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Chapter 12 Review

EXPLORE & EXTEND

Economic Order Quantity

fter an uncomfortable trip in a vehicle, passengers sometimes describe the
ride as “jerky.” But what is jerkiness, exactly? What does it mean for, say, an
engineer designing a new transportation system?

Travel in a straight line at a constant speed is called uniform motion, and
there is nothing jerky about it. But if either the path or the speed changes, the ride
may become jerky. Change in velocity over time is the derivative of velocity. Called
acceleration, the change in velocity is the second derivative of position with respect
to time—the derivative of the derivative of position. One of the important concepts
covered in this chapter is that of a higher-order derivative, of which acceleration is an
example.

But is acceleration responsible for jerkiness? The feeling of being jerked back
and forth on a roller coaster is certainly related to acceleration. On the other hand,
automotive magazines often praise a car for having smooth acceleration. So apparently
acceleration has something to do with jerkiness but is not itself the cause.

The derivative of acceleration is the third derivative of position with respect to
time. When this third derivative is large, the acceleration is changing rapidly. A roller
coaster in a steady turn to the left is undergoing steady leftward acceleration. But when
the coaster changes abruptly from a hard left turn to a hard right turn, the acceleration
changes directions—and the riders experience a jerk. The third derivative of position
is, in fact, so apt a measure of jerkiness that it is customarily called the jerk, just as the
second derivative is called the acceleration.

Jerk has implications not only for passenger comfort in vehicles but also for equip-
ment reliability. Engineers designing equipment for spacecraft, for instance, follow
guidelines about the maximum jerk the equipment must be able to survive without
damage to its internal components.
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Chapter 12 Additional Differentiation Topics

Objective

To develop a differentiation formula for
== Inu, to apply the formula, and to

use it to differentiate a logarithmic

function to a base other than e.

‘ﬁg 1 Derwaﬁlves of L@@am’ihmac Functions

So far, the only derivatives we have been able to calculate are those of functions that
are constructed from power functions using multiplication by a constant, arithmetic
operations, and composition. (As pointed out in Problem 635 of Section 11.6, we can
calculate the derivative of a constant function ¢ by writing ¢ = ¢x%: then

d
o (0=
Thus, we really have only one basic differention formula so far.) The logarithmic
functions log, x and the exponential functions b* cannot be constructed from power
functions using multiplication by a constant, arithmetic operations, and composition.
It follows that we will need at least another truly basic differentiation formula.
In this section, we develop formulas for differentiating logarithmic functions. We

begin with the derivative of In x, commenting further on the numbered steps at the end
of the calculation.

W, Inx+h)—Inx
x) = lim ——————
h—0 h
(x—l—h)
In
= lim _\N* 7
=0 h
1 I/
D Jim <—1n (1 + —1))
=0\ h X
@ .. 1 x h o1 1 x
= 1 —=In{1+4+ - ting — = — - —
10 (x h n( +x>) witng h x I
B 1 ); x/h
D Jim (—m (1 +-1) >
h—0\ Xx X
1 } x/h
® " lim <1n<1+—2> )
X h—0 X
7 x/h
ncm<1+1> >
h—0 X
1 I .\'/h
® -m(mn<1+1) )
Y hfx—0 X

.In <lim 1+ k)‘/")
k>0

d
—(In definition of derivative
dx

since Inm — Inn = In(m/n)

algebra

since rlnm = Inm"

by limit property 1 in Section 10.1

In is continuous

o |-

for fixedx > 0

= |

[k

setting k = h/x

—~
o
=1

=t

il

-In(e) as shown in Section 10.1

—
bt
-~

since Ine =1

I

R R B T

The calculation is long but following it step by step allows for review of many important
ideas. Step (1) is the key definition introduced in Section 11.1. Steps (2), (5), and (11)
involve properties found in 4.3. In step (3), labeled simply algebra, we use properties
of fractions first given in 0.2. Step (4) is admlttedly a trick that requires experience to
discover. Note that necessarily x # 0,since x is in the domain of In, which is (0, c0). To
understand the justification for Step (6), we must observe that x, and hence 1/x, is con-
stant with respect to the limit variable 1. We have already remarked in Section 10.3 that
logarithmic functions are continuous and this is what allows us to interchange the pro-
cesses of applying the In function and taking a limit in (7). In (8) the point is that, for fixed




The chain rule is used to develop the
differentiation formula for In |u].

APPLY IT B
1 The supply of g umts of a product

_rate of chanae of supply with respect to

-at a price of p dollars per unit is 01ven§
by glp) =25+ 21n (3p' + 4) Fmd the

dq

pnce

‘dp - -
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x > 0, h/x goes to 0 when /1 goes to 0 and conversely & goes to 0 when h/x goes to 0.
Thus, we can regard A/x as a new limit variable, £, and this we do in step (9).
In conclusion, we have derived the following:

BASIC RULE 2 Derlvatlve oflnx

1
——~(lnx) —forx >0
dx X

Some care is required with this rule because while the left-hand side is defined only
for x > 0, the right-hand side is defined for all x £ 0. For x < 0, In (—x) is defined and
by the chain rule we have

L =—Ln="22L forr<o
—(In(=x) = ——(—x) = — = — x <
dx —x dx * —X X g

‘We can combine the last two equations by using the absolute function to get

d
—{In |x]) = 1 forx#0 (1)
dx X

Differentiating Functions Involving In x

a. Differentiate f(x) = 5Inx.

Solution: Here f is a constant (5) times a function (In x), so by Basic Rule 2, we have

d 1 5
) =5—((hx)=5-~== forx>0
dx X X
Inx
b. Differentiate y = n_7\

Solution: By the quotient rule and Basic Rule 2,

2L (1n2) — (L)
_ X dx( nx nx o X

y (x2)?
2 (! (Inx)(2x)
* X AaRex x—2xInx 1-—2Inx ‘
= o = = = 3 forx > 0

Now Work Problem 1 <

We will now extend Equation (1) to cover a broader class of functions. Let y = In jul,
where u is a differentiable function of x. By the chain rule,

y du du 1 du
_1 _ :_1 T== T foruso
(nfuf) = =2 = = Z(Infu))- == = —- = foru
Thus,
gl =22 foru 0 *

d 1 d
Of course, Equation (2) gives us —(lnu) = — - & foru > 0.
du u dx

Differentiating Functions Involving In u

a. Differentiate y = In (x* + 1).

Solution: This function has the form In « with # = x> + 1, and since x> + 1 > 0, for
all x, y = In (x* 4 1) is defined for all x. Using Equation (2), we have
dy 1 d , 1 . x

— o { X 1: freend
o Eria” Y= a P
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b. Differentiate y = x% In (4x + 2).

Solution: Using the product rule gives

% = f%(m (4x +2)) + (In (4x + 2))%()62)

By Equation (2) with u = 4x + 2,

b _ et
dx-x<%+2>mnmex+wmm

9

2x
=;2x+1 +2xin@x+2) for 4x+2>0

Since 4x 42 > 0 exactly when x > —1/2, we have

2"

—1 +2xln(x+2) forx>—1/2

%wmm+m=‘

c. Differentiate y = In [ In |x|].

Solution: This has the form y = In [u| with # = In |x|. Using Equation (2), we obtain

1 d 1. (1 1
'=— " (g = )= for x, 1 # 0
Y = e D = (;) Tnp| orxu#

Since In |x] = 0 when x = —1, 1, we have

d 1
—(In|In|x|})= —— forx # —1,0,1
7 (n I fx]1) T T

Now Work Problem 9 <

Frequently, we can reduce the work involved in differentiating the logarithm of a
product, quotient, or power by using properties of logarithms to rewrite the logarithm
before differentiating. The next example will illustrate.

PLEM3 Rewriting Logarithmic Functions before Differentiating |

; :

a. Find 2 ify = In2x + 5)°. l
dx

|

Solution: Here we have the logarithm of a power. First we simplify the right side by
using properties of logarithms. Then we differentiate. We have

y=In@x+5°=3In@x+5) for2x+5>0 1
|

dy 1 6
Comparing both methods, we note that — =3 ("—“‘> (2)=— forx>-5/2
the easier one is to simplify first and then dx 2x+5 2x+5
differentiate. Alternatively, if the simplification were not performed first, we would write
dy 1 d 3
— e —((2x + 5
&= v )
(@ +5P@) = —
T e 2x [
(2x +5)3 2x+5

b. Find £'(p) if £(p) = In ((p + 1)2(p + 2)°(p + 3)").
Solution: We simplify the right side and then differentiate:
f@)=2In(@+1)+3In(@+2)+4In(@-+3)
, 1 1 1
=2 (m) (D+3 (m) H+4 <m> (1)
_2 ., 3 4
p+1 p+2 p+3

Now Work Problem 5 <




cauTtion]\

Do not confuse In® (2x + 3) with

In (2x 4 3)%, which occurred in
Example 3(a). It is advisable to write
In? (2x + 5) explicitly as [ln 2x + 5P
and avoid In® (2x + 3).

cauTion]\

Note that In b is just a constant!
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MPLE4 Differentiating Functions Involving Logarithms

1+ w?
w2 — 1"

Solution: We simplify by using properties of logarithms and then differentiate:

a. Find f/(w) if f(w) = In

f(W) = l(ln(l - Wz) —1In (wz —1)

fon=3 (1 —: 2w) = wzl— 1(2“’))

w W 2w
IT+w? w21 wh—1

b. Find f'(x) if f(x) = In® 2x + 5).

Solution: The exponent 3 refers to the cubing of In (2x + 5). That is,

f)=In*@x+5)=[In@x+ 357

By the power rule,

f'(x)=3(In(2x + 5))2%( In(2x +5))

= 3(In (2x + 5)) <? — (7))

(ln( 2x + 5))

Now Work Problem 39 <

Derivatives of Logarithmic Functions to the Base b

To differentiate a logarithmic function to a base different from e, we can first convert the
logarithm to natural logarithms via the change-of-base formula and then differentiate
the resulting expression. For example, consider y = log, u, where u is a differentiable
function of x. By the change-of-base formula,

Inu
)= log, u = — foru>0
Differentiating, we have

d(lo )= d (Inu 1 d(n = 1 1du
W=7 \1ns) " modr Inb uds

Summarizing,

1 ’ ':du : !
, e .0
(b de 2757

( oubl)““'

Rather than memorize this rule, we suggest that you remember the procedure used to
obtain it.

Procedure 1o leferen’uate logb i

Convert log,, u to natural Iocanthms to obtam i b and then d1fferentlate
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Differentiating a Logarithmic Fupction to the Base 2

Differentiate y = log, x.

Solution: Following the foregoing procedure, we have

2 logyx) = L (ll‘i) L

dx dx \In2 In2dx (In2)x
It is worth mentioning that we can write our answer in terms of the original base.
Because
1 1 log
—_— = O°be=10gbe
Inb  log,b 1
log, e
1 log lo d

We can express (In2x as —=2 e. More generally, ( log, 1) = I ZI:-

Now Work Probiem 15 <

APPLY IT & Differentiating a Logarithmic Function to the Base 10

2 The intensity of an earthquake ismea-
_sured on the Richter scale. The readmo:ﬁ?

If y = log (2x + 1), find the rate of change of y with respect to x.

e ven by R = log }I_ , where 1 is the Solution: The rate of change is dy/dx, and the base involved is 10. Therefore, we have

, ,m—umy and Liisa standard mlmmum‘f 512_ _( log (2x + 1)) = (ln (2x + 1))

: 1nten51ty Iro =1, find [(11}; the rate of dx d In10
 change of the Rlchter-scalereadmg w1th ' — 1 . 1 2) = 2

respect to the intensity. o In10 2x4+1" In102x + 1)

<

PROBLEMS 12.1

In Problems 1-44, differentiate the functions. If possible, first use 31. y=In[(ax® + bx + cYP(x? + kx + 7]
properties of logarithms to simplify the given function. . ! _

. Shnx ’ 3Ly—Jﬂﬁxtﬁﬂ& 3)%] 33. y=13In (x>/5x + 2)

L y=alnx 2y=— 3. y=ln@ -7 34. y=61In 35 y=@2+DIn@x+ 1)
4. y =In(5x — 6) 5. y=Ins2 vZx+1

‘ . = , 36. y = (@ +bx + )l (b + kx + 1)

6. y=In(5>+3x>+2x+1) 7. y=In(1 —x2) 3,3 n2

8. y=In(—x%+6x) 9. FX)=1In@Xx%+2x3) 37y =l 38 y=a7
16)f60-1a(7r4' rarrn 39. y =In" (ax) 40. y =1In’ 2x +11)

’ T - ) 41. y =In/f&) 2. y=In(FJ2x+1)
11. f() =tlnr—1 12, y=x"Inx JATIE Niper
13. y = P In(2x +5) 14. y = (ax + b In (ax + b) f'xz 4 3n M. y=1In x4 V147
15. y = log; (8 — 1) 16. f(w) = log (w2 + 2w + 1) 5. Find an equation of the talngexzt Iu;e to the curve
17. y =x? + log, (x> + 4) 18. y=x?log, x when & = 4 =G =3 -3

In x? T
19. f(z) = —ﬁ 20. y= T 46. Find an equation of the tangent line to the curve
X +3x2+,\' y=xlnx —x
21 y= T e 22. y=Inx'® at the point where x = 1.
23. y=In@* +4x +5)° 24, y=6Inx 47. Find the slope of the curve y = l—l— when x = 3.
4 nx
25, y=9In+/14x2 26. f)=1In <~—I—-7> 48. Marginal Revenue Find the marginal-revenue function if
] ) 1 +3 61 + 12 the demand function is p = 25/1n (g + 2).
27, f(h)=1In (1 + 1> 28. y=1In (; + 4) 49. Marginal Cost A total-cost function is given by
[ X —

- 1 c=25In(g+1)+ 12
=+ x° X3 — ’
29. y=Inj T 30. y=1In_] e Find the marginal cost when g = 6.
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50. Marginal Cost A manufacturer’s average-cost function, in 53. Biology In a certain experiment with bacteria, it is
dollars, is given by : observed that the relative activeness of a given bacteria colony
_ 500 is described by
=
In (g + 20) T
. . A=61In ( — a)
Find the marginal cost (rounded to two decimal places) when a—T
g =350.

where a is a constant and T is the surrounding temperature. Find
51. Supply Change The supply of g units of a product ata the rate of change of A with respect to 7.

price of p dollars per unit is given by g(p) = 27 + 111n (2p + 1). 54. Show that the relative rate of change of y = f(x) with respect’

, d P L )

5 Find the rate of change of supply with respect to price, f to x is equal to the derivative of y = In f(x).
, P i d. = . 1 du
52. Sound Perception The loudness of sound L, measured in 55. Show that E( log, 1) = ;( log, E)Z
decibels, perceived by the human ear depends upon intensity

In Problems 56 and 57, use differentiation rules to find f'(x). Then

levels [ according to L = 10log T where Iy is the standard use your graphing calculator to find all roors of f'(x) = 0. Round
0

dL
threshold of audibility. If [y = 17, find — i , the rate of change of
e R -
the loudness with respect to the intensity. 56. f(x) = x’Inx Es7. f(0) =

your answers to two decimal places.
In (x )

Objective 12.2 Derivatives of Exponential Functions

To del)/elop a differentiation formula for ~ As we pointed out in Section 12.1, the exponential functions cannot be constructed
{Jsze ft {ot%%%%ﬁg?ef%%m:igbig%; from power functions using mult.iplicati'on by a constant, arithmetic operations, and
function with a base other than e. composition. However, the functions b, for » > 0 and b # 1, are inverse to the
functions log,, (x), and if an invertible function f is differentiable, it is fairly easy to
see that its inverse is differentiable. The key idea is that the graph of the inverse of a
functionis obtained by reflecting the graph of the original function in the line y = x. This
reflection process preserves smoothness so that if the graph of an invertible function is

smooth, then so is the graph of its inverse. Differentiating f(f ~I(x)) = x, we have

d d
—_(f(f”'(x))) = —-()
X

U (l)) (f Ty =1 Chain Rule

1
— —I C LI ermmmm————
dx (f @ FUHen

Thus we have

COMBINING RULE 6 Inverse FunctionRule |
If (f is an mvemble d1fferent1able funcnon then f T8 dlfferennable and

1
——(f“( )=
f’(f“( ))
\As with the chain rule, Leibniz notation is well suited for inverse functions. Indeed,
d d
if y = f~!(x), then c_ixX = _(f (x)) and since f(y) = x, f'(y) = 2 When we
dy
substitute these in Cornbin1n<I Rule 6, we get
dy d _ 1 1 1
=T = s = e =
dr  dx FEE)  fOo) T A

dy

so that Combining Rule 6 can be rewritten as

1)

Bl
S| F H:ﬂ
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cAuTionN\

The power rule does not apply to ¢* and
other exponential functions, b*. The

power rule applies to power functions, x“.

Note the location of the variable.

If a quotient can be easily rewritten
as a product, then we can use the
somewhat simpler product rule rather
than the quotient rule.

APPLY IT »

3 When an object 1s moved fromf

- one environment to another; the chanve

in temperature of the object is given.
where C is the tem-

by T Celt.
- perature. dxfference between the two
_environments, 7 is the time in the new
-environment, and & is a constant. Find

 the rate of change of temperature with:

respect to. nme

i " du . du
—(e") = ¢"—. Don’t forget the —.
dx dx dx

In the immediate case of interest, with y = &% so that,x Inyand dx/dy =1/y =

1/e*, we have

which we record as

(2

3

d _ .
a. Find d—(3e‘). Since 3 is a constant factor,
x ..

d d
e 3 Yy = 3—- o
50 =35
= 3¢* by Equation (2)
dy
-, find —
dx’

Solution: We could use first the quotient rule and then Equation (2), but it is a little
easier first to rewrite the function as y = xe™ and use the product rule and Equation (3):

b. Ify—

% B —(«\) +x-—(e"‘) =e ' D+xeN-D=e"1-x)= Lo

c. fy=e*+¢" +1In3, findy.

Solution: Since ¢? and In 3 are constants, VYV =04+ +0=0¢"

Now Work Problem 1 <

SLE2 = Differentiating Functions Involving ¢"

d
Find — (& 343y
a. Find — — (7).
Solution: The function has the form " with u = x> + 3x. From Equation (2),
d .
;l_(e,\‘3+3.\) — '3+3\‘ (.l 4 3l) - \’3-!-3\(3\ . 3)
X

— 3(3 + l) 43x

. b. Find —( “Hln(x? + 1)).

Soluuon. By the product rule,
d .
E;_(e‘“ InG? + 1) = ¢ (ln(a + 1)) + (In (x* +1)) (‘"“)
. 1 - .
= ¢! (I’?) (2x) + (In (&% + )™ (1)
) 2x
= <x2 7t &>+ 1))

Now Work Problem 3 <
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FIGURE 12.1
density function.

The normal-distribution
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The Normal-Distribution Dehsity Function

An important function used in the social sciences is the normal-distribution density
function
1 3
— fx) — =(1/20(x—p)/a)”
y=fx) = —=¢""
o/ 2m
where ¢ (a Greek letter read “sigma”) and p (a Greek letter read “mu’) are constants.

The graph of this function, called the normal curve, is bell shaped. (See Figure 12.1.)
Determine the rate of change of y with respect to x when x = u + 0.

: Sollution: The rate of change of y with respect to x is dy/dx. We note that the factor

is a constant and the second factor has the form ¢“, where

_ Ifx—p 2
s
dy 1

~(1/2){{x~ 2 1 X— U 1
- (1/2)((x—p)/0) i —
i~ e (0 (55 ()

Evaluating dy/dx when x = p 4+ o, we obtain

dy - (e~ =/ <_ pro- “) (l)

dx x=pto o2 g g

— sz? (e—(l/Z)) (,___;_)

—e=(172) —1

N 022 T2

o/ 2w

Thus,

2re

Differentiating Exponential Functions to the Base b

Now that we are familiar with the derivative of ", we consider the derivative of the more
general exponential function b*. Because b = ¢!"”, we can express b" as an exponential
function with the base ¢, a form we can differentiate. We have

d d d
by = Inb\u — (Inbu
_dx( ) o (e™)9 o (™)

d
= MO ((Inb)u)
dx

= eD(1n b) (d">

dx
d
= b'(Inb)=- since !0 = b
dx
Summarizing,
=Y =b"(Inb)— 4
aorong ®

Note thatif b = e, then the factor In b in Equation (4) is 1. Thus, if exponential functions
to the base e are used, we have a simpler differentiation formula with which to work.
This is the reason natural exponential functions are used extensively in calculus. Rather
than memorizing Equation (4), we advocate remembering the procedure for obtaining it.
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Verify the result by using Equation (4)
directly.

PrdbédL re to Dn‘ferentlate b"

Convert P toa natural exponentla] functlon by usmg the iproperty that b = e
and then d1fferent1ate o

The next example will illustrate this procedure.

Differentiating an Exponential Function with Base 4

d ;
Find —(4"). s
n dx( )

Solution: Using the preceding procedure, we have

__d_ X ___a_'_ Ind\x
() =5 (@)

d d
— (Ind)x . u
= (e ) form : ——d\_(e )

= n9%([n 4) by Equation (2)
= 4"‘(111 4)
Now Work Probilem 15 <

MPLES Differentiating Different Forms
Find —d—(e2 +x¢ 4 2V7).
dx

Solution: Here we must differentiate three different forms; do not confuse them! The
first (¢?) is a constant base to a constant power, so it is a constant itself. Thus, its
derivative is zero. The second (x¢) is a variable base to a constant power, so the powerrule
applies. The third (2¥*) is a constant base to a variable power, so we must differentiate
an exponential function. Taken all together, we have

i &+ x° —1—2‘/';) =0+ex !+ %[e(mz)ﬁ]

dx(
el (In2)/x 1
=ext7' + [e ](ln 2) <__-2«/?>

2vX1n2

24/%
Now Work Problem 17 <

= ex¢!

WMPLE 6 Differentiating Power Functions Again

We have often used the rule d/dx(x*) = ax®"!, but we have only proved it for a a
positive integer and a few other special cases. At least for x > 0, we can now improve
our understanding of power functions, using Equation (2).
For x > 0, we can write x? = ¢?I"*_ So we have
d

d ! . d
___(xa) — — palnx __ ealn.\_(alnx) :xa(ax——l) — axa—l

dx 7 dx dx

Now Work Problem 19 <

Ao ———s

. :




et G P o 1 A M SO P LSS AT R e S

PROBLEMS 12.2

In Problems 1-28, differentiate the functions.

ae’

1. y=>5¢* 2. y=

) ¥ b
3,y = @203 4. y= RS
5 y=¥ 6. f(q) = e~ +64-1
7. F() = g+ E2ri6 8 y= gorer+l
9. y=1xe 10. y = 3x*e™
11 y =x2 12, y = xe™

P 4 e &5 — g%

13. y= 4. y=

) 3 ) ef e
15, y =35> 16. y =2%?

eaw

17. T ——— ) — =X

o0 = e 18, y=
19. y=e!+V¥ 20. y = (™ + 1)
2L y=x—-5° 22. f(z) = e'f*
2. y= 221 24 %(x + 6)

. V= . Y= X

¥ =11 y
25. y=Ine* 26. y=e¢"Inx
27, y=x* 28. y = Ine™!

29. If f(x) = ee’e”, find f/(=1).
30. Iff(x) = 571, find f'(1).

31. Find an equation of the tangent line to the curve y = ¢* when
x=-=2.

32. Find an equation of the tangent line to the curve y = ¢ at the
point (1, e). Show that this tangent line passes through (0, 0) and
show that it is the only tangent line to y = ¢* that passes through
(0,0).

For each of the demand equations in Problems 33 and 34, find the

rate of change of price p with respect to quantity q. What is the
rate of change for the indicated value of q?

33. p=15¢"001: 5 =500" 34. p=9e7%"0; g =300

In Problems 35 and 36, ¢ is the average cost of producing q units
of a product. Find the marginal-cost function and the marginal
cost for the given values of q.

7000¢4/700
35 6= g =1350,q =700

850 (2g+6)/800
36. &= — + 40005 Lq=97,q = 197

q
. t+1 dw
37. fw=e" andx= "~ find 2 when r =2-
t—1 dt

38. If f'(x) = x° and u = ¢*, show that

fx-[f(u)] ="
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39. Determine the value of the positive constant c if

d X C

(" — ¥ =0

dx (=2 =l
40. Calculate the relative rate of change of

Fx) =107 +1n(8 +x) + 0.0l 2

when x = 2. Round your answer to four decimal places. _
41. Production Run  For a firm, the daily output on the rth day
of a production run is.given by

g = 500(1 — 7%
Find the rate of change of output g with respect to  on the
tenth day.

42. Normal-Density Function For the normal-density function

—/2
e f2

f=

1
V2
find f'(—1).

43. Population
Seattle area t years from 1970 is estimated by P = 1.92¢
Show that dP/dt = kP, where k is a constant. This means that the

rate of change of population at any time is proportional to the
population at that time.

44, Market Penetration In a discussion of diffusion of a new
process into a market, Hurter and Rubenstein' refer to an equation
of the form

The population, in millions, of the greater
0.01761

Y = ke

where Y is the cumulative level of diffusion of the new process at

time ¢ and k, o, and B are positive constants. Verify their claim that
dy '

— =ko? (' Ina)In

7 (A lna)ln B

45. Finance After ¢ years, the value S of a principal of P

dollars invested at the annual rate of r compounded continuously

is given by S = Pe". Show that the relative rate of change of §

with respect to t is 7.

46. Predator-Prey Relationship In an article concerning
predators and prey, Holling? refers to an equation of the form

y=K(l —e™)

where x is the prey density, y is the number of prey attacked, and
K and a are constants. Verify his statement that
D ok — )
— =a(K —y

dx )
47. Earthquakes According to Richter,? the number of
earthquakes of magnitude M or greater per unit of time is given by
N = 10*10""  where A and b are constants. Find dN /dM.

1 A. P. Hurter, Jr., A. H. Rubenstein, et al., “Market Penetration by New
Innovations: The Technological Literature,” Technological Forecasting and
Social Change, 11 (1978),197-221.

2c.s. Holling, “Some Characteristics of Simple Types of Predation and
Parasitism,” The Canadian Entomologist, XCI, no. 7 (1959), 385-98.

3 C. F. Richter; Elementary Seismology (San Francisco: W. H. Freeman and
Company, Publishers, 1958).
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48. Psychology - Short-term retention was studied by Peterson 50. Medicine - In Problem 49, suppose the tracer is injected at a
and Peterson.* The two researchers analyzed a procedure in which constant rate R. Then the concentration at time 7 is

an experimenter verbally gave a subject a three-letter consonant R e

syllable, such as CHJ, followed by a three-digit number, such as Cn= T [1 —e ]

309. The subject then repeated the number and counted backward )

by 3’s, such as 309, 306, 303, .. .. After a period of time, the (a) Find C(0).

subject was signaled by a light to recite the three-letter consonant (b) Show that — = — — -C(r)

syllable. The time between the experimenter’s completion of the aQ vV

last consonant to the onset of the light was called the recall 51. Schizophrenia Several models have been used to analyze
interval. The time between the onset of the light and the the length of stay in a hospital. For a particular group of
completion of a response was referred to as latency. After many schizophrenics, one such model is®

trials, it was determined that, for a recall interval of ¢ seconds, the fO=1- g~0-0081

approximate proportion of correct recalls with latency below 2.83

w i ] i t was discharge
seconds was here f(¢) is the.proportion of the group that was di ged at the

end of 1 days of hospitalization. Find the rate of discharge (the
p = 0.89[0.01 + 0.99(0.85)'] proportion discharged per day) at the end of 100 days. Round your
answer to four decimal places.
(a) Find dp/dt and interpret your result.
(b) Evaluate dp/dt when t = 2. Round your answer to two
decimal places.

52. Savings and Consumption A country’s savings S (in
billions of dollars) is related to its national income 7 (in billions
of dollars) by the equation

49. Medicine Suppose a tracer, such as a colored dye, is 3

injected instantly into the heart at time ¢ = 0 and mixes uniformly S=In 24 el

with blood inside the heart. Let the initial concentration of the

tracer in the heart be Cp, and assume that the heart has constant

volume V. Also assume that, as fresh blood flows into the heart,
the diluted mixture of blood and tracer flows out at the constant

positive rate r. Then the concentration of the tracer in the heart at when the marginal propensity to save is 7?

time ¢ is given by

(a) Find the marginal propensity to consume as a function of
income. »
(b) To the nearest million dollars, what is the national income

In Problems 53 and 54, use differentiation rules to find f'(x). Then
C(t) = Coe™ /" use your graphing calculator to find all real zeros of f'(x). Round
your answers to two decimal places.

Show that dC/dt = (—r/V)C(t). 53. f(x) = 23 54. f(r) =x+ e

Objective 12.3 El asmcaﬁy of D@mand

To give a mathematical analysis of the  Elasticity of demand is a means by which economists measure how a change in the price

economic concept of elasticity. of a product will affect the quantity demanded. That is, it refers to consumer response

to price changes. Loosely speaking, elasticity of demand is the ratio of the resulting
percentage change in quantity demanded to a given percentage change in price:

percentage change in quantity
percentage change in price

Demand function . L. A k
For example, if, for a price increase of 5%, quantity demanded were to decrease by 2%,

we would loosely say that elasticity of demand is —2/5.

To be more general, suppose p = f(g) is the demand function for a product
Consumers will demand ¢ units at a price of f{g) per unit and will demand g + /
units at a price of f(g -+ 1) per unit (Figure 12.2). The percentage change in quantity

q . demanded fromgtog-+his

I/ F
@M =a 4509 =" 1009
FIGURE 12.2 Change in demand. q q

The corresponding percentage change in price per unit is
flg+h) —f(@
f@)

fla)
flg+h)

¥

i

[}

i

[}

i
qgg+th

- 100%

* L. R. Peterson and M. J. Peterson, “Short-Term Retention of Individual Verbal Items,” Journal of Experimental
Psychology, 58 (1959), 193-98. )

3 W. W. Eaton and G. A. Whitmore, “Length of Stay as a Stochastic Process: A General Approach and Application
to Hospitalization for Schizophrenia,” Journal of Mathematical Sociology, 5 (1977), 273-92.
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Since p is a function of ¢, dp/dq is

a function of g and thus the ratio that
defines 7 is a function of ¢. That is why
we write 17 = 1(q).
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The ratio of these percentage changes is
h

— - 100%
q _ f(q)
fa+D=f@ 50q 9 fla+D—f@
@
_f@ h
g flg+mn—£g
1@
q

-4 1
Fath =@ W

h
If f is differentiable, then as & — 0, the limit of [f(g + h) — f(¢)1/h is f'(q) = dp/dq.
Thus, the limit of (1) is
@ »
q__ 4
d

@

since p = f(q)

dg
which is called the point elasticity of demand.

De‘a"mﬁ:lon

Iftp =7 (q) is'a dlfferentlable demand function, the point elasticity of demand,
denoted by the Greek letter Ui (eta) at (q, D)is given by

P

S g
77 —~ ;7'('(],)’__ dp

dq

To illustrate, let us find the point elasticity of demand for the demand function

p = 1200 — g*. We have

p 1200 - g
q q 1200 — 42 600 1
n=— = =———a—=——3 5 ()
@ ~2q 2q q 2
dq

For example, if ¢ = 10, then n = — ((600/10%) — §) = —51. Since

. % change in demand

% change in price
we.have

(% change in price)(n) = % change in demand

Thus, if price were increased by 1% when g = 10, then quantity demanded would
change by approximately

1 1
(1%) (—55) = —5—%

That is, demand would decrease 51 %. Similarly, decreasing price by + 5% when g = 10
results in a change in demand of apprommately

(1))

Hence, demand increases by 2%%.
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Note that when elasticity is evaluated, no units are attached to it—it is nothing
more than a real number. In fact, the 100%’s arising fromthe word percentage cancel,
so that elasticity is really an approximation of the ratio

relative change in quantity

relative change in price

and each of the relative changes is no more than a real number. For usual behavior of
demand, an increase (decrease) in price corresponds to a decrease (increase) in quantity.
This means that if price is plotted as a function of quantity then the graph will have a
negative slope at each point. Thus, dp/dq will typically be negative, and since p and
q are positive, n will typically be negative too. Some economists disreoard the minus
sign; in the preceding situation, they would consider the elasticity to be 5 . We will not
adopt this practice.
There are three categories of elastlclty

1. When || > 1, demand is elastic.
2. When || = 1, demand has unit elasticity.
3. When |5| < 1, demand is inelastic.

For example, in Equation (2), since || = 51 when g = 10, demand is elastic. If
q = 20, then |n] = ]— [(600/20 )~ ~]| = 1 so demand has unit elasticity. If g = 25,
then |7| = | -2, and demand is inelastic.

Loosely speaking, for a given percentage change in price, there is a greater per-
centage change in quantity demanded if demand is elastic, a smaller percentage change
if demand is inelastic, and an equal percentage change if demand has unit elasticity. To
better understand elasticity, it is helpful to think of typical examples. Demand for an
essential utilty such as electricity tends to be inelastic through a wide range of prices.
If electricity prices are increased by 10%, consumers can be expected to reduce their
consumption somewhat, but a full 10% decrease may not be possible if most of their
electricity usage is for essentials of life such as heating and food preparation. On the
other hand, demand for luxury goods tends to be quite elastic. A 10% increase in the
price of jewelry, for example, may result in a 50% decrease in demand.

Finding Point Elasticity of Demand

Determine the point elasticity of the demand equation
k
p=~, wherek>0andg> 0
q

Solution: From the definition, we have

P k
g1 _
dp —k
dg ¢

. Thus, the demand has unit elasticity for all ¢ > 0. The graph of p = k/q is called an

equilateral hyperbola and is often found in economics texts in discussions of elasticity.
(See Figure 2.11 for a graph of such a curve.)

Now Work Problem 1 <

If we are given p = f(g) for our demand equation, as in our discussion thus far,
then it is usually straightforward to calculate dp/dq = f’'(g). However, if instead we
are given ¢ as a function of p, then we will have g = f~!(p) and, from Section 12.2,

dp 1
dg  dq
dp




Here we analyze elasticity for linear
demand.

[7] > 1, elastic

’,lnl = 1, unit elasticity

o~

““““““““ [7} < 1, inelastic

p=mq+b

FIGURE 12.3 Elasticity for linear
demand.
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It follows that

I

3

-3
=
&&=
¥t fan]
SRS

provides another useful expression for 7. Notice too that if g = g(p), then

P . BN SRR | ()
77_77@)_4 dp  g(p) s =p s(p)
and thus -

elasticity = price - relative rate of change of quantity as a function of price  (4)

IPLE2  Finding Point Elasticity of Demand
Determine the point elasticity of the demand equation
g = p* — 40p + 400, where g>0

Solution: Here we have g given as a function of p and it is easy to see that
dg/dp = 2p — 40. Thus,

p dq p 5
==.—=-"—(2p—40
n(p) 7 q(p)(p )

For example, if p = 15, then ¢ = ¢(15) = 25; hence, n(15) = (15(—10))/25 = —6, so
demand is elastic for p = 135.

Now Work Problem 13 <

Point elasticity for a linear demand equation is quite interesting. Suppose the
equation has the form

p=mq+b, wherem <Qandb >0

(See Figure 12.3.) We assume that ¢ > 0; thus, p < b. The point elasticity of demand is
p p

g4 _4_P _ P
dp m mq p-—b
, dq
By considering dn/dp, we will show that 7 is a decreasing function of p. By the
quotient rule,

dp _(@-b—-p b
= p-bF (b
Since b > 0 and (p — b)* > 0, it follows that dn/dp < 0, meaning that the graph

of n = 7(p) has a negative slope. This means that as price p increases, elasticity 7,
decreases. However, p ranges between 0 and b, and at the midpoint of this range, b/2,

b b
n=n0) = 32— =2 =1

O

2 2

Therefore, if p < b/2, then n > —1;if p > b/2, then 5 < —1. Because we typically
have n < 0, we can state these facts another way: When p < b/2,|n| < 1, and
demand is inelastic; when p = b/2,|n| = 1, and demand has unit elasticity; when
p > b/2,|n| > 1 and demand is elastic. This shows that the slope of a demand curve
is not a measure of elasticity. The slope of the line in Figure 12.3 is m everywhere, but
elasticity varies with the point on the line. Of course, this is in accord with Equation (4).
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Here we analyze the relationship between
elasticity and the rate of change of
revenue.

PROBLEMS 12.3

‘In Problems 114, find the point elasticity of the demand
equations for the indicated values of q or p, and determine
whether demand is elastic, is inelastic, or has unit elasticiry.

2. p=10—0.04¢; g = 100

3000
3. p="—";9=300 4. p=
q
500
= s g = 104 6. p=
ok P

7. p =150 —e9'%0; g = 100

8. p =250e"%9; g =50

Chapter 12 Additional Differentiation Topics

Elasticity and Revenue

Turning to a different situation, we can relate how elasticity"oﬁ"f? demand affects changes
in revenue (marginal revenue). If p = f(g) is a manufacturer’s demand function, the
total revenue is given by
r=pq
To find the marginal revenue, dr/dq, we differentiate r by using the product rule:
AP 5)
g p+q i
Factoring the right side of Equation (5), we have

ar 7. d
ar_, (1\_,_ z.e)
dq pdq

But
dp
adp _dq _1
pdg P 7
q
Thus,
dg ” n)

1
If demand is elastic, then n < —1, so 1 + — > 0. If demand is inelastic, then n > -1,

1
so 1 + — < 0. We can assume that p > 0. From Equation (6) we can conclude that
Ui

dr/dg > 0 on intervals for which demand is elastic. As we will soon see, a function is
increasing on intervals for which its derivative is positive and a function is decreasing
on intervals for which its derivative is negative. Hence, total revenue r is increasing on
intervals for which demand is elastic and total revenue is decreasing on intervals for
which demand is inelastic. '

Thus, we conclude from the preceding argument that as more units are sold, a
manufacturer’s total revenue increases if demand is elastic, but decreases if demand is
inelastic. That is, if demand is elastic, a lower price will increase revenue. This means
that a lower price will cause a large enough increase in demand to actually increase
revenue. If demand is inelastic, a lower price will decrease revenue. For unit elasticity,
a lower price leaves total revenue unchanged.

If we solve the demand equation to obtain the form g = g(p), rather than p = f(g),
then a similar analysis gives

dr

7
dp @

and the conclusions of the last paragraph follow even more directly.

9, g=1200—150p;p =4
11. g = /500 — p; p = 400

13. g=(p~350yp=10

10. ¢ = 100 — p; p = 50
12. q = /2500 — p?; p =20

14. g = p* —50p+850; p = 20

5_0_9- = 15. For the linear demand equation p = 13 — 0.05¢, verify that

=5 q =52

q- demand is elastic when p = 10, is inelastic when p = 3, and has
800 g=24 unit elasticity when p = 6.50.

2+ 1 16. For what value (or values) of g do the following demand

equations have unit elasticity?




(a) p =36 —0.25¢q
(b) p =300 — ¢°
17. The demand equation for a product is
g = 500 — 40p + p*
where p is the price per unit (in dollars) and ¢ is the quantity of
units demanded (in thousands). Find the point elasticity of

demand when p = 15. If this price of 15 is increased by %%,
what is the approximate change in demand?

18. The demand equation for a certain product is

g = /3000 — p2

where p is in dollars. Find the point elasticity of demand when
p = 40, and use this value to compute the percentage change in
demand if the price of $40 is increased by 7%.

19. For the demand equation p = 500 — 24, verify that demand is
elastic and total revenue is increasing for 0 < ¢ < 125. Verify that
demand is inelastic and total revenue is decreasing for

125 < g < 250.

dr 1
20. Verify that == = p (1 + —) if p =50 — 3q.
dg 7
1000

5 -

21. Repeat Problem 20 for p =

22. Suppose p = mgq -+ b is a linear demand equation, where
m =z 0and b > 0.

(a) Show that lim,..,~ .= —o0.

(b) Show that 7 = 0 when p = 0.

23. The demand equation for a manufacturer’s product has

the form
g = ay/'b—cp?

where a, b, and ¢ are positive constants.

(a) Show that elasticity does not depend on a.
(b) Determine the interval of prices for which demand is elastic.
(c) For which price is there unit elasticity?

24. Given the demand equation g>(1 + p)* = p, determine the
point elasticity of demand when p = 9.

Objective

To discuss the notion of a function

12.4 Implicit Differentiation
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Implicit Differentiation
25. The demand equation for a product is

60
g=—+In(65-p?)
P

(a) Determine the point elasticity of demand when p = 4, and
classify the demand as elastic, inelastic, or of unit elasticity at this
price level.

(b) If the price is lowered by 2% (from $4.00 to $3.92), use the
answer to part (a) to estimate the corresponding percentage
change in quantity sold.

(c) Will the changes in part (b) result in an increase or decrease

in revenue? Explain.

26. The demand equation for a manufacturer’s product is
p = 50(151 — q)*02va+1

(a) Find the value of dp/dg when 150 units are demanded.

(b) Using the result in part (a), determine the point elasticity of
demand when 150 units are demanded. At this level, is demand
elastic, inelastic, or of unit elasticity?

(¢) Use the result in part (b) to approximate the price per unit if
demand decreases from 150 to 140 units.

(d) If the current demand is 150 units, should the manufacturer
increase or decrease price in order to increase revenue? (Justify
your answer.)

27. A manufacturer of aluminum doors currently is able to sell
500 doors per week at a price of $80 each. If the price were
lowered to $75 each, an additional 50 doors per week could be
sold. Estimate the current elasticity of demand for the doors,
and also estimate the current value of the manufacturer’s
marginal-revenue function.
28. Given the demand equation

p = 2000 — ¢
where 5 < g < 40, for what value of g is || a maximum? For
what value is it a minimum?

29, Repeat Problem 28 for

such that 5 < g < 95.

e

defined implicitly and to determine
derivatives by means of implicit
differentiation.

FIGURE 12.4 The circle x> +y? = 4.

Implicit differentiation is a technique for differentiating functions that are not given in

the usual form y = f(x) [nor in the form x = g(y)]. To introduce this technique, we

will find the slope of a tangent line to a circle. Let us take the circle of radius 2 whose
center is at the origin (Figure 12.4). Its equation is
¥4y =4

P+ —4=0 (1)

The point (v/2, +/2) lies on the circle. To find the slope at this point, we need to

find dy/dx there. Until now, we have always had y given explicitly (directly) in terms

of x before determining y'; that is, our equation was always in the form y = f(x) [or

in the form x = g(y)]. In Equation (1), this is not so. We say that Equation (1) has the

form F(x,y) = 0, where F(x, y) denotes a function of two variables as introduced in

Section 2.8. The obvious thing to do is solve Equation (1) for y in terms of x:
2 2

X4+y —-4=0
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y=-Va-2

(@) (b)

FIGURE 12.5 x® +3* = 4 gives rise to two different functions.

A problem now occurs: Equation (2) may give two values of y for a value of x. It does
not define y explicitly as a function of x.”'We can, however, suppose that Equation (1)
defines y as one of two different functions of x,

y=+4+v4—-3? and y=-—v/4-—x2
whose graphs are given in Figure 12.5. Since the point (+/2, +/2) lies on the graph of
y = ~/4 — x2, we should differentiate that function:

y=+4—x?

dy 1 2-1/20 .
o= @)=
N X
N
So
o Y2
dx_l____ﬁ 4 -2

Thus, the slope of the circle x? + y? — 4 = 0 at the point (+v/2, +/2) is —1.

Letus summarize the difficulties we had. First, y was not originally given explicitly
in terms of x. Second, after we tried to find such a relation, we ended up with more than
one function of x. In fact, depending on the equation given, it may be very complicated
or even impossible to find an explicit expression for y. For example, it would be difficult
to solve ye' 4 In(x +y) = 0 for y. We will now consider a method that avoids such
difficulties.

An equation of the form F(x,y) = 0, such as we had originally, is said to express y
implicirly as a function of x. The word implicitly is used, since y is not given explicitly as
a function of x. However, it is assumed or implied that the equation defines y as at least
one differentiable function of x. Thus, we assume that Equation (1), x2 +y> —4 = 0,
defines some differentiable function of x, say, y = f(x). Next, we treat y as a function
of x and differentiate both sides of Equation (1) with respect to x. Finally, we solve the
result for dy/dx. Applying this procedure, we obtain

d 2 “i

S+ =20
Lty + Loty - L= L) 3
dx(l) a() TEWE o 3)

d d d d
We know that —(x”) = 2x and that both —(4) and —(0) are 0. But —(y?) is not 2y,
dx dx - dx dx

because we are differentiating with respect to x, not y. That is, y is not the independent
variable. Since y is assumed to be a function of x, y* has the form 1", where y plays the
d du d dy
role of u. Just as the power rule states that — (4*) = 2u—, we have —OH =2 ’—)~.
i dx dx “dx dx
Hence, Equation (3) becomes
dy

dx

2x+2y—==0
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The derivactiive of ¥ with respect
toxis3 2
Y

, not 3y,
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Solving for dy/dx gives

dy
Dy— = —2x
}dx *
dy .
Do fory#£0 )
dx y

Notice that the expression for dy/dx involves the variable y as well as x. This means
that to find dy/dx at a point, both coordinates of the point must be substituted into
dy/dx. Thus,

a'y V2

&l(mm) V2

as before. This method of finding dy/dx is called implicit differentiation. We note that

Equation (4) is not defined when y = 0. Geometrically, this is clear, since the tangent

line to the circle at either (2, 0) or (—2,0) is vertical, and the slope is not defined.
Here are the steps to follow when differentiating implicitly:

Implicit leferennatlon Procedure e
Foran equatlon tcli]at we assume deﬁnes Y 1mp11c1t1y asa d1fferent1able functlon of
x, the denvanve ZZ—)x can be found as follows:

1. Differentiate both sides of the equauon with respect to X

d ,
- 2. Collect all terms involving Ey om one suie of the equation, and collect all other
 terms on the other side.

dy d
3. k‘Eactcr’ —(Zx—:frcm e‘the side involving the ZLrZ ’tkerrkns.

4. Solve for é, noting any restrictions.

Implicit Differentiation

d
Find EX by implicit differentiation if y +y* —x = 7.
X
Solution: Here y is not given as an explicit function of x [that is, not in the form

¥ = f(x)]. Thus, we assume that y is an implicit (differentiable) function of x and apply
the preceding four-step procedure:

1. Differentiating both sides with respect to x, we have
d 3 d
—_ —-x)=—(7
Oty =70
d d d d
- ZO+ 0 =@ =—0)

d dy
Now, ;—(y) can be written dfx and —(x) = 1. By the power rule,

d dy
3 2
m— ¥} - 3 .
dxo ) Y dx
Hence, we obtain
dy 2 dy
— 43y = ~1=
& @
d
2. Collecting all d—y terms on the left side and all other terms on the right side gives
X
dy dy

dx dx
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d
3. Factoring EX from the left side, we have
X

dy 2
21+ =1
dx( + 33

dy s .
In an implicit-differentiation problem, we 4. We solve for o by dividing both sides by 1 + 3y*:
are able to find the derivative of a dx

function without knowing the function. ﬂ — 1

dx 14 3y?

Because step 4 of the process often involves division by an expression involving
the variables, the answer obtained must often be restricted to exclude those values of
the variables that would make the denominator zero. Here the denominator is always
greater than or equal to 1, so there is no-restriction.

Now Work Problem 3 <

APPLY IT > Implicit Differentiation

4. Suppose that P, the proportion of: Ay .4 5 4
people affected by a certain disease, Find dx if 27+ day” — 27 =y

~ , (P
is described by In (1

7 ) = 0.51,  Solution: Since y is not given explicitly in terms of x, we will use the method of
implicit differentiation:

L ' dP.
- where t.is the time in months. Find —, . . . . .. . .
ar 1. Assuming that y is a function of x and differentiating both sides with respect to x,
the rate at which P grows with respect. e et
, WS 3 ; g

to time. 4 J
: 3 2 4
e | X 4 LA 27 e )
dx(k + 4xy ) dxb )
d ; d d d 4
—(x 4—xy") — —@27) = —(
a,x(l )+ dx(w ) dx( ) dxb )
d
To find a—(xy?‘), we use the product rule:
by

dy
dx

tiy ) dy
3.'2+4 x{2yv— -+ (1 -—-473__.
’ [\< ydx) i )] ? dx

d d ‘
38 +4 | x—0D) + ¥y —@) | -0 =4y
dx dx

dy 2 dy
302 4 8xy—= +4y? = 4y° =
x+xjdx+} ydx

. dy .
2. Collecting E)— terms on the left side and other terms on the right gives
x

dy dy N 5
Sxy—= —4’3-——- = —3x° — 4y~
de Y dx N )

d
. 3. Factoring &—i— from the left side yields

dy
é(&xy 4ty = 3¢ — 4y

dv
4. Solving for —), we have
x .
dy —3x% — 4y? _ 3x2 + 4y?
de~ Sxy—4y3 ~ 4y3 — 8xy

which gives the value of dy/dx at points (x, y) for which 4y — 8xy # 0.

Now Work Problem 11 <




APPLY IT »
5. The volume 'V enclosed by a spher-
ical balloon of radius r-is given by
the equation V = —zrr>. If the radius is
increasing at a rafe of 5 inches/minute

d av
(thatis, :1? =5),thenfind =-| | the-

r=12
rate of increase of the volume, when the

radius is 12 inches.

APPLY IT »

6. A 10-foot ladder i is placed aamnst a
vertical wall Suppose the bottom of the
‘ ]adder shdes away: from the wall at a

dx
- constant rate of 3 ft/s. (That i is; E; =3

How fast is the top of the ladder sliding
down the wall when the top of the ladder
is' 8 feet from the ground (that is, when

&y
'y = 8)7 (That is, what is d-’t?) (Use the

 Pythagorean theorem for right triangles,

X2y = 22, where x and y are the legs

_ of the triangle and z is the hypotenuse.)
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XAMPLE3 . Implicit Differentiation

Find the slope of the curve x* = (y — x2)? at (1, 2).

Solution: The slope at (1, 2) is the value of dy/dx at that point. Finding dy/dx by
implicit differentiation, we have

d d 2.2
'“_(XS) = —j[(}’ —x%)7]

dy dy
3% = 2}72}; — 4xy — 2x2£—é + 4x?

dy dy
32 L dyy — 435 = 2y — 242
Xy * )d;\ dx

A dy
3% 4 day — 42 = 2d—i(y —x%)

dy 3x? + 4oy — 423

2
i 30— fory—x"#£0

For the point (1,2), y —x? = 2 — 12 = 1 % 0. Thus, the slope of the curve at (1, 2) is

dy| 3012 +40)@) — 401)°
| 12 22— (1P

7
T2

Now Work Problem 25 <

AMPLE 4 Implicit Differentiation

Ifg—p=Ing+Inp, find dg/dp.

Solution: We assume that g is a function of p and differentiate both sides with respect
to p:

d d d d
ZIE(Q) - E];(P) = Zp‘(ln q) + EI;(IHP)

dq 1_1afq 1
dp gdp p
dg ldg 1
dp qdp p

dp \ ¢q p
dg _ (1+py
c forp(g—1)#0
Do pa—1 rp(g—1) #

Now Work Problem 19 <
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PROBLEMS 12.4 e
In Problems 1-24, find dy/dx by implicit differentiation.

1 X 4+4y°=4 2. 3%+ 6y7 =1

3.2 -t =5 4. 59> —2x* = 10

5 Jx+yy=3 6. x'° 4 y'5 =4

7. My =5 8. )3 =4x

9. xy =36 10. ¥ 4+xy -2y =0
Ixy—y—1lx=5 12. 2 —y* =3x%y — 3xy?
13 283 4+ — 120y =0 14, 5% +6xy+7y4 =0
15. x= .+ 16. ¥y  +x=9

17. 5% —x +y? =25 18. Y +y=1Inx

19, In(xy) =€ 20. n(xy)+x=4

21 xe* +y=13 22. 4+ 92 =16

23, 14+ =3+hn@+y) 24 eV =In(x—y)
25. If x + xy 4 y* =7, find dy/dx at (1, 2).
26. Ifx/y + 1 =y/x+1, find dy/dx at (3, 3).

27. Find the slope of the curve 4x” + 9y> = 1 at the point (0, 1);
at the point (xg, yo)-

28. Find the slope of the curve (x> +y*)* = 4y” at the point (0, 2).

29. Find equations of the tangent lines to the curve
B rxy 4y =1
at the points (—1, —1), (—1,0), and (—1, 1).
30. Repeat Problem 29 for the curve
2 2
Y 4+xy—x"=35
at the point (4, 3).

For the demand equations in Problems 31-34, find the rate of

change of g with respect to p.
3. p=100-¢* 32. p=400- /g

= 4. p=

g*+1
35. Radioactivity The relative activity I/ of a radioactive
element varies with elapsed time according to the equation

(%)
In{f—}=-At
Iy

where A (a Greek letter read “lambda”) is the disintegration
constant and /I is the initial intensity (a constant). Find the rate of
change of the intensity / with respect to the elapsed time ¢.

36. Earthquakes The magnitudé"‘M of an earthquake and its
energy E are related by the equation®

1.5M =1 E
. = oo § ——emm
“\2.5 x 101

Here M is given in terms of Richter’s preferred scale of 1958 and
E is in ergs. Determine the rate of change of energy with respect
to magnitude and the rate of change of magnitude with respect to
energy.

37. Physical Scale The relationship among the speed (v),
frequency (f), and wavelength (1) of any wave is given by

v=fA

Find df /dA by differentiating implicitly. (Treat v as a constant.)
Then show that the same result is obtained if you first solve the
equation for f and then differentiate with respect to A.

38. Biology The equation (P + a)(v + b) = k is called the
“fundamental equation of muscle contraction.”” Here P is the load
imposed on the muscle, v is the velocity of the shortening of the
muscle fibers, and a, b, and & are positive constants. Use implicit
differentiation to show that, in terms of P,

vk

dP (P+a)
39. Marginal Propensity to Consume A country’s savings S is
defined implicitly in terms of its national income I by the equation

1
SZ+212=51+1

where both S and 7 are in billions of dollars. Find the marginal
propensity to consume when / = 16 and § = 12.

40. Technological Substitution New products or technologies
often tend to replace old ones. For example, today most
commercial airlines use jet engines rather than prop engines. In
discussing the forecasting of technological substitution, Hurter
and Rubenstein® refer to the equation

LSO
1-f(n  1-f0
where f{1) is the market share of the substitute over time t and

C1, (5, and o (a Greek letter read “sigma”) are constants. Verify
their claim that the rate of substitution is

G fOI —f(OP
af (1) +[1 = f(1)]

1

-+ =C;+ Cyt

f=

Objective

-To describe the method of logarithmic
differentiation and o show how to
differentiate a function of the form .

12.5 Logarithmic Differentiation

A technique called logarithmic differentiation often simplifies the differentiation
of ¥y = f(x) when f(x) involves products, quotients, or powers. The procedure is as

6 K. E. Bullen, An Introduction to the Theory of Seismology (Cambridge, U.K.: Cambridge at the University Press,

1963).

7 R.W. Stacy etal., Essentials of Biological and Medical Physics (New York: McGraw-Hill Book Company, 1955).

8 A.P. Hurter, Ir., A. H. Rubenstein et al., “Market Penetration by New Innovations: The Technological Literature,”
Technological Forecasting and Social Change, 11 (1978), 197-221.
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follows:

: Logérithmic Differentiation

‘To dlfferentlate y=r (x),

j 1. Take the natural locanthm of both sides: ThlS results in

=In(f))

" 2 S1mphfy In ( f (x)) bv usm0 propert:les of logarithms.
3. Differentiate both sides W1th respect to x. ‘

;481f—
’ oveord

: "5 Express the answer in terms of X only ThlS requues substituting f (x) fory.

There are a couple of points worth noting. First, irrespective of any simplification,
the procedure produces

y o d )

‘)7 = d—x(ln (f&x)
so that

dy

2= y—(ln ()

is a formula that you can memorize, if you prefer. Second, the quantity —— S which

f’

results from differentiating In (f(x)), is what was called the relative rate of change of
f(x) in Section 11.3.
The next example illustrates the procedure.

Logarithmic Differentiation

(2x -5y
I FT
Solution: Differentiating this function in the usual way is messy because it involves

the quotient, power, and product rules. Logarithmic differentiation makes the work less
of a chore.

Findy if y =

1. We take the natural logarithm of both sides:

(2x - 5)°
221
2. Simplifying by using properties of logarithms, we have

Iny = In(2x — 5)° — In (V2 + 1)

=3In(2x — 5) — (Inx> + In (x> + 1)/

Iny=1In

1
=3In(2x-—5)——21nx-—zln(x2+1)

3. Differentiating with respect to x gives
CAUTIONI\
/ 1
Since y is a function of x, differentiating Y 3 ! 2)-2 l _1 (2x)
Y’ y 2x—5 x 4 \x?+1
Iny with respect to x gives L -
y 6 2 X

. 6 2~__:\_‘___
Y EIN s T 22+
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5. Substituting the original expression for y gives y’ in terms of x only:
,_ (@&x-5T 6 2 hx
TRIZFLILx-5 x 224D

Now Work Problem 1 <

Logarithmic differentiation can also be used to differentiate a function of the form
y = 1", where both « and v are differentiable functions of x. Because neither the base
nor the exponent is necessarily a constant, the differentiation techniques for " and a"
do not apply here. '

Differentiating the Form »”

Differentiate y = x* by using logarithmic differentiation.

Solution: This example is a good candidate for the formula approach to logarithmic
differentiation.

Y = y—d—(lnx') = x"—fi—(x Inx) = x* ((1)(lnx) + (x) (l)) = x"(Inx + 1)
dx dx x

It is worthwhile mentioning that an alternative technique for differentiating a func-
tion of the form y = u" is to convert it to an exponential function to the base e. To
illustrate, for the function in this example, we have

y= [ g (elnx)x — e.\']nx
" 1 2
y = e (1 Inx +x~> =x"(Inx+1)
X

Now Work Problem 15 <

: MPLE3 Relative Rate of Change of a Product

Show that the relative rate of change of a product is the sum of the relative rates of
change of its factors. Use this result to express the percentage rate of change in revenue
in terms of the percentage rate of change in price.

-

. . 1
Solution: Recall that the relative rate of change of a function r is —. We are to show
-
" ’ /

that if r = pgq, then U + ~q-. From r = pg we have Inr = Inp + Ing, which,
r p q
when both sides are differentiated, gives
r/ pl q/
rop o q

as required. Multiplying both sides by 100% gives an expression for the percentage
rate of change of r in terms of those of p and ¢:

" 100% = Z100% + L100%
r p g

If p is price per item and q is quantity sold, then r = pq is total revenue. In this case
s '4

we take differentiation to be with respect to p and note that now 7 _ nE-, where 7 is

the elasticity of demand as in Section 12.3. It follows that in this case we have
Z100% = (1 + nZ100%
r p

expressing the percentage rate of change in revenue in terms of the percentage rate
of change in price. For example, if at a given price and quantity, n = -5, then a 1%
increase in price will resultin a (1 — 5)% = —4% increase in revenue, which is to say
a 4% decrease in revenue, while a 3% decrease in price—that is, a —3% increase in
price—will result in a (1 — 5)(—3)% = 12% increase in revenue. It is also clear that
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at points at which there is unit elasticity (n = —1), any percentage change in price
produces no percentage change in revenue.

Now Work Problem 29 <

AMPLE 4 Differentiating the Form v*

Find the derivative of y = (1 + ¢*)**.

Solution: This has the form y == u*, where u = 1+ ¢* and v = In x. Using logarithmic
differentiation, we have

Iny = In((1 + &)™)
Iny = (Inx)In(1l + &%)
y

1 . ! 1 .
; (;)(1n(1+e))+(ln,\)(l+er.e)

' In(l4¢€* e lnx
y _ In( )+

y X 1+ ef

;o ln(1+e‘)+e"lnx

ry=J ¢ 14e
fIn(l1+€) e'lnx

- 1 xylnx

y=0+¢) ( > +1+e“)

Now Work Problem 17 <

Alternatively, we can differentiate even a general function of the form y = u(x)"®)
with u(x) > 0 by using the equation

= evlnu
Indeed, if y = u(x)'™ = "®4W for y(x) > 0, then
dy d o d s '
é =— (eI D) — ¢ '"“('”E (@) In u(x)) = u' <v () In u(x) 4 v(x) L:l((j)) )

which could be summarized as
u
@Y =u" (v' lnu+ v——)
u

As is often the case, there is no suggestion that the preceding formula should be mem-
orized. The point here is that we have shown that any function of the form u" can be
differentiated using the equation u* = ¢""™*. The same result will be obtained from
logarithmic differentiation: '

Iny = In(u")
lny=vinu
= - e ;y,

, u
=V Inu+v—
¥ u

. , i
Y =yl(vInu+v—
u

i
W) =u" (v’ Inu -+ v—)

u

!

After completing this section, we understand how to differentiate each of the following
forms:

(fe)* (a)
y= 1 b (b)
(f () (©
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For type (a), use the power rule. For type (b), use the differentiation formula for expo-
nential functions. [If b # e, first convert b/ to an e ‘function.] For type (c), use
logarithmic differentiation or first convert to an ¢ function. Do not apply a rule in a
situation where the rule does not apply. For example, the power rule does not apply to x*.

PROBLEMS 12.5 &=

In Problems 1-12, find y' by using logarithmic differentiation.
1L y=(+1DXx—-2)(x%+3)

2. y = Bx + 4)(8x — 1?(3x* + 1)
3.y=06-1)’@x+5° 4 y=@F+DV/&BT 1
5

Ly = IV~ I/ 41 6y = Qe+ D3 2320+ 5
J1T=x2 245
7. y= 8. y=
1—2x x4+9
(2% + 2 (1 +x%)

= (x+1PGBx+2)

9. y
1. y= G+IHx—2) 1 7_36(,\3’—}-1)2
$ Y= V 2y —1 P Y= xbeg—4

In Problems 13-20, find y'.

24. Find an equation of the tangent line to the graph of

y=x
at the point where x = 1.
25. Find an equation of the tangent line to the graph of

y pad ,\"

at the point where x = e.

26. If y = x*, find the relative rate of change of y with respect to x
whenx = 1.

27. Ify = (3x)~%, find the value of x for which the percentage
rate of change of y with respect to x is 60.

28. Suppose f(x) is a positive differentiable function and g is a
differentiable function and y = (f(x))!"). Use logarithmic

13, y =7+ 14. y = (0¥ differentiation to show that
3 X
..' — .ﬁ Ly = - X ( ) ’
15 y=x 16.5 <x2) Y = o (f wF e (f(x))>
17. y = GBx + ¥ 18. y = (% + 1)1
19. y = de"x> 20. y = (SO 29. The demand equation for a compact disc is
21. Ify = (4x — 3)2°*, find dy/dx when x = 1. g = 500 — 40p + p*

22. If y = (Inx)"*, find dy/dx when x = e.
23. Find an equation of the tangent line to

= (v + D +2)°(x +3)*
at the point where x = 0.

If the price of $15 is increased by 1/2%, find the corresponding
percentage change in revenue.

30. Repeat Problem 29 with the same mformanon except fora
5% decrease in price.

12.6 Newton’s Method

Objective

To approximate real roots of an
equation by using calculus. The
method shown is suitable for
calculators.

Itis easy to solve equations of the form f(x) = 0 whenf is a linear or quadratic function.
For example, we can solve x*>+3x—2 = 0 by the quadratic formula. However, if f (x) has
a degree greater than 2 (or is not a polynomial), it may be difficult, or even impossible,
to find solutions (or roots) of f(x) = 0 by the methods to which you are accustomed.
For this reason, we may settle for approximate solutions, which can be obtained in a
variety of efficient ways. For example, a graphing calculator can be used to estimate
the real roots of f(x) = 0. In this section, we will study how the derivative can be so
used (provided that f is differentiable). The procedure we will develop, called Newton’s
~ method, is well suited to a calculator or computer.

Newton’s method requires an initial estimate for a root of f(x) = 0. One way
of obtaining this estimate is by making a rough sketch of the graph of y = f(x)
and estimating the root from the graph. A point on the graph where y = 0 is an
x-intercept, and the x-value of this point is a root of f(x) = 0. Another way of locating
a root is based on the following fact:

If fis contmuous on the mterval [a bJ and f (a) and f (b) have opposn:e signs, then ,
the equatlon f(x) =0 has at least one real root between a and b. "

Figure 12.6 depicts this situation. The x-intercept between a and b corresponds to
aroot of f(x) = 0, and we can use either a or b to approximate this root.




N

TO REVIEW recursively deﬁr{éd
sequences, see Section 1.6.
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)I
y=f(x)

Y FEDIS
y=f)

fl@)y>0
Tangent

/ root of f(x) =0

! b |

i x | f<—— line
[}
!

f(b)<\(f\/ /x5 n

FIGURE 12.6 Rootof f(x) = O betweena  FIGURE 12.7 Improving approximation of root
and b, where f(a) and f(b) have opposite signs. via tangent line.

2

R S
s

Assuming that we have an estimated (but incorrect) value for a root, we turn to a
way of getting a better approximation. In Figure 12.7, we see that f(r) = 0, so r is
a root of the equation f(x) = 0. Suppose x; is an initial approximation to r (and one
that is close to r). Observe that the tangent line to the curve at (xy,f(x)) intersects the
x-axis at the point (xz, 0), and x; is a better approximation to r than is x;.

We can find x; from the equation of the tangent line. The slope of the tangent line
is f’(x1), so a point-slope form for this line is

y=f@n) =) —x) (1)

Since (xy,0) is on the tangent line, its coordinates must satisfy Equation (1). This gives
0 —f(x) =f' )2 —x1)

S

S

=Xy = X iff'(x) #0

Thus,
S
JFxan)
To get a better approximation to r, we again perform the procedure described, but this
time we use x, as our starting point. This gives the approximation
[ f(x2)
3=X2—

1)
Repeating (or iterating) this computation over and over, we hope to obtain better
approximations, in the sense that the sequence of values

(2)

X3 = X1 —

3)

X1,X2,X3, . ...

will approach r. In practice, we terminate the process when we have reached a desired
degree of accuracy.

Analyzing Equations (2) and (3), we see how x; is obtained from x) and how x3
is obtained from xy. In general, x,+; is obtained from x, by means of the following
general formula, called Newton’s method:

- )

o @

A formula, like Equation (4), that indicates how one number in a sequence is obtained
from the preceding one is called a recursion formula, or an iteration equation.



