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them differ. We will focus on fixed effects models. Later in this section, we will discuss
some of the differences between fixed and random effects models.

Completely Randomized Experiments
In this welding experiment, a total of 20 welds were produced, five with each of the
four fluxes. Each weld was produced on a different steel base plate. Therefore, to run
the experiment, the experimenter had to choose, from a total of 20 base plates, a group
of 5 to be welded with flux A, another group of 5 to be welded with flux B, and so
on. The best way to assign the base plates to the fluxes is at random. In this way, the
experimental design will not favor any one treatment over another. For example, the
experimenter could number the plates from 1 to 20, and then generate a random ordering
of the integers from 1 to 20. The plates whose numbers correspond to the first five
numbers on the list are assigned to flux A, and so on. This is an example of a completely
randomized experiment.

Definition
A factorial experiment in which experimental units are assigned to treatments at
random, with all possible assignments being equally likely, is called a completely
randomized experiment.

In many situations, the results of an experiment can be affected by the order in
which the observations are taken. For example, the performance of a machine used to
make measurements may change over time, due, for example, to calibration drift, or
to warm-up effects. In cases like this, the ideal procedure is to take the observations
in random order. This requires switching from treatment to treatment as observations
are taken, rather than running all the observations that correspond to a given treatment
consecutively. In some cases changing treatments involves considerable time or expense,
so it is not feasible to switch back and forth. In these cases, the treatments should be run
in a random order, with all the observations corresponding to the first randomly chosen
treatment being run first, and so on.

In a completely randomized experiment, it is appropriate to think of each treatment
as representing a population, and the responses observed for the units assigned to that
treatment as a simple random sample from that population. The data from the experiment
thus consist of several random samples, each from a different population. The population
means are called treatment means. The questions of interest concern the treatment
means—whether they are all equal, and if not, which ones are different, how big the
differences are, and so on.

One-Way Analysis of Variance
To make a formal determination as to whether the treatment means differ, a hypothesis
test is needed. We begin by introducing the notation. We have I samples, each from a
different treatment. The treatment means are denoted

μ1, . . . , μI
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It is not necessary that the sample sizes be equal, although it is desirable, as we will
discuss later in this section. The sample sizes are denoted

J1, . . . , JI

The total number in all the samples combined is denoted by N .

N = J1 + J2 + · · · + JI

The hypotheses we wish to test are

H0 : μ1 = · · · = μI versus H1 : two or more of the μi are different

If there were only two samples, we could use the two-sample t test (Section 6.7) to test the
null hypothesis. Since there are more than two samples, we use a method known as one-
way analysis of variance (ANOVA). To define the test statistic for one-way ANOVA, we
first develop the notation for the sample observations. Since there are several samples,
we use a double subscript to denote the observations. Specifically, we let Xi j denote the
j th observation in the i th sample. The sample mean of the i th sample is denoted Xi..

Xi. =
∑Ji

j=1 Xi j

Ji
(9.1)

The sample grand mean, denoted X .., is the average of all the sampled items taken
together:

X .. =
∑I

i=1

∑Ji
j=1 Xi j

N
(9.2)

With a little algebra, it can be shown that the sample grand mean is also a weighted
average of the sample means:

X .. =
∑I

i=1 Ji Xi.

N
(9.3)

Example
9.1 For the data in Table 9.1, find I , J1, . . . , JI , N , X23, X3., X ...

Solution
There are four samples, so I = 4. Each sample contains five observations, so
J1 = J2 = J3 = J4 = 5. The total number of observations is N = 20. The quantity
X23 is the third observation in the second sample, which is 267. The quantity X3.

is the sample mean of the third sample. This value is X3. = 271.0. Finally, we use
Equation (9.3) to compute the sample grand mean X ...

X .. = (5)(253.8) + (5)(263.2) + (5)(271.0) + (5)(262.0)

20
= 262.5
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Figure 9.2 presents the idea behind one-way ANOVA. The figure illustrates several
hypothetical samples from different treatments, along with their sample means and the
sample grand mean. The sample means are spread out around the sample grand mean.
One-way ANOVA provides a way to measure this spread. If the sample means are highly
spread out, then it is likely that the treatment means are different, and we will reject H0.

X1.
� X2.

� X..
� X3.

� X4.
�

FIGURE 9.2 The variation of the sample means around the sample grand mean can
be due both to random uncertainty and to differences among the treatment means. The
variation within a given sample around its own sample mean is due only to random
uncertainty.

The variation of the sample means around the sample grand mean is measured by a
quantity called the treatment sum of squares (SSTr for short), which is given by

SSTr =
I∑

i=1

Ji (Xi. − X ..)
2 (9.4)

Each term in SSTr involves the distance from the sample means to the sample grand
mean. Note that each squared distance is multiplied by the sample size corresponding
to its sample mean, so that the means for the larger samples count more. SSTr provides
an indication of how different the treatment means are from each other. If SSTr is large,
then the sample means are spread out widely, and it is reasonable to conclude that the
treatment means differ and to reject H0. If on the other hand SSTr is small, then the
sample means are all close to the sample grand mean and therefore to each other, so it is
plausible that the treatment means are equal.

An equivalent formula for SSTr, which is a bit easier to compute by hand, is

SSTr =
I∑

i=1

Ji Xi.
2 − N X ..

2
(9.5)

In order to determine whether SSTr is large enough to reject H0, we compare it to
another sum of squares, called the error sum of squares (SSE for short). SSE measures
the variation in the individual sample points around their respective sample means. This
variation is measured by summing the squares of the distances from each point to its
own sample mean. SSE is given by

SSE =
I∑

i=1

Ji∑
j=1

(Xi j − Xi.)
2 (9.6)
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The quantities Xi j − Xi. are called the residuals, so SSE is the sum of the squared
residuals. SSE, unlike SSTr, depends only on the distances of the sample points from
their own means and is not affected by the location of treatment means relative to one
another. SSE therefore measures only the underlying random variation in the process
being studied. It is analogous to the error sum of squares in regression.

An equivalent formula for SSE, which is a bit easier to compute by hand, is

SSE =
I∑

i=1

Ji∑
j=1

X2
i j −

I∑
i=1

Ji Xi.
2

(9.7)

Another equivalent formula for SSE is based on the sample variances. Let s2
i denote the

sample variance of the i th sample. Then

s2
i =

∑Ji
j=1(Xi j − Xi.)

2

Ji − 1
(9.8)

It follows from Equation (9.8) that
∑Ji

j=1(Xi j − Xi.)
2 = (Ji − 1)s2

i . Substituting into
Equation (9.6) yields

SSE =
I∑

i=1

(Ji − 1)s2
i (9.9)

Example
9.2 For the data in Table 9.1, compute SSTr and SSE.

Solution
The sample means are presented in Table 9.1. They are

X1. = 253.8 X2. = 263.2 X3. = 271.0 X4. = 262.0

The sample grand mean was computed in Example 9.1 to be X .. = 262.5. We now
use Equation (9.4) to calculate SSTr.

SSTr = 5(253.8−262.5)2+5(263.2−262.5)2+5(271.0−262.5)2+5(262.0−262.5)2

= 743.4

To compute SSE we will use Equation (9.9), since the sample standard deviations si

have already been presented in Table 9.1.

SSE = (5 − 1)(9.7570)2 + (5 − 1)(5.4037)2 + (5 − 1)(8.7178)2 + (5 − 1)(7.4498)2

= 1023.6

We can use SSTr and SSE to construct a test statistic, provided the following two
assumptions are met.
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Assumptions for One-Way ANOVA
The standard one-way ANOVA hypothesis tests are valid under the following
conditions:

1. The treatment populations must be normal.

2. The treatment populations must all have the same variance, which we
will denote by σ 2.

Before presenting the test statistic, we will explain how it works. If the two assump-
tions for one-way ANOVA are approximately met, we can compute the means of SSE
and SSTr. The mean of SSTr depends on whether H0 is true, because SSTr tends to be
smaller when H0 is true and larger when H0 is false. The mean of SSTr satisfies the
condition

μSSTr = (I − 1)σ 2 when H0 is true (9.10)

μSSTr > (I − 1)σ 2 when H0 is false (9.11)

The likely size of SSE, and thus its mean, does not depend on whether H0 is true. The
mean of SSE is given by

μSSE = (N − I )σ 2 whether or not H0 is true (9.12)

Derivations of Equations (9.10) and (9.12) are given at the end of this section.
The quantities I − 1 and N − I are the degrees of freedom for SSTr and SSE,

respectively. When a sum of squares is divided by its degrees of freedom, the quantity
obtained is called a mean square. The treatment mean square is denoted MSTr, and
the error mean square is denoted MSE. They are defined by

MSTr = SSTr

I − 1
MSE = SSE

N − I
(9.13)

It follows from Equations (9.10) through (9.13) that

μMSTr = σ 2 when H0 is true (9.14)

μMSTr > σ 2 when H0 is false (9.15)

μMSE = σ 2 whether or not H0 is true (9.16)

Equations (9.14) and (9.16) show that when H0 is true, MSTr and MSE have the
same mean. Therefore, when H0 is true, we would expect their quotient to be near 1. This
quotient is in fact the test statistic. The test statistic for testing H0 : μ1 = · · · = μI is

F = MSTr

MSE
(9.17)

When H0 is true, the numerator and denominator of F are on average the same size, so
F tends to be near 1. In fact, when H0 is true, this test statistic has an F distribution with
I − 1 and N − I degrees of freedom, denoted FI−1,N−I . When H0 is false, MSTr tends
to be larger, but MSE does not, so F tends to be greater than 1.
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Summary
The F test for One-Way ANOVA
To test H0 : μ1 = · · · = μI versus H1 : two or more of the μi are different:

1. Compute SSTr =
I∑

i=1

Ji (Xi. − X ..)
2 =

I∑
i=1

Ji Xi.
2 − N X ..

2
.

2. Compute SSE =
I∑

i=1

Ji∑
j=1

(Xi j − Xi.)
2 =

I∑
i=1

Ji∑
j=1

X2
i j −

I∑
i=1

Ji Xi.
2

=
I∑

i=1

(Ji − 1)s2
i .

3. Compute MSTr = SSTr

I − 1
and MSE = SSE

N − I
.

4. Compute the test statistic: F = MSTr

MSE
.

5. Find the P-value by consulting the F table (Table A.8 in Appendix A)
with I − 1 and N − I degrees of freedom.

We now apply the method of analysis of variance to the example with which we
introduced this section.

Example
9.3 For the data in Table 9.1, compute MSTr, MSE, and F . Find the P-value for testing

the null hypothesis that all the means are equal. What do you conclude?

Solution
From Example 9.2, SSTr = 743.4 and SSE = 1023.6. We have I = 4 samples and
N = 20 observations in all the samples taken together. Using Equation (9.13),

MSTr = 743.4

4 − 1
= 247.8 MSE = 1023.6

20 − 4
= 63.975

The value of the test statistic F is therefore

F = 247.8

63.975
= 3.8734

To find the P-value, we consult the F table (Table A.8). The degrees of freedom are
4 − 1 = 3 for the numerator and 20 − 4 = 16 for the denominator. Under H0, F has
an F3,16 distribution. Looking at the F table under 3 and 16 degrees of freedom, we
find that the upper 5% point is 3.24 and the upper 1% point is 5.29. Therefore the
P-value is between 0.01 and 0.05 (see Figure 9.3 on page 666; a computer software
package gives a value of 0.029 accurate to two significant digits). It is reasonable to
conclude that the population means are not all equal, and, thus, that flux composition
does affect hardness.


