now to some more difficult integration problems.
;na%%ﬁhgge;gggré?éeg:ﬁimIg{i%?llzngg' When integrating fractions, sometimes a preliminary division is needed to get
by ﬁmn'g the integrand to a familiar familiar integration forms, as the next example shows.

form. To integrate an exponential
function with a base different.-from e
and to find the consumption fuinction,
given the marginal propensity to
consume. SW. Simon, Mathematical Technigues for Physiology and Medicine (New York: Academic Press, Inc., 1972).
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Here we split up the integrand.

Here we used long division to rewrite the
integrand.

Here the integral is fit to the form to
which the power rule for integration
applies.

" Solution: We can write this integral as

Preliminary Division before Integration

.3 .
aJ%df“+lm.

x2

Solution: A familiar integration form is not apparent. However, we can break up the
integrand into two fractions by dividing each term in the numerator by the denominator.

We then have -
3 . 3 1
/)t _,t”\ x:/(%%—é—)dx:f(x—!—“)dx
x2 x2  x? x

2

= %—j—\ln lx]+C

dx.

3 2,
b, Find/h +3x +x+1
2x+1

Solution: Here the integrand is a quotient of polynomials in which the degree of the
numerator is greater than or equal to that of the denominator. In such a situation we
first use long division. Recall that if f and g are polynomials, with the degree of f
greater than or equal to the degree of g, then long division allows us to find (uniquely)
polynomials g and r, where either r is the zero polynomial or the degree of r is strictly
less than the degree of g, satisfying

U

8 8
Using an obvious, abbreviated notation, we see that

[o=f(evg)=To ]

Since integrating a polynomial is easy, we see that integrating rational functions reduces
to the task of integrating proper rational functions—those for which the degree of the
numerator is strictly less than the degree of the denominator. In this case we obtain

207 +3x2 4 x+ 1 1
[RRE e [ (e )
2x+1 2x +1

x3+x"+/ 1 J
=—+— x
3773 2x 1

ﬁ+f+1/ L gore)
e — — X

37272 ) mr

x 2

2

3+x+11m+n+c
== —1In|2x
3 2

Now Work Problem 1 <

AMPLE 2 ' Indefinite Integrals
a. Find

1

/ﬁwhwm

f“ﬁ—md
x

dx. Let us try the power rule

. . . 1 dx
for integration with u = /x — 2. Then du = ——dx, so that —= = 2 du, and

25

[ i 5]
= / 3du—2<_;)+C
‘ 1

1
=4 C= s 4 C




Here the integral fits the familiar form

1
— du.
u

Here the integral is fit to the form to
which the power rule for integration
applies.
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dx.

1
b. Find /
xlnx

1
Solution: If ¥ = Inx, then du = — dx, and
X

f : dx:/—l—— ldx =/ldu
xInx Inx \x u

=Injul+C=In|lhx|+C

5
. Find | - dw.
¢ _/ w(ln w)3/2 W

1
Solution: If u = Inw, then du = —dw. Applying the power rule for integration, we
w

have
> 3| !
/ W"“ =5 / (Inw) I:‘—;dnjl

s v
:5/11"/‘d11=5- i +C
2
_ 10 _ 10
T2 T (lnw)!2

Now Work Problem 23 <
Integrating »"
In Section 14.4, we integrated an exponential function to the base e:
f du=¢e"+C

Now let us consider the integral of an exponential function with an arbitrary base, b.

f b du

To find this integral, we first convert to base ¢ using

- e( In byu (1)

(as we did in many differentiation examples too). Example 3 will illustrate.

IPLE3  An Integral Involving b*
Find f 237 dx.
Solqtion:

Strategy We want to integrate an exponential function to the base 2. To do this,
~ we will first convert from base 2 to base e by using Equation (1). ,

fz3——‘.\‘ dx = /e(ln2)(3~.r) dx

The integrand of the second integral is of the form &, where u = (In2)(3 — x). Since

du = —In 2 dx, we can solve for dx and write
g 1
f 026 gy 3 e du
1 1 N | .
=L C = ___e(ln..)(3 -X) +C= ______23 A

In2 In2 In2
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Thus,

1
23-—x dx = ____23—x c .
f In2 +

Notice that we expressed our answer in terms of an exponential function to the base 2,
the base of the original integrand.

Now Work Problem 27 <

Generalizing the procedure described in Example 3, we can obtain a formula for
integrating b":

/ b'du = / by,

1
= — f MO g((n byu) In b is a constant
Inb

1
— — (Inbu C
mpt

1
= ——pH C
Inb +

bldu=—b'+C.
| e ot e
Applying this formula to the integral in Example 3 gives

f23""dx =2, u=3—x

= — / 277d3 - x) —d(3 — x) = dx
1
=——24C
In2 +

which is the same result that we obtained before.

Application of Integration

We will now consider an application of integration that relates a consumption function
to the marginal propensity to consume.

Finding a Consumption Function from Marginal
Propensity to Consume

For a certain country, the marginal propensity to consume is given by
ac 3 1
d 4 23]

where consumption C is a function of national income /. Here [/ is expressed in large
denominations of money. Determine the consumption function for the country if it is
known that consumption is 10 (C = 10) when I = 12.

Solution: Since the marginal propensity to consume is the derivative of C, we have

—eny=[(3_2 Y N L TN
C_C(I)_/(4 zﬁ)dl_/4dl 2[(31) dr

301 ‘
=>1—= | @D~ V?dl
4 2f( )




This is an example of an initial-value
problem.

PROBLEMS 14.5

In Problems 1-56, determine the indefinite integrals.

L ‘/2t6—|-8x4—4xdx‘ 2

2x2

3, f G2+ V233 +4x + L dx

X
4. —/‘—‘———dx
VAN

6. flrf*‘l dx 7.
e~ —2
8. [ 5d 9,
* 4]
10. / el 11.
2 —

1. /(3A+ 2)x 4) 13,
14. f 6(e* 3% dx 15.
Iyt 6. -3 ¢ — 2
16. f A e 1
x—2

5 — 4x?
18. dx 19.
/ 342
5¢5
20. d
/ 14 3es g 2L
22. / VIV, 23.
Jx

24. f Vi3 — /D)% dr 25,

S xt — e
2. /de 27.
Tx*
4
28. ——dx 29,
f x1n (2x?) A
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If we 1e§ u = 31, then du = 3dIl = d(31), and

3 (N [ e
C=31 (2) 3/(31) d@3I)

3 13DY?
=—]—- K
4 6 1 +
2
3. 31
C=-1-—+K
4 3 +
When/ =12, C = 10, so
3 /312
10 = —(12) — ( )+K
4 3
0=9-2+K
Thus, K = 3, and the consumption function is
3. 43I
C=-—~—473
4 3 +

Now Work Problem 61 <

ax+b 8
30. dx 0 3 —o
‘/‘9,\‘2-1—5ch cx+d <7 /(«1‘4‘3)1“(1'*'3)
M 3x 5 3 2 e
! 32. f (€ +x° — 2x)dx 33. f "—“"—“7—;——3&
X -
4xin /1T + 22 263/In (ot + 1)
3 34./—————-"n N 3s. f————-———l IO+ 17 5
5. /————dx 142 o+ 1
4 —5x

/ 302 +2)" e 2 dx 37, ( ln7) dx

36.
f 47 dx

x—x2 214—-8x —-6\ +4
2“.(7 _ r’/4) dx 38. f m dx 39. f dx
652 —11x+5 et — e f x
o —llx+o i : 41. &
_/ 3x—1 d 40 /e‘—}-e“-‘d\ x41 §
5e> 2x xe©
42. dx .
f7er+4dx @rhm@+n 4 f T
13/x
/ Se‘z dx 44 > dx
* ") Gx+DI+InBx+ DP
f L (€ +5)
.l + 9 45. —gt— dl
Wx+ 7) 1
Watay 46. / L | dx
35 8x+1 e(8+e~)?
1/3 4
——~——-——5(l +2 dx 47. | 3 +ex)V/x2 +edx
Iz
d
/ E dx 48. /3"‘“"(1 +Inx)dx [Hint: Z—(xlnx) =1+1Inx]
X
7
ryln@r*+1) 49, f X/ (8x)32 + 3 dx 50.. f dx
x(Inx)*
r241 v
3lnr S / lﬂ A
51. d. 52.
[ e
f Vet Hdx 53. / D iy 54, f dx
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[
5. [
X

56. [ SOG4y assuming f7 > 0

In Problems 57 and 58, dr/dq is a marginal-revenue function.
Find the demand function.

dr 200 sg dr_ 900
Tdg (g+27 Tdg (29 +3)

In Problems 59 and 60, dc/dq is a marginal-cost function. Find
the total-cost function if fixed costs in each case are 2000.

Jde 20 60. 2 — 40005
dg q+5 dg
In Problems 61-63, dC/dI represents the marginal propensity to
consume. Find the consumption function subject to the given
condition.

ac 1
6l. — = —:; C(O) =38
a= ®)
dc 1 1 3
2, — = —— 2) ==
6 da 2 221 c@ 4
dc 3 1
63. —=——; C(25)=23
a4 61 @

64. Cost Function The marginal-cost function for a
manufacturer’s product is given by

d 100
C=10-

dg ~ q+10

where c is the total cost in dollars when ¢ units are produced.
When 100 units are produced, the average cost is $50 per unit.
To the nearest dollar, determine the manufacturer’s fixed cost.

65. Cost Function Suppose the marginal-cost function for a
manufacturer’s product is given by

dc _ 100g> — 3998 + 60
dg q> —40g + 1

where c is the total cost in dollars when ¢ units are produced.

(a) Determine the marginal cost when 40 units are produced.
(b) If fixed costs are $10,000, find the total cost of producing
40 units.

(c) Use the results of parts (a) and (b) and differentials to
approximate the total cost of producing 42 units.

66. Cost Function The marginal-cost function for a
manufacturer’s product is given by

7/0.04g7 +

dq 10

where c is the total cost in dollars when q units are produced.
Fixed costs are $360. :

(a) Determine the marginal cost wheh 25 units are produced.
(b) Find the total cost of producing 25 units.

(c) Use the results of parts (a) and (b) and differentials to
approximate the total cost of producing 23 units.

67. Value of Land It is estimated that 7 years from now the
value V (in dollars) of an acre of land near the ghost town of
Cherokee, California, will be increasing at the rate of

8

J0.21* + 800

$500 per acre, how much will it be worth in 10 years? Express
your answer to the nearest dollar.

dollars per year. If the land is currently worth

68. Revenue Function The marginal-revenue function for a
manufacturer’s product is of the form

dr a

dg~ ei+b
for constants a and b, where r is the total revenue received (in
dollars) when g units are produced and sold. Find the demand
function, and express it in the form p = f(g). (Hint: Rewrite
dr/dg by multiplying both numerator and denominator by ¢79.)

69. Savings A certain country’s marginal propensity to save is
given by

ds 5

dr (I +2)
where S and 7 represent total national savings and income,
respectively, and are measured in billions of dollars. If total
national consumption is $7.5 billion when total national income is
$8 billion, for what value(s) of / is total national savings equal to
zero?

70. Consumption Function A certain country’s marginal
propensity to save is given by

das 2 1.6

dl — 5 P
where S and I represent total national savings and income,
respectively, and are measured in billions of dollars.

(a) Determine the marginal propensity to consume when total
national income is $16 billion.

(b) Determine the consumption function, given that savings are
$10 billion when total national income is $54 billion.

(c) Use the result in part (b) to show that consumption is

$§52- = 16.4 billion when total national income is $16 billion

(a deficit situation).

(d) Use differentials and the results in parts (a) and (c) to
approximate consumption when total national income is

$18 billion.

Objective

To motivate, by means of the concept
of area, the definite integral as a limit of
a special sum; to evaluate simple
definite integrals by using a limiting
process.

14.6 The Definite Integral

Figure 14.2 shows the region R bounded by the lines y = f(x) = 2x,y
x-axis), and x = 1. The region is simply a right triangle. If b and & are the lengths of
the base and the height, respectively, then, from geometry, the area of the triangle is
A= lbh = 7(1)(2) = 1 square unit. (Henceforth, we will treat areas as pure numbers

= 0 (the

and write square unit only if it seems necessary for emphasis.) We will now find this
area by another method, which, as we will see later, applies to more complex regions.
This method involves the summation of areas of rectangles.




y

[}*]
1

fe)=2x
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y

NS}
I

foy=2c /[p,

R,

1

dafre

x X Sy x. L 3 o4
olfRa| Xy X | x3| X v 3 T3

PRINY.

1 -3
4 4 4

FIGURE 14.2 Region bounded FIGURE 14.4 Four circumscribed
by f(x) = 2x,y =0, and x = 1. FIGURE 14.3 Four subregions of R. rectangles.

flw) =2

1)

1
3

e

3 4
CR

FIGURE 14.5 Four mscnbed
rectangles.

Let us divide the interval [0, 1] on the x-axis into four subintervals of equal 1encrth
by means of the equally spaced points xg = 0,x; = L,M = 4,,13 4, and x4 = - =1.
(See Figure 14.3.) Each subinterval has length Ax = l . These subintervals determme
four subregions of R: Ry, Ry, R3, and Ry, as 1nd1cated

With each subregion, we can associate a circumscribed rectangle (Figure 14.4)—
that is, a rectangle whose base is the corresponding subinterval and whose height is
the maximum value of f(x) on that subinterval. Since f is an increasing function, the
maximum value of f(x) on each subinterval occurs when x is the right-hand endpoint.
Thus, the areas of the circumscribed rectangles associated with regions Ry, Ry, R3, and
Ry are ﬁf(}l), %f(%), %f(f’—;), and ﬁf(%), respectively. The area of each rectangle is an
approximation to the area of its corresponding subregion. Hence, the sum of the areas
of these rectangles, denoted by Sy (read “S upper bar sub 4” or “the fourth upper sum”),
approximates the area A of the triangle. We have :

Se=3f B +ir@+if(G)+]
1 2G) +2(3) +2()+2() =%

You can verify that S = Zle f(x;)Ax. The fact that S is greater than the actual area
of the triangle might have been expected, since S includes areas of shaded regions that
are not in the triangle. (See Figure 14.4.)

On the other hand, with each subregion we can also associate an inscribed rectangle
(Figure 14.5)—that is, a rectangle whose base is the corresponding subinterval, but
whose height is the minimum value of f(x) on that subinterval. Since f is an increasing
function, the minimum value of f(x) on each subinterval will occur when x is the
left-hand endpoint. Thus, the areas of the four inscribed rectangles associated with
Ri,R5,R3, and Ry are i 0, Ili f (};), % f (%), and th f (%), respectively. Their sum, denoted
S, (read *“S lower bar sub 4” or “the fourth lower sum”), is also an approximation to
the area A of the triangle. We have

Sy=3fO+3f (1) +3f B +31f(3)

1 1 2 3V 3
=3 Oo+2(3)+2()+2(3) =1
Using summation notation, we can write S, = Z?:o f(x)Ax. Note that S, is less than
the area of the triangle, because the rectangles do not account for the portion of the

triangle that is not shaded in Figure 14.5.
Since

f

%]}
N

=J,<A<
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y we say that S, is an approximation to A from below and S4 is an approximation to A
from above.

If [0, 1} is divided into more subintervals, we expect that better approximations to
A will occur. To test this, let us use six subintervals of equal length Ax = é Then Sg, |

f (%) i o [/ the total area of six circumscribed rectangles (see Figure 14.6), and S, the total area

f ( s ) | f)=2x 7 of six inscribed rectangles (see Figure 14.7), are

10 So=3f (@ +sf @ +sf @A +sf Q) +5/ Q) +5, ()

fBF AL =50 ()+2(%) 2@)+2(3)+2() +2(R) =3

f(%)‘ ; | | and

o || $o= 41O+ 31 () + 4 B+ 1 @)+ T )+ ()
AL —LEO+2() +2 () 12 () 2 +2 () =

Note that §4 <A < S¢. and, with appropriate labeling, both S and S will be of

FIGURE 14.6 Sixci ibed . R . . . .
1 cireimseribe the form Xf(x) Ax. Clearly, using six subintervals gives better approximations to the

tangles.
rectangles area than does four subintervals, as expected.
Y More generally, if we divide [0, 1] into n subintervals of equal length Ax, then
Se Ax=1/n, and the endpoints of the subintervals are x=0,1/n,2/n,...,(n—1)/n,
- and n/n = 1. (See Figure 14.8.) The endpoints of the kth subinterval, for k =
L 1,...n, are (k — 1)/n and k/n and the maximum value of f occurs at the right-
) = 2 hand endpoint k/n. It follows that the area of the kth circumscribed rectangle is
B (%) - B 1/n-f(k/n) = 1/n - 2(k/n) = 2k/n?, for k = 1,...,n. The total area of all n cir-
. cumscribed rectangles is
f (E) - ]
_ n n 2k
1O Si= Y flk/max=>"= W
2 k=1 =
(B =
2 2
f (%) ~ AT = Zk by factoring— from each term
0 n? n’
1 123 4 56 * 2 1
creseE == nint ) from Section 1.5
FIGURE 14.7 Six inscribed rectangles. n- 2
_n+1
TO REVIEW surmmation notation, T

refer to Section 1.5.
(Werecall that ), _, k = 142+ - -+nis the sum of the first 2 positive integers and the
y formula used above was derived in Section 1.5 in anticipation of its application here.)

For inscribed rectangles, we note that the minimum value of f occurs at the left-
hand endpoint, (k — 1)/n, of [(k — 1)/n,k/n], so that the area of the kth inscribed
f(_)l)__ _ rectangle is 1/n - f(k — 1/n) = 1/n - 2((k — 1)/n) = 2(k — 1)/n?, fork = 1,...n. The
" =2 total area determined of all n inscribed rectangles (see Figure 14.9) is
X) 7 LX
n n
2k — 1)
= — . = 2
D fk=Dmar=3 —— @)
k=1 k=1
2
f (_’21_) I = Z k—1 by factoring— " from each term
1Ol ) Zl
. k adjusting the summation
0| 12 n * T2
nn n
n—1 — 2 (”_ Dn . . c
n-l = 5 adapted from Section 1.5

FIGURE 14.8 »ncircumscribed - n—1
rectangles. -

n




Section 14.6 The Definite Integral 655

y From Equations (1) and (2), we again see that both S, and S ,, are sums of the form

Zf(x)Ax, namely, S, = Zf (%) AxandS, = Zf (k - 1) Ax
k=1

From the nature of S, and S, it seems reasonable—and it is indeed true—that

f(”;l)‘ fley=2x / | §” §A§§,,

As n becomes larger, S, and S, become better approximations to A. In fact, let us take
the limits of S, and S, as n approaches oo through positive integral values:

—1

lim S, = lim ’1—1-_—;1i.m (1_1>=1

1n->00 n-»o0  J n—c0 n
1) A
f (") - . n+1 . 1
. lim S, = lim =lm(l14+-)=1
X n—od n->00 n n->0o n
0] 12 n
nn n . - ..
Since S, and S, have the same limit, namely,
n—1
n lim S, = lim S, = 3)
n—+oo n—>o0
FIGURE 14.9 1 inscribed rectangles. .
and since
_'S.n S A S :S—"II

we will take this limit to be the area of the triangle. Thus A = 1, which agrees with our
prior finding. It is important to understand that here we developed a definition of the
notion of area that is applicable to many different regions.

We call the common limit of S, and S, namely, 1, the definite integral of f(x) = 2x
on the interval from x = 0 to x = 1, and we denote this quantity by writing

1
f 2xdx =1 (4)
0

The reason for using the term definite integral and the symbolism in Equation (4) will
become apparent in the next section. The numbers 0 and 1 appearing with the integral
sign [ in Equation (4) are called the limits of integration; 0 is the lower limit and 1 is
the upper limit.

In general, for a functionf defined on the interval fromx = atox = b, wherea < b,
we can form the sums S, and S S ,,» which are obtained by considering the maximum and
minimum values, respectively, on each of n subintervals of equal length Ax.® We can
now state the following:

'The common l1rmt of S, and S as n —> oo 1f it ex1sts 1s called the definite mtegral
of f over [a b] and is wntten S ,

f @

,‘WThe numbers a and b are called hmlts of mtegratmn, ais the lower limit and bis -
_ the upper lmut The symbol X is called the varlable of mtegratlon and f (x) is the
‘mtegrand '

In terms of a limiting process, we have

b
> f@) Ax — f fx)dx
a
The definite integral is the limit of sums Two points must be made about the definite integral. First, the definite integral is
of the form 3~ f(x) Ax. This definition the limit of a sum of the form ) f(x) Ax. In fact, we can think of the integral sign as
will be useful in later sections. an elongated “S,” the first letter of “Summation.” Second, for an arbitrary function f

6Here we assume that the maximum and minimum values exist.
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APPLY IT >

10, A company has determmed that its.
,marfrmal-revenue function is given by

R/(x) = 600 — 0.5x, where R is the
_revenne (in dollars) received when x

“units: are sold. Find the. total revenue
received for selling 10 units by finding

“the area in the first quadrant bounded by -
y = R!(x).= 600 — 0.5x and the lines-

y=0,x=0,andx = 10.

In general, over [a, b]. we have

b—a

) =412

2
FIGURE 14.10 Region of Example 1.
‘y

4

J

14

f(x),'=4 e '\;

s

e
23

FIGURE 14.11 n subintervals and -
corresponding rectangles for Example 1.

(n—l)%

defined on an interval, we may be able to calculate the sums S,, and S, and determine
their common limit if it exists. However, some terms in the’ ‘sums may be negative if
f(x) is negative at points in the interval. These terms are not areas of rectangles (an area
is never negative), so the common limit may not represent an area. Thus, the definite
integral is nothing more than a real number; it may or may not t represent an area.

As we saw in Equation (3), lim,—« S, is equal to lim,c S ... For an arbitrary
function, this is not always true. However, for the functions that we will consider, these
limits will be equal, and the definite integral will always exist. To save time, we will just
use the right-hand endpoint of each subinterval in computing a sum. For the functions
in this section, this sum will be denoted S,.

Computing an Area by Using Right-Hand Endpoints

Find the area of the region in the first quadrant bounded by f(x) = 4 — x? and the lines

x=~0andy=0.

Solution: A sketch of the region appears in Figure 14.10. The interval over which
x varies in this region is seen to be [0,2], which we divide into n subintervals of
equal length Ax. Since the length of [0, 2] is 2, we take Ax = 2/n. The endpoints of the
subintervalsarex = 0,2/n,2(2/n), ..., (n— 1)(7 /n), and n(2/n) = 2, which are shown
in Figure 14.11. The diagram also shows the corresponding rectangles obtained by
using the right-hand endpoint of each subinterval. The area of the kth rectangle, fork =
1,...n, is the product of its width, 2/n, and its height, f(k(2/n)) = 4 — (2k/n)?, which
is the function value at the right-hand endpoint of its base. Summing these areas, we get

=g ()5 (- ()3

n 8 8k" 8 n
=Y (2= g 2% - 12
;( 1 113> Zn 2___: n n,; 1132
8 8 n(n+1H2n+1)
T ] e
n n3 6

_3 4((71+1)(211+1)>
=8 (—F—

n?

The second line of the preceding computations uses basic summation manipulations
as discussed in Section 1.5. The third line uses two specific summation formulas, also

from Section 1.5: The sum of n copies of 1 is # and the sum of the first n squares is
nn+1D2n+1)

6
Finally, we take the limit of the S, as n — oo:

9
lim S, = lim (g - (W.I_)))
100 n—00 3 n?

—S—i i (2112+311+1>

100 12

4 3 1
—8—Tim (24 2+ —

3 ni?c}o( + n'+ ”2>

8 16
=8 - — = —

3 3

16

Hence, the area of the region is 3

Now Work Problem 7 <




