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a. Find the value of y so that r = 1.

b. Find the value of y so that r = 0.

c. Find the value of y so that r = 0.5.

d. Find the value of y so that r = −0.5.

e. Give a geometric argument to show that there is
no value of y for which r = −1.

7.2 The Least-Squares Line

When two variables have a linear relationship, the scatterplot tends to be clustered around
a line known as the least-squares line (see Figures 7.1 and 7.2 in Section 7.1). In this
section we will learn how to compute the least-squares line and how it can be used to
draw conclusions from data.

We begin by describing a hypothetical experiment. Springs are used in applications
for their ability to extend (stretch) under load. The stiffness of a spring is measured by
the “spring constant,” which is the length that the spring will be extended by one unit of
force or load.1 To make sure that a given spring functions appropriately, it is necessary
to estimate its spring constant with good accuracy and precision.

In our hypothetical experiment, a spring is hung vertically with the top end fixed,
and weights are hung one at a time from the other end. After each weight is hung, the
length of the spring is measured. Let x1, . . . , xn represent the weights, and let li represent
the length of the spring under the load xi . Hooke’s law states that

li = β0 + β1xi (7.8)

where β0 is the length of the spring when unloaded and β1 is the spring constant.
Let yi be the measured length of the spring under load xi . Because of measurement

error, yi will differ from the true length li . We write

yi = li + εi (7.9)

where εi is the error in the i th measurement. Combining (7.8) and (7.9), we obtain

yi = β0 + β1xi + εi (7.10)

In Equation (7.10) yi is called the dependent variable, xi is called the independent
variable, β0 and β1 are the regression coef cients , and εi is called the error.
Equation (7.10) is called a linear model.

Table 7.1 (page 524) presents the results of the hypothetical experiment, and Fig-
ure 7.9 (page 524) presents the scatterplot of y versus x . We wish to use these data to
estimate the spring constant β1 and the unloaded length β0. If there were no measurement
error, the points would lie on a straight line with slope β1 and intercept β0, and these

1 The more traditional definition of the spring constant is the reciprocal of this quantity, namely, the force
required to extend the spring one unit of length.
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TABLE 7.1 Measured lengths of a spring under various loads

Weight (lb) Measured Length (in.) Weight (lb) Measured Length (in.)
x y x y

0.0 5.06 2.0 5.40
0.2 5.01 2.2 5.57
0.4 5.12 2.4 5.47
0.6 5.13 2.6 5.53
0.8 5.14 2.8 5.61
1.0 5.16 3.0 5.59
1.2 5.25 3.2 5.61
1.4 5.19 3.4 5.75
1.6 5.24 3.6 5.68
1.8 5.46 3.8 5.80
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FIGURE 7.9 Plot of measured lengths of a spring versus load.

quantities would be easy to determine. Because of measurement error, β0 and β1 cannot
be determined exactly, but they can be estimated by calculating the least-squares line.

Figure 7.10 presents the scatterplot of y versus x with the least-squares line super-
imposed. We write the equation of the line as

y = β̂0 + β̂1x (7.11)

The quantities β̂0 and β̂1 are called the least-squares coef cients . The coefficient β̂1,
the slope of the least-squares line, is an estimate of the true spring constant β1, and the
coefficient β̂0, the intercept of the least-squares line, is an estimate of the true unloaded
length β0.
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FIGURE 7.10 Plot of measured lengths of a spring versus load. The least-squares line
y = β̂0 + β̂1x is superimposed. The vertical distance from a data point (xi , yi ) to the
point (xi , ŷi ) on the line is the i th residual ei . The least-squares line is the line that
minimizes the sum of the squared residuals.

The least-squares line is the line that fits the data “best.” We now define what we
mean by “best.” For each data point (xi , yi ), the vertical distance to the point (xi , ŷi ) on
the least-squares line is ei = yi − ŷi (see Figure 7.10). The quantity ŷi = β̂0 + β̂1xi

is called the  tted value, and the quantity ei is called the residual associated with the
point (xi , yi ). The residual ei is the difference between the value yi observed in the data
and the fitted value ŷi predicted by the least-squares line. This is the vertical distance
from the point to the line. Points above the least-squares line have positive residuals, and
points below the least-squares line have negative residuals. The closer the residuals are
to 0, the closer the fitted values are to the observations and the better the line fits the data.
We define the least-squares line to be the line for which the sum of the squared residuals∑n

i=1 e2
i is minimized. In this sense, the least-squares line fits the data better than any

other line.
In the Hooke’s law example, there is only one independent variable (weight), since

it is reasonable to assume that the only variable affecting the length of the spring is the
amount of weight hung from it. In other cases, we may need to use several independent
variables. For example, to predict the yield of a certain crop, we might need to know
the amount of fertilizer used, the amount of water applied, and various measurements
of chemical properties of the soil. Linear models like Hooke’s law, with only one inde-
pendent variable, are known as simple linear regression models. Linear models with
more than one independent variable are called multiple regression models. This chapter
covers simple linear regression. Multiple regression is covered in Chapter 8.



Navidi-1820036 book November 16, 2009 8:31

526 CHAPTER 7 Correlation and Simple Linear Regression

Computing the Equation of the Least-Squares Line
To compute the equation of the least-squares line, we must determine the values for the
slope β̂1 and the intercept β̂0 that minimize the sum of the squared residuals

∑n
i=1 e2

i .
To do this, we first express ei in terms of β̂0 and β̂1:

ei = yi − ŷi = yi − β̂0 − β̂1xi (7.12)

Therefore β̂0 and β̂1 are the quantities that minimize the sum

S =
n∑

i=1

e2
i =

n∑
i=1

(yi − β̂0 − β̂1xi )
2 (7.13)

These quantities are

β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

(7.14)

β̂0 = y − β̂1x (7.15)

Derivations of these results are provided at the end of this section.

Computing Formulas
The quantities

∑n
i=1(xi − x)2 and

∑n
i=1(xi − x)(yi − y) need to be computed in order

to determine the equation of the least-squares line, and as we will soon see, the quantity∑n
i=1(yi − y)2 needs to be computed in order to determine how well the line fits the data.

When computing these quantities by hand, there are alternate formulas that are often
easier to use. They are given in the following box.

Computing Formulas
The expressions on the right are equivalent to those on the left, and are often
easier to compute:

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 (7.16)

n∑
i=1

(yi − y)2 =
n∑

i=1

y2
i − ny2 (7.17)

n∑
i=1

(xi − x)(yi − y) =
n∑

i=1

xi yi − n x y (7.18)

Example
7.6 Using the Hooke’s law data in Table 7.1, compute the least-squares estimates of

the spring constant and the unloaded length of the spring. Write the equation of the
least-squares line.
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Solution
The estimate of the spring constant is β̂1, and the estimate of the unloaded length is
β̂0. From Table 7.1 we compute:

x = 1.9000 y = 5.3885

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 = 26.6000

n∑
i=1

(xi − x)(yi − y) =
n∑

i=1

xi yi − n x y = 5.4430

Using Equations (7.14) and (7.15), we compute

β̂1 = 5.4430

26.6000
= 0.2046

β̂0 = 5.3885 − (0.2046)(1.9000) = 4.9997

The equation of the least-squares line is y = β̂0 +β̂1x . Substituting the computed
values for β̂0 and β̂1, we obtain

y = 4.9997 + 0.2046x

Using the equation of the least-squares line, we can compute the fitted values ŷi =
β̂0 +β̂1xi and the residuals ei = yi − ŷi for each point (xi , yi ) in the Hooke’s law data
set. The results are presented in Table 7.2 (page 528). The point whose residual is shown
in Figure 7.10 is the one where x = 2.2.

In the Hooke’s law example, the quantity β0 + β1x represents the true length of the

spring under a load x . Since β̂0 and β̂1 are estimates of the true values β0 and β1, the
quantity ŷ = β̂0 + β̂1x is an estimate of β0 + β1x . Examples 7.7 and 7.8 illustrate this.

Example
7.7 Using the Hooke’s law data, estimate the length of the spring under a load of 1.3 lb.

Solution
In Example 7.6, the equation of the least-squares line was computed to be y =
4.9997 + 0.2046x . Using the value x = 1.3, we estimate the length of the spring
under a load of 1.3 lb to be

ŷ = 4.9997 + (0.2046)(1.3) = 5.27 in.
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TABLE 7.2 Measured lengths of a spring under various loads, with fitted values and
residuals

Measured Fitted Measured Fitted
Weight Length Value Residual Weight Length Value Residual

x y ŷ e x y ŷ e

0.0 5.06 5.00 0.06 2.0 5.40 5.41 −0.01
0.2 5.01 5.04 −0.03 2.2 5.57 5.45 0.12
0.4 5.12 5.08 0.04 2.4 5.47 5.49 −0.02
0.6 5.13 5.12 0.01 2.6 5.53 5.53 −0.00
0.8 5.14 5.16 −0.02 2.8 5.61 5.57 0.04
1.0 5.16 5.20 −0.04 3.0 5.59 5.61 −0.02
1.2 5.25 5.25 0.00 3.2 5.61 5.65 −0.04
1.4 5.19 5.29 −0.10 3.4 5.75 5.70 0.05
1.6 5.24 5.33 −0.09 3.6 5.68 5.74 −0.06
1.8 5.46 5.37 0.09 3.8 5.80 5.78 0.02

Example
7.8 Using the Hooke’s law data, estimate the length of the spring under a load of 1.4 lb.

Solution
The estimate is ŷ = 4.9997 + (0.2046)(1.4) = 5.29 in.

In Example 7.8, note that the measured length at a load of 1.4 was 5.19 in. (see
Table 7.2). But the least-squares estimate of 5.29 in. is based on all the data and is more
precise (has smaller uncertainty). We will learn how to compute uncertainties for the
estimates ŷ in Section 7.3.

The Estimates Are Not the Same as the True Values
It is important to understand the difference between the least-squares estimatesβ̂0 andβ̂1,
and the true values β0 and β1. The true values are constants whose values are unknown.
The estimates are quantities that are computed from the data. We may use the estimates
as approximations for the true values.

In principle, an experiment such as the Hooke’s law experiment could be repeated
many times. The true values β0 and β1 would remain constant over the replications of the
experiment. But each replication would produce different data, and thus different values

of the estimates β̂0 and β̂1. Therefore β̂0 and β̂1 are random variables, since their values
vary from experiment to experiment. To make full use of these estimates, we will need
to be able to compute their standard deviations. We will discuss this topic in Section 7.3.

The Residuals Are Not the Same as the Errors
A collection of points (x1, y1), . . . , (xn, yn) follows a linear model if the x and y coordi-
nates are related through the equation yi = β0 + β1xi + εi . It is important to understand
the difference between the residuals ei and the errors εi . Each residual ei is the difference
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yi − ŷi between an observed, or measured, value yi and the fitted value ŷi = β̂0 + β̂1xi

estimated from the least-squares line. Since the values yi are known and the values ŷi

can be computed from the data, the residuals can be computed. In contrast, the errors
εi are the differences between the yi and the values β0 + β1xi . Since the true values
β0 and β1 are unknown, the errors are unknown as well. Another way to think of the
distinction is that the residuals are the vertical distances from the observed values yi to
the least-squares line ŷ = β̂0 + β̂1x , and the errors are the distances from the yi to the
true line y = β0 + β1x .

Summary
Given points (x1, y1), . . . , (xn, yn):

■ The least-squares line is ŷ = β̂0 + β̂1x .

■ β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

■ β̂0 = y − β̂1x

■ The quantities β̂0 and β̂1 can be thought of as estimates of a true slope β1

and a true intercept β0.

■ For any x , ŷ = β̂0 + β̂1x is an estimate of the quantity β0 + β1x .

Don't Extrapolate Outside the Range of the Data
What if we wanted to estimate the length of the spring under a load of 100 lb? The
least-squares estimate is 4.9997 + (0.2046)(100) = 25.46 in. Should we believe this?
No. None of the weights in the data set were this large. It is likely that the spring would
be stretched out of shape, so Hooke’s law would not hold. For many variables, linear
relationships hold within a certain range, but not outside it. If we extrapolate a least-
squares line outside the range of the data, therefore, there is no guarantee that it will
properly describe the relationship. If we want to know how the spring will respond to a
load of 100 lb, we must include weights of 100 lb or more in the data set.

Summary
Do not extrapolate a fitted line (such as the least-squares line) outside the range
of the data. The linear relationship may not hold there.

Don't Use the Least-Squares Line When the Data Aren't Linear
In Section 7.1, we learned that the correlation coefficient should be used only when the
relationship between x and y is linear. The same holds true for the least-squares line.
When the scatterplot follows a curved pattern, it does not make sense to summarize
it with a straight line. To illustrate this, Figure 7.11 (page 530) presents a plot of the
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