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Then if we don’t know about the above difficulty, we can proceed, with the same above Laplace 
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 − doesn’t exist. This is an obvious accepted conclusion. Since the important necessary condition for 

( ) → ( ) =

Abel’s integral Equation

Use the Laplace transform to solve Abel’s integral equation
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which is solution of Abel’s equation.

The method to solve Abel’s problem as Volterra equation of first kind, seems to flow
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, we remind how integration is “smoothing process” while differentiation, as the inverse 
operation of integration, would uncover the “rough spots” (discontinuities). In our example with 
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we may only get useless inaccurate data for it. Such situations are described by “a small change in the 
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Simpson’s Quadrature rule:

If N is even, the Simpson’s Q
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( ) = + . Find numerical results by using repeated Simpson’s quadr

In above example we applied an application of repeated Simpson’s quadrature rule for 
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’s quadrature rule.

➢ 
➢ 


