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Chapter7
Correlation and
Simple Linear
Regression

Introduction

Scientists and engineers often collect data in order to determine the nature of a
relationship between two quantities. For example, a chemical engineer may run a chem-
ical process several times in order to study the relationship between the concentration of
a certain catalyst and the yield of the process. Each time the process is run, the concen-
tration x and the yield y are recorded. The experiment thus generates bivariate data; a
collection of ordered pairs (x1, y1), . . . , (xn, yn). In many cases, ordered pairs generated
in a scientific experiment will fall approximately along a straight line when plotted. In
these situations the data can be used to compute an equation for the line. This equation
can be used for many purposes; for example, in the catalyst versus yield experiment just
described, it could be used to predict the yield y that will be obtained the next time the
process is run with a specific catalyst concentration x .

The methods of correlation and simple linear regression, which are the subject of
this chapter, are used to analyze bivariate data in order to determine whether a straight-
line fit is appropriate, to compute the equation of the line if appropriate, and to use that
equation to draw inferences about the relationship between the two quantities.

7.1 Correlation

One of the earliest applications of statistics was to study the variation in physical char-
acteristics in human populations. To this end, statisticians invented a quantity called
the correlation coef cient as a way of describing how closely related two physical
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characteristics were. The first published correlation coefficient was due to the English
statistician Sir Francis Galton, who in 1888 measured the heights and forearm lengths
of 348 adult men. (Actually, he measured the distance from the elbow to the tip of the
middle finger, which is called a cubit.) If we denote the height of the i th man by xi , and
the length of his forearm by yi , then Galton’s data consist of 348 ordered pairs (xi , yi ).
Figure 7.1 presents a simulated re-creation of these data, based on a table constructed
by Galton.
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FIGURE 7.1 Heights and forearm lengths of 348 men.

The points tend to slope upward and to the right, indicating that taller men tend to
have longer forearms. We say that there is a positive association between height and fore-
arm length. The slope is approximately constant throughout the plot, indicating that the
points are clustered around a straight line. The line superimposed on the plot is a special
line known as the least-squares line. It is the line that fits the data best, in a sense to be de-
scribed in Section 7.2. We will learn how to compute the least-squares line in Section 7.2.

Figure 7.2 presents the results of a study of the relationship between the mean
daily temperature and the mean daily humidity at a site near Riverside, California,
during a recent winter. Again the points are clustered around the least-squares line. The
line has a negative slope, indicating that days with higher humidity tend to have lower
temperatures.

The degree to which the points in a scatterplot tend to cluster around a line reflects the
strength of the linear relationship between x and y. The visual impression of a scatterplot
can be misleading in this regard, because changing the scale of the axes can make the
clustering appear tighter or looser. For this reason, we define the correlation coef cient ,
which is a numerical measure of the strength of the linear relationship between two
variables. The correlation coefficient is usually denoted by the letter r. There are several
equivalent formulas for r . They are all a bit complicated, and it is not immediately
obvious how they work. We will present the formulas, then show how they work.

Let (x1, y1), . . . , (xn, yn) represent n points on a scatterplot. To compute the cor-
relation, first compute the means and standard deviations of the xs and ys, that is,
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FIGURE 7.2 Humidity (in percent) and temperature (in ◦C) for days in a recent winter
in Riverside, California.

x , y, sx , and sy . Then convert each x and y to standard units, or, in other words, compute
the z-scores: (xi − x)/sx , (yi − y)/sy . The correlation coefficient is the average of the
products of the z-scores, except that we divide by n − 1 instead of n:

r = 1

n − 1

n∑
i=1

(
xi − x

sx

) (
yi − y

sy

)
(7.1)

We can rewrite Equation (7.1) in a way that is sometimes useful. By substituting√∑n
i=1(xi − x)2/(n − 1) for sx and

√∑n
i=1(yi − y)2/(n − 1) for sy , we obtain

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(7.2)

By performing some algebra on the numerator and denominator of Equation (7.2),
we arrive at yet another equivalent formula for r :

r =
∑n

i=1 xi yi − nx y√∑n
i=1 x2

i − nx2
√∑n

i=1 y2
i − ny2

(7.3)

Equation (7.3) is often the easiest to use when computing by hand.
In principle, the correlation coefficient can be calculated for any set of points. In

many cases, the points constitute a random sample from a population of points. In these
cases the correlation coefficient is often called the sample correlation, and it is an
estimate of the population correlation. (Population correlation was discussed formally
in Section 2.6; intuitively, you may imagine the population to consist of a large finite
collection of points, and the population correlation to be the quantity computed using
Equation (7.2) on the whole population, with sample means replaced by population
means.) The sample correlation can be used to construct confidence intervals and perform
hypothesis tests on the population correlation; these will be discussed later in this section.
We point out that the correlation coefficient can also be used to measure the strength of
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a linear relationship in many cases where the points are not a random sample from a
population; see the discussion of the coefficient of determination in Section 7.2.

It is a mathematical fact that the correlation coefficient is always between −1
and 1. Positive values of the correlation coefficient indicate that the least-squares line
has a positive slope, which means that greater values of one variable are associated with
greater values of the other. Negative values of the correlation coefficient indicate that the
least-squares line has a negative slope, which means that greater values of one variable
are associated with lesser values of the other. Values of the correlation coefficient close
to 1 or to −1 indicate a strong linear relationship; values close to 0 indicate a weak linear
relationship. The correlation coefficient is equal to 1 (or to −1) only when the points in
the scatterplot lie exactly on a straight line of positive (or negative) slope, in other words,
when there is a perfect linear relationship. As a technical note, if the points lie exactly
on a horizontal or a vertical line, the correlation coefficient is undefined, because one of
the standard deviations is equal to zero. Finally, a bit of terminology: Whenever r �= 0,
x and y are said to be correlated. If r = 0, x and y are said to be uncorrelated.

The correlation between height and forearm length in Figure 7.1 is 0.80. The cor-
relation between temperature and humidity in Figure 7.2 is −0.46. Figures 7.3 and 7.4
(pages 509 and 510) present some examples of scatterplots with various correlations. In
each plot, both x and y have mean 0 and standard deviation 1. All plots are drawn to the
same scale.

How the Correlation Coefficient Works
Why does the formula (Equation 7.1) for the correlation coefficient r measure the strength
of the linear association between two variables? Figure 7.5 (page 511) illustrates how
the correlation coefficient works. In this scatterplot, the origin is placed at the point of
averages (x, y). Therefore, in the first quadrant, the z-scores (xi − x)/sx and (yi − y)/sy

are both positive, so their product is positive as well. Thus each point in the first quadrant
contributes a positive amount to the sum in Equation (7.1). In the second quadrant, the
z-scores for the x coordinates of the points are negative, while the z-scores for the y
coordinates are positive. Therefore the products of the z-scores are negative, so each
point in the second quadrant contributes a negative amount to the sum in Equation (7.1).
Similarly, points in the third quadrant contribute positive amounts, and points in the
fourth quadrant contribute negative amounts. Clearly, in Figure 7.5 there are more points
in the first and third quadrants than in the second and fourth, so the correlation will be
positive. If the plot had a negative slope, there would be more points in the second and
fourth quadrants, and the correlation coefficient would be negative.

The Correlation Coefficient Is Unitless
In any sample x1, . . . , xn , the mean x and the standard deviation sx have the same units
as x1, . . . , xn . For this reason the z-scores (xi − x)/sx are unitless. Since the correlation
coefficient r is the average of products of z-scores, it too is unitless. This fact is crucial
to the usefulness of r . For example, the units for the x and y coordinates in Figure 7.1
are both inches, while the corresponding units in Figure 7.2 are percent and degrees
Celsius. If the correlation coefficients for the two plots had different units, it would
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FIGURE 7.3 Examples of various levels of positive correlation.
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FIGURE 7.4 Examples of various levels of negative correlation.
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FIGURE 7.5 How the correlation coefficient works.

be impossible to compare their values to determine which plot exhibited the stronger
linear relationship. But since the correlation coefficients have no units, they are directly
comparable, and we can conclude that the relationship between heights of men and
their forearm lengths in Figure 7.1 is more strongly linear than the relationship between
temperature and humidity in Figure 7.2.

Another crucial property of the correlation coefficient is that it is unaffected by the
units in which the measurements are made. For example, imagine that in Figure 7.1 the
heights of the men were measured in centimeters rather than inches. Then each xi would
be multiplied by 2.54. But this would cause x and sx to be multiplied by 2.54 as well, so
the z-scores (xi − x)/sx would be unchanged, and r would be unchanged as well. In a
more fanciful example, imagine that each man stood on a platform 2 inches high while
being measured. This would increase each xi by 2, but the value of x would be increased
by 2 as well. Thus the z-scores would be unchanged, so the correlation coefficient would
be unchanged as well. Finally, imagine that we interchanged the values of x and y, using
x to represent the forearm lengths, and y to represent the heights. Since the correlation
coefficient is determined by the product of the z-scores, it does not matter which variable
is represented by x and which by y.

Summary
The correlation coefficient remains unchanged under each of the following
operations:

■ Multiplying each value of a variable by a positive constant.

■ Adding a constant to each value of a variable.

■ Interchanging the values of x and y.

Figure 7.6 (page 512) presents plots of mean temperatures for the months of April
and October for several U.S. cities. Whether the temperatures are measured in ◦C or ◦F,
the correlation is the same. This is because converting from ◦C to ◦F involves multiplying
by 1.8 and adding 32.
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FIGURE 7.6 Mean April and October temperatures for several U.S. cities. The corre-
lation coefficient is 0.96 for each plot; the choice of units does not matter.

The Correlation Coefficient Measures Only Linear Association
An object is fired upward from the ground with an initial velocity of 64 ft/s. At each of
several times x1, . . . , xn , the heights y1, . . . , yn of the object above the surface of the
earth are measured. In the absence of friction, and assuming that there is no measure-
ment error, the scatterplot of the points (x1, y1), . . . , (xn, yn) will look like Figure 7.7.
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FIGURE 7.7 The relationship between the height of a free-falling object with a positive
initial velocity and the time in free fall is quadratic. The correlation is equal to 0.
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