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Chapter 1
An Overview of Biofuel

Muhammad Arshad, Muhammad Anjum Zia, Farman Ali Shah
and Mushtaq Ahmad

Abstract Fossil fuels applications are linked with current widely held environ-
mental issues. The decline of these fuels resources with environmental penalties has
compelled for substitutes and usage of renewable biofuel as energy sources; has
gained a significant importance in last two decades. Production of biodiesel, biogas
and bioethanol from various feedstock, several kinds of wastes, many types of
biomass and agricultural residues, is ecological viable and sustainable option. The
involvement of biofuel in worldwide transportation fuels seems to be revolving
about 5% over the next decade. But, many studies put forward that biofuel may
share up to a one fourth of transport fuel supplies by 2050. In the first part of the
chapter, advantages and applications of mostly used biofuel is presented. The
second part of the chapter keeps concepts about biodiesel. Biogas production and
composition has been addressed in third portion. Finally, the production of bioe-
thanol from different feedstock has been discussed. Instability of fossil fuels prices
in last decade and environment concerns has increased biofuel production many
folds. Such a fast growth has been resulted controversial and raised some concerns
over potential water use in production of biofuel.
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1.1 Introduction

Presently, three major issues are in front of human beings: hunger, the lack of
energy and the deterioration of the environment (Popp et al. 2014). It is obligatory
to fight with all the three vehemence simultaneously, because any one of these is
capable to extinct out our civilization (Escobar et al. 2009). The ease of access to
energy is the basic driving force behind the socio-economic progress and the vital
element to sustain human’s current elevated standard of living (Walker et al. 2016;
Arshad and Ahmed 2016). Globally consumption of energy has been almost
doubled up in recent times (Bentley 2016) and fossil fuels share more than 80%
(Pfenninger and Keirstead 2015). When we talk about energy, it is clear to each and
every person that its saving is the best attitude to be privileged by minimizing
irrational use and enhancing the utilization efficiency (Abdmouleh et al. 2015) as
fossil fuel reservoirs are depleting fast (Hook et al. 2014). Up till now human’s
energy requirements has been met by the fossil fuels (coal; oil; gas) since many
decades. Alternative cheap and environment friendly energy is the hot issue in
today’s world. Fossil fuels account for over 80.3% of the primary energy consumed
in the world, and 57.7% of that amount is used in the transport sector (Escobar et al.
2009). Burning of conventional fuels results in the harmful emissions of greenhouse
gases such as carbon dioxide (CO2), nitrogen oxide (NOx), volatile organic com-
pounds (VOC) and hydrocarbons (HC); incremental for the climate changes
(Chavez-Baeza and Sheinbaum-Pardo 2014; Friedlingstein et al. 2014; Reuter et al.
2014). Although such fuels give the best cost/benefit ratio; but at the same damage
the environment. Fossil based diesel is an essential fuel for running vehicles, power
plants and motor engines in the transportation, agricultural and industrial sectors
(Emanuel and Gomes 2014; Orsi et al. 2016) and remained the most merchandising
commodity among primary products trade in 2010 (Janaun and Ellis 2010).
Transportation sector spent more than 30% of the energy supply globally, in which
above 80% is by the road transport (Holmberg and Erdemir 2015). Worldwide
almost 60% oil supply is consumed by this sector (Bilgen 2014), practically
operating on gasoline, diesel oil almost 97.6%, with a small amount from liquid
natural gas (Ramadhas et al. 2004; Murphy et al. 2013).

Now the world has been challenged by global warming problem (IPCC 2014).
The release of Carbon dioxide from the combustion of fossil fuels, the key con-
tributor to the process has generated the interest in promoting biofuel as one of the
leading renewable energy sources (Kumar et al. 2013). Table 1.1 shows the major
benefits of the biofuel. The sustainable production of biofuel is a valuable tool in
stemming climate change (Creutzig et al. 2015), boosting local economies, par-
ticularly in lesser-developed parts of the world (van Eijck et al. 2014a; van Eijck
et al. 2014b), and enhancing energy security for all (Jatrofuels 2012; Hughes et al.
2014). Advancement in renewable biofuel sources; cling to solution key of the dual
difficulties, running down the fossil fuel reservoirs and environmental pollution
(Smith 2013). Therefore, exploration of novel, renewable, environment friendly,
clean, reliable and economically feasible energy resources is serious requisite of the
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day (Dale et al. 2014). The discharge of greenhouse gases through the burning of
fossil fuels in transport sector alters the natural equilibrium of environment. The
world has now started to realize the problem and syndromes created by conven-
tional fuels (Karwat et al. 2014). To minimize the fossil fuels role, the exploration
of renewable substitutes, the biofuel like bioethanol, biogas and biodiesel are on
rise (Ho et al. 2014). Biofuel, biodiesel, biogas and bioethanol are currently
available in the market, already being used for various types of engines (Prasad
et al. 2007; Demirbas 2008; Janaun and Ellis 2010; Shahid and Jamal 2011; Geczi
et al. 2015; Malakhova et al. 2015; Choudhary et al. 2017).

The “bio” in biofuel refers to crop and wood-based raw materials such as
molasses, rice husks, corn and wood waste, which are processed into fuel. For
developed countries, biofuel offer prospects for meeting their emission reduction
commitments under the Kyoto Protocol (de Alegría et al. 2016). For developing
countries, biofuel present a means to both reduce energy import bills as well as earn
precious foreign exchange (Khan 2007). Biofuel are produced from bio-origin
resources by thermochemical processes (Liu et al. 2008; Balat et al. 2009; De Kam
et al. 2009; Alonso et al. 2010; Sims et al. 2010; Ertas and Alma 2011) and
biochemical process (Amin 2009; Uddin et al. 2016; Shukla et al. 2017). Biomass is
reformed in thermo-chemical catalytic and non-catalytic processes such as pyrol-
ysis, gasification, liquefaction, supercritical fluid extraction, supercritical water
liquefaction to produce maximum energetic exploitable liquid and gaseous prod-
ucts. Biofuel include bioethanol, biodiesel and biogas produced through bio-
chemical path ways such as, alcoholic fermentation, anaerobic fermentation and
trans-esterification (Balat 2011a). Trans-esterification of vegetable oils, animal fats,
waste oils/fats, used oils/fats and microbial oils with methanol and to some extent
with ethanol/butanol results in biodiesel production (Hoekman et al. 2012; Arshad
et al. 2014a). In spite of the constant requirement of biodiesel production, the lack

Table 1.1 Major benefits of biofuels (Balat 2011a, b)

Commercial value Variety in fuel mix
More sustainable
Ability to create many rural jobs
Can increased the government revenue through taxes
Industrial investments (plant and equipment) will be increased
Farming/agricultural sector can be developed
Less international competition
Independence from imported petroleum

Climate change effects Reduction in release of greenhouse gases
Air pollution can be minimized
Easy for biodegradation
Better combustion efficiency
Better carbon sequestration

Indigenous impacts To achieve the domestic targets
More reliability in supply
Reduced utilization of fossil oils
Ready availability
Indigenous distribution

1 An Overview of Biofuel 3



of oil’s feedstock have become problematic and decrease the production of first
generation biodiesel as there was an almost two-fold increase in the price of con-
ventional plant oils (Choi et al. 2010). The reply was production of biodiesel from
“non-conventional oils” and with the aid of microorganisms capable of producing
intracellular lipids (Koberg et al. 2011) called as second generation biodiesel. The
third generation biodiesel is derived through atmospheric CO2 sequestration
(Thiyagarajan et al. 2017; Bhola et al. 2014).

Worldwide ethanol production is based upon petrochemical and biochemical
methods (Van Uytvanck et al. 2014). In the petrochemical method ethylene is
hydrated in the presence of mineral acids (Ren et al. 2015). The process is much
attractive, if the price of raw material remains low. But price comparison between
ethanol and ethylene, has displaced the method almost completely by the processes
depending on the treatment of biomass (Haro et al. 2013). Ethanol fermentation of
the glucose is the oldest technique and also used to produce alcoholic beverages
(Majchrowicz 2013). Agricultural based stuffs containing sugar, starch, and cellu-
lose are employed as raw material (Rothman et al. 2015). Normally the fermen-
tation process by the yeasts occurs at room temperature, anaerobically (Mielenz
2014). The general equation of the process is represented as,

C6H12O6 ! 2C2H5OHþ 2CO2

There arise two molecules of CO2 and ethanol for each molecule of the glucose
fermented (Sarris and Papanikolaou 2016). Industrial alcoholic fermentation pro-
cess normally halts as ethanol concentration approaches at 9–10% (Dai et al. 2014)
participating yeasts can be used in subsequent cycles of fermentation (Stanbury
et al. 2013). The ethanol yield from glucose is 88–95% (Luterbacher et al. 2014)
with some byproducts such as glycerin (3–5%) and acetic acid etc. (Onuki et al.
2016). Fermented mash is distilled (Borse and Sheth 2017) to increase the ethanol
concentration up to 94% (Mayer et al. 2015), bring it to the required marketability
(Duffield et al. 2015). Resultant bioethanol can be further purified through dehy-
dration process (Vázquez-Ojeda et al. 2013). Bioethanol in both forms hydrated and
dehydrated (also called absolute alcohol) is used as fuel in pure or blended with
gasoline (Foong et al. 2014). The production of bioethanol is accompanied by
serious economic and environmental benefits (Maroun and La Rovere 2014), since
ethanol as a fuel presents a high octane number (Leone et al. 2014), while even
small amounts of ethanol added into the gasoline can significantly increase the
octane number of the blend (Foong et al. 2014). Moreover, the higher oxygen
content improves the efficiency of the combustion (Rakopoulos et al. 2014). Also
green house gas emissions are generally considered to be reduced as ethanol burns
results in lower emission of carbon monoxide (CO), volatile organic compounds,
sulfur oxides, etc. in comparison with the burn of the typical fossil fuels (Dwivedi
et al. 2015).

Biogas is another mostly used fuel and its significance as renewal biofuel is well
recognized (Lee et al. 2014). It is produced during anaerobic digestion of
biodegradable organic materials (Ariunbaatar et al. 2014) and typically keeps
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approximately 60–65% methane (Divya et al. 2015). It can be used to offset part of
the energy requirement (Rahman et al. 2014). Biogas production, collection and
utilization methods have been gradually competent to improve the quality
(Havukainen et al. 2014). Energy recovery from biogas is developing into a suc-
cessful “waste/residues to bioenergy” technology (Gonzalez-Salazar et al. 2016).
Biogas is commonly used as fuel in the boilers, employed in combined heat and
power applications to electricity generation and to make steam (Wellinger et al.
2013; Poschl et al. 2010). Overall efficiency of biogas use can approach 80% if all
the recovered heat is used. The quantity and quality of gas produced during
anaerobic digestion depends on the feed characteristics. Several methods are
available to estimate methane generation from a waste stream during anaerobic
digestion. Knowing the chemical composition of the waste stream, the methane
production can be estimated (El-Mashad and Zhang 2010).

1.2 Global Interest in Biofuel

Biofuel have been well thought-out as supplement to fossil fuels for transportation
since the oil crises of 1973 and 1979 (Kalam and Masjuki 2002). Attention toward
biofuel has been resurged in the early 2000s due to heavy distresses about climate
change, depleting fossil oil reserves with fluctuations in price (Fogel 2007). More
than 40 countries have formulated their national policies to sustenance the biofuel
(Timilsina 2014). Table 1.2 shows the list of the countries that have set their targets
for the biofuel. Current fascinating biofuel production has burst an aggressive talk,
whether to support the policies and programs about biofuel production or not.
Because at one end the biofuel are promoted as a solution to climate change issues
and setting up better energy supply globally (Headey and Fan 2008; Tilman et al.
2009; Lynd and Woods 2011) while, at the other end, it is indicated that these are a
risk to food supply with stress on water supply on earth (Diouf 2007; Pimentel et al.
2009; Borras et al. 2010). Claims for reduction in green house gases discharge, (the
basic argue to support biofuel) have also been challenged (Searchinger et al. 2008;
Danielsen et al. 2009). Such discussions have lessened the earlier enthusiastic
support to biofuel.

1.2.1 Different Types of Biofuel Today

From a long list of biofuel only biodiesel, bioethanol and biogas are presently
produced as a fuel on an industrial scale (Antoni et al. 2007). These fuels make up
to more than 90% of the biofuel market (Demirbas 2009c, d). All biofuel have to
exhibit defined chemical and physical properties, meeting the demands of engine
application such as stability and predictable combustion at high pressures as well as
the demands of transportation such as safety and energy density. Table 1.3 shows

1 An Overview of Biofuel 5



various gaseous and liquid biofuel. Liquid biofuel can be stored, distributed, carried
and used as an energy source in cars, trucks, trains and planes without any difficulty
(Nigam and Singh 2011). Biogas is gaseous in nature and somewhat difficult to
transport. It requires a separate distribution infrastructure to be developed.

Liquid biofuel have to remain in a liquid state and pumpable at all temperatures
encountered. Further requirements on liquid biofuel are a high heat of combustion
value to reduce energy losses and costs during transportation and stability during
storage. Some longer chain alcohols like butanol have a heat of combustion suf-
ficiently high to allow for their use in high thrust-to-weight applications such as

Table 1.2 Liquid biofuels mandates and targets of selected countries globally (Arshad 2010)

Country Ethanol Biodiesel

Australia E6 B2

Argentina E5 B7

Belgium E4 B4

Bolivia E10 B20 by 2015

Brazil E18-E25 B5

Canada E5 B2

China E10

Colombia E10 B20

Costa Rica E7 B20

Dominican Republic E15 B2

EU 10% renewable in transport (2020)

Ethiopia E10

Finland E5.75 B5.75

Germany E10

India E5; E20 (2017) B20 (2017)

Indonesia E15 B20

Italy E5 B5

Jamaica E10 B5

Malaysia B5

Malawi E20

Mozambique E10 B5

Te Netherland E4 B4

Norway B3.5

Pakistan B5

Panama E10

Paraguay E18-E24 B5

Peru E7.8 B5

Philippines E10 B2

South Africa 2% of transport energy

South Korea B2.5

Thailand E10 B3

6 M. Arshad et al.



airplanes (Yanai et al. 2015). Safe and environment friendly storage, vapour
pressure and ignition temperature are important factors.

1.2.2 Economics of Biofuel

The economics of biofuel is majorly determined by the value of the feedstock used
for their production (Elbehri et al. 2013). For first-generation biofuel raw material
price accounts approximately between 60 and 90% of the total production (Ho et al.
2014; Tan et al. 2013). The price competitiveness of biofuel to petroleum coun-
terparts varies between countries and with the feedstock used (Wesseler and Drabik
2016). The “factory gate” price of Brazilian ethanol remained lesser than the “re-
finery gate” price of gasoline in last decade (Onal and Nunez 2014). Both Brazilian
and US ethanol remains expensive than gasoline on an energy equivalent basis.
Sugarcane derived Brazilian ethanol is better competitive than US ethanol, but is
still usually more expensive than gasoline. In case of biodiesel, it is more expensive
than diesel, even though a liter of biodiesel provides around 14% less mileage than
diesel. While the biogas is much completive due to unavailability of natural gas
everywhere (Alam and Hasan 2017).

Brazilian ethanol production cost remains lower than for US corn or European
wheat ethanol, due to use of sugarcane bagasse in boilers; to come across on site
steam and power demand. Moreover the production of biogas and its utilization in
electricity can further lower the production cost. Ethanol production cost from
wheat grains can be lowered if the impact value of by-products is considered.
Likewise, biodiesel production cost will be fall, if main byproduct, glycerin can
fetch a market value, which is utilized in the beverages, food and pharmaceuticals
industries (Jonker et al. 2015; Losordo et al. 2016). To produce ethanol from
sugarcane molasses is cheaper than from sugarcane itself (Castañeda-Ayarza and

Table 1.3 The biofuels with possible production route, their use and the applications to engines
(Antoni et al. 2007)

Biofuel Process Status Engine application

Biomethanol Thermochemical/microbial Pilot plant [pure/blend]
MTBE/biodiesel

Bioethanol Microbial Industrial Pure/blend

Biobutanol Microbial Pilot
plant/Industrial

Pure/blend

ETBE Chemical/Microbial Industrial blend

Biomethane Microbial Industrial Pure/blend

Biohydrogen Microbial Laboratory Pure/blend

Pure
biodiesel

Physical/chemical
(enzymatic)

Industrial
(laboratory)

Pure/blend

1 An Overview of Biofuel 7



Cortez 2016). Biodiesel from non-food seeds like jatropha largess an interesting,
alternative if yields can be improved to commercial level sand if sufficient low-cost
labour can be assembled for the highly labour intensive seed collection process
(Carriquiry et al. 2011). The capital costs of second-generation biofuel account for a
higher portion, while the feedstock costs are significantly lower as compared to
first-generation biofuel (van Eijck et al. 2014). Overall production costs from
micro-algae appear to be higher presently, but could fall in the future as well as
technology improves and production expands (Kern et al. 2017).

Biofuel, like fossil fuels, come in a number of forms and meet a number of
different energy needs. The present book chapter is an introduction of the major
globally used biofuel, biodiesel, bioethanol and biogas. Each type of the biofuel has
been explained well.

1.3 Biodiesel

Biodiesel is a mono-alkyl ester of fatty acids from vegetable oil and is presently
produced by catalytically trans-esterification process with petro-chemically derived
methanol (Ma and Hanna 1999). The glycerol produced during trans-esterification
creates a deposit problem in some areas. It could be fermented, e.g. to
1,3-propanediol and possibly to other products by metabolically engineered bacteria
(Calero et al. 2015) or to methane in biogas plants where it can be added in low
concentrations as co-substrate. Instead of using vegetable oil, microalgae could be
grown in photo-bioreactors for the production of suitable oil. Because of their high
oil productivity, the specific demand of land area needed is strongly reduced by this
concept in contrast to oil from plants (Chisti 2007). Mono-alkyl esters of long chain
fatty acids originated from renewable lipid sources such as plant oils, animal fats or
algal sources for use in compression ignition (diesel) engines’’ are called as bio-
diesel (Kafuku and Mbarawa 2010; Satyanarayana and Muraleedharan 2011;
Shahid and Jamal 2011; Ghazali et al. 2015). Biodiesel can be superior replacer of
conventional diesel as it based on oxygenated esters of long chain fatty (Ong et al.
2011; Hoekman et al. 2012).

Global warming issue can be well managed with the use of biodiesel in trans-
portation sector. Biodiesel is highly biodegradable (Hossain and AlEissa 2016) and
has minimal toxicity and its ignition in diesel engines can withdraws the total
unburned hydrocarbons (HC) and polycyclic aromatic hydrocarbons (PAHs)
(Hoekman and Robbins 2012). İt can replace diesel fuel use in boilers and internal
combustion engines without major modifications (Bergthorson and Thomson 2015)
and can significantly reduce the particulate matter and carbon monoxide emission
(Basha et al. 2009). Emissions of sulphates, aromatic compounds and other
chemical substances, that are destructive to the environment are almost zero
(Popovicheva et al. 2015). High flash point, better lubrication, and high Ocetane
number with very close physical and chemical characteristics to those of fossil
diesel (Rashedul et al. 2015) allow its application as pure biodiesel, B100 or may be
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blended with fossil diesel fuel with minute technical adjustments (Basumatary
2015). Wolrdwide many countries such as Malaysia, United States of America,
Brazil, Germany and many other European states are using it due to its potential for
better safeguard the environment from hazards emissions and protect the human
health from potential or probable threats (Canakci et al. 2009; Cremonez et al.
2015; Johari et al. 2015; Knothe et al. 2015; Eryilmaz et al. 2016; Tsoutsos et al.
2016).

1.3.1 Biodiesel Feedstock

The wide range of feedstock for biodiesel production is available to sustain newly
emerging biodiesel industry. The availability of feedstock depends upon some
factors such as climate of the region, geographical locations, soil conditions and
agricultural practices of a country. Worldwide, more than 350 oil crops have been
identified as potential sources of biodiesel production (Bart et al. 2010). Presence of
oil percent and the yield per hectare are important parameters in feestock selection.
(Atabani et al. 2012; Tabatabaei et al. 2015) have reported estimated oil content and
yields of many biodiesel feedstock. Oil composition, type and ratio of fatty acids
present impact the fitness of oil as a raw material for biodiesel production
(Basumatary 2015). Alone feedstock denote 75% of the overall biodiesel produc-
tion cost (Ahmad et al. 2011; Atabaniet al. 2012). So, selection of the cheapest
feedstock is vital to reduce cost of biodiesel production cost. Generally, feedstock
of biodiesel production are classified into four major categories (Satyanarayana and
Muraleedharan 2011):

A. Edible plant oils
B. Non-edible plant oils
C. Waste or recycled oils
D. Animal and poultry fats

Some non-edible and edible oil sources used for biodiesel production have been
shown in Table 1.4. Applications of edible oils have generated lots of concerns
such as food versus fuel debate, creation of serious environmental problems such as
grave destruction to soils, deforestation and consumption of arable land/water
(Balat and Balat 2010; Balat 2011b; Deng et al. 2011). Edible oils become
un-feasible in the long term because of the expected growing gap between supply
and demand of such oils (Chapagain et al. 2009).

Non-edible oils can reduce the utilization of the edible oil for biodiesel pro-
duction. Non-edible oil resources are easily available in many parts of the world
especially wastelands that are not suitable for food crops, eliminate competition for
food, reduce deforestation rate, more environmentally friend, produce useful
by-products and they are very economical as compared to edible oils (Sarma et al.
2005; Chhetri et al. 2008; Gui et al. 2008; Murugesan et al. 2009; Sarin et al. 2009;
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Saravanan et al. 2010; Falasca et al. 2010; Kumar and Sharma 2011; Atabani et al.
2012; Banković-Ilić et al. 2012; Mofijur et al. 2013; Shirazi, et al. 2014; Haile
2014; Zhang et al. 2015). Table 1.5 shows some fat sources of animal origion with
relevant fatty acid composition.

Microalgae have emerged as third generation biodiesel feedstock. These are
photosynthetic microbes capable to convert sunlight, water and CO2 to algal bio-
mass, more efficiently as compared to conventional crops. High oil content, better
growth rates and productivity as compared to edible and non-edible feedstock make
microalgae as promising feedstock. Table 1.6 shows micro algal strains keeping
various quantities of oils that can be further processed to produce biodiesel. Up to
25 times higher yields than oil palm and 250 times than soybeans is achieved
through the algal cultivations (Sharma and Singh 2009; Singh and Singh 2010;
Ahmad et al. 2011).

Table 1.4 Some non-edible and edible oil sources used for biodiesel production

Source Oil yield (kg oil/ha) Oil yield (wt%) References

Non-edible oil
Jatropha 1590 Seed: 35–40

Kernel: 50–60
Gui et al. (2008)

Rubber seed 80–120 40–50 Ramadhas et al. (2005)

Castor 1188 53 Saka (2005)

Pongamiapinnata 225–2250 30–40 Karmee and Chadha (2005)

Edible oil
Soybean 375 20 Gui et al. (2008)

Palm 5000 20 Berchmans and Hirata
(2008)

Rapeseed 1000 37–50 Westbrook et al. (2011)

Table 1.5 Some animal sources of fat and their fatty acid compositions

% (By weight) Beef tallowa Chicken fatb Pork lardc Mutton fatd

Lauric acid (C12:0) – – – 0.2

Myristic acid (C14:0) 2.72 0.5 1.7 3

Palmitic acid (C16:0) 25.3 24 23.2 27

Palmitoleic acid (C16:1) 2.02 5.8 2.7 2

Stearic acid (C18:0) 34.7 5.8 10.4 24.1

Oleic acid (C18:1) 29.87 38.2 42.8 40.7

Linoleic acid (C18:2) 0.75 23.8 19.1 2

Linolenic acid (C18:3) – 1.9 64.7 –
aMa and Hanna (1999), bWyatt et al. (2005), cDias et al. (2008), dMutreja et al. (2011)
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1.3.2 Biodiesel Production Technologies

In last decade, biodiesel production is gone through fast technological improve-
ments in industries and academia. Higher production cost is the major drawback in
its commercialization. Various studies on the economic improvement of tech-
nologies and methods have been conducted in search of optimal conditions of
biodiesel production. The primary methods to make biodiesel are direct use and
blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and
trans-esterification (Ma and Hanna 1999). Trans-esterification process is the most
common method used in the biodiesel industry, in which vegetable oil or animal fat
and an alcohol (methanol, ethanol) react in the presence of a catalyst or without the
use of catalysts (Demirbas 2009a).

1.3.2.1 Direct Use and Blending of Oils

Application of vegetable oils as fuels stems around since 1900 when Dr. Rudolph
Diesel, firstly experienced Peanuts oil in his newly invented compression engine.
The direct applications of vegetable oils as fuel are problematic and have many
weak spots in diesel engines. Although it’s being researched comprehensively for
the previous few decades, but experimentation started for about hundred years.
Vegetable oils may be blended with diesel fuels to better the viscosity so as to make
solution of the problems linked with the use of pure vegetable oils (Koh and Ghazi
2011). Blending ratios of 1:10 to 2:10 vegetable oil to diesel fuel have been found
to be better rather than direct use of vegetable oils. Increased thickness due to high
viscosity, presence of acid components, higher free fatty acids ratio, with the gum
formation are some apparent teething troubles (Ma and Hanna 1999).

Table 1.6 Some microalgal strains capable for biodiesel production keeping oil contents (% dry
wt)

Microalga Oil content References

Botryococcus braunii 25–75 Metzger and Largeau (2005)

Chlorella sp. 28–32 Li et al. (2015)

Crypthecodiniumcohnii 20 Brennan and Owende (2010)

Cylindrotheca sp. 16–37 Meng et al. (2009)

Isochrysis sp. 25–33 Renaud et al. (1991)

Monallanthussalina N 20 Mata et al. (2010)

Nannochloris sp. 25–35 Gouveia and Oliveira (2009)

Nannochloropsis sp. 31–68 Brown et al. (2010)

Neochlorisoleoabundans 35–54 Popovich et al. (2012)

Nitzschia sp. 45–47 Demirbas and Demirbas (2011)

Schizochytrium sp. 50–77 Ratledge (2004)
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1.3.2.2 Micro-Emulsion of Oils

The formation of microemulsions is a potential solution for resolving the prob-
lematic high vegetable oil viscosity issue. A colloidal equilibrium dispersion that is
clear, stable with three components: an oil phase, an aqueous phase and a surfac-
tant, of optically isotropic fluid microstructures with dimensions generally in the
1–150 nm range formed spontaneously from two normally immiscible liquids and
one or more ionic or non-ionic amphiphiles (Fernandes et al. 2012) is called
micro-emulsion. Such fuels are also called ‘‘hybrid fuels” (Satyanarayana and
Muraleedharan 2009).

The solvents like methanol, ethanol and 1-butanol have been studied and
micro-emulsions with butanol, hexanol and octanol can meet the maximum vis-
cosity limitation for diesel engines (Oner and Altun 2009).

1.3.2.3 Pyrolysis of Oils

Conversion of one organic compound into some other substance using heat with or
without presence of a catalyst is called pyrolysis. Vegetable oil, animal fats, natural
fatty acids or methyl esters of fatty acids can be subjected to pyrolysis (Yusuf et al.
2011). Thermal cracking of triacylglycerol’s is much promising method for bio-
diesel production as it is very similar to petroleum refining (Maher and Bressler
2007). Liquid product fractions resulted through thermal decomposition of veg-
etable oils are closely approaching to characteristics of fossil diesel oil and reported
as suitable for diesel engines. Pyrolysis process can further divided into catalytic
and non-catalytic processes (Leung et al. 2010). Equipment/machinery used for
pyrolysis and thermal cracking is much expensive (Ma and Hanna 1999).

1.3.2.4 Trans-Esterification of Oils

The most used method for biodiesel production is trans-esterification of oils with
alcohol (methanol or butanol). Glycerin is major byproduct of this reaction. In the
first step, the triglycerides are changed into diglycerides, and diglycerides are
converted to monoglycerides and glycerol, yielding one methyl ester molecule from
each glyceride at each step (Ma and Hanna 1999). Most important process variables
are temperature, time, proportion of alcohol to oil, catalyst concentration, mixing
force (RPM) and type of feedstock used (Marchetti et al. 2007). As alcohols and
triglycerides are immiscible to generate a mixture of single phase, therefore surface
contact between these two reactants remains very low and causes the
trans-esterification reaction to proceed relatively slow. Presence of a catalysts
makes the surface contact better among the reactants; thus speed-up the reaction.
Henceforth, the researchers have been exploring alternatives that can solve the
problems (Demirbas 2009b).
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Catalytic biodiesel production The oils are transesterified by warming them
with an alcohol and a catalyst. If the catalyst remains in the same phase in which
reactants (liquid phase) throughout trans-esterification process, it is called as
homogeneous catalyst. When the catalyst remains in different phase to that of the
reactants, then it is called as heterogeneous catalyst (Zabeti et al. 2009). Application
of the appropriate catalyst is the vital to lower the biodiesel production cost.
Presently, commercial biodiesel is prepared by using homogenous catalyst. (Ragit
et al. 2011).

Homogeneous catalytic transestrification The homogenous catalysts used in
transesterification reactions are classified into basic and acidic catalysts. Basic type
catalysts used transestrification processes needs a very high purity of raw materials
with post reaction separation of catalyst, byproduct, and product. These conditions
increase the cost of biodiesel.

Heterogeneous catalytic trans-esterification Heterogeneous catalysts act in a
different phase from the reaction mixture in such type of trans-esterification. The
catalysts can be easily separate and reuse. Moreover use of heterogeneous catalyst
does not yield soap (Leu 2013). The heterogeneous catalytic systems of
trans-esterification put forward the exclusion of different steps like washing, sep-
aration of biodiesel and catalyst. Higher efficiency with better profitability is the key
features of the process.

Non-catalytic biodiesel production There are only two trans-esterification
processes in which no catalyst is employed. These are supercritical alcohol process
and BIOX process.

Supercritical alcohol trans-esterification In supercritical alcohol method,
instead of using catalysts, high pressure and temperature are applied to do the
trans-esterification reaction. Reaction becomes faster and conversion just occurs in
(50–95%) the first 10 min. The required temperature ranges from 250 to 400 °C
(Meher et al. 2006; Teo et al. 2014).

BIOX co-solvent trans-esterification As the oils are not well soluble in alco-
hols, so the rate of trans-esterification remains very slow. To solve the issue,
another tactic is being used in form of co-solvent which can solve both.
Tetrahydrofuran, has a boiling point much closer to methanol can solve the issue
(Kusdiana and Saka 2004).

1.3.3 Microdiesel

E. coli cells were metabolically engineered by introducing the pyruvate decar-
boxylase and alcohol dehydrogenase genes pdc and adhB, respectively, from
Zymomonas mobilis for abundant ethanol production. The gene atfA for an
unspecific acyltransferase from Acinetobacter baylyi was introduced to esterify
ethanol with the acyl moieties of CoA thioesters of fatty acids. If the cells are grown
aerobically in the presence of glucose as an energy and carbon source and of oleic
acid, ethyl oleate was the major product. However, de novo synthesized fatty acids
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were not used by the acyl transferase, which made the external addition of fatty
acids necessary. This indicates that considerable further development is needed.
However, a new concept of the microbiological production of biodiesel has been
shown with these experiments (Barney 2014).

Conversion of plant oil to biodiesel is a mature technology. However, microbial
contribution to the production process is close to zero at present. Inclusion of
biologically fermented ethanol and butanol will not pose technical problems. The
use of enzymes or biological systems in trans-esterification is to be developed. Most
diesel cars are now licensed to use a biodiesel diesel blend of up to 5% (v/v). The
conversion of a conventional diesel engine for pure biodiesel use is offered by many
companies and costs in Germany up to 1,500€ per car. The modified engine,
however, requires more frequent engine oil changes.

1.4 Biogas

The world is progressively more looking for the imperative nature of sustainable
development due to environmental concerns caused by the burning of fossil fuels.
Therefore joint research on energy and environment is growing day by day, in both
R&D and technology implementation level. Microbes convert organic matter into
biogas through a natural process called anaerobic digestion. The process naturally
occurs in marshes, landfills, wetlands, and also in the digestive tract of ruminants. It
is quite possible to collect biogas and can easily be utilized as an energy resource. It
can also yield valuable industrial products or byproducts. The value of biogas has
been risen up due to two causes: (i) for the reason that its liberation into the
atmosphere contributes principally to increase greenhouse gas volume (ii) its
energetic contents are high, so those make it valuable.

Biogas plants produce methane gas sustainably along with carbon dioxide from
plant biomass, which may come from organic household or industrial waste or from
specially grown energy plants (Divya et al. 2015; Mao et al. 2015). The general
composition of biogas and value of its components has been shown in Table 1.7.
The advantage of the biogas process is the option to use the polysaccharide con-
stituents of plant material to produce energy, such as electrical power and heat, in
relatively easy-to-manage and small industrial units. Alternatively, the gas can be
compressed after purification and enrichment and then fed to the gas grid or used as
a fuel in combustion engines or cars.

Its greatest advantage is the environmentally friend aspect of the technology,
which includes the potential for complete recycling of minerals, nutrients (phos-
phate etc.) and fiber material (for humification), which come from the fields and
return to the soil, playing a functional role by sustaining the soil’s vitality for future
plantation. The technology is currently mature, but there is plenty of room for
optimization, which will result in large high-tech production plants with integrated
utilization of by-products.
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1.4.1 Substrates for Biogas Production

Generally, biomass of any kind containing carbohydrates (Starch, cellulose and
hemicellulose), proteins and fats as core components can be employed for biogas
production. Following points are important for the selection of biomass for biogas
production (De Francisci et al. 2014).

• The composition of organic matter has to carefully chosen for fermentation
process.

• The potential of the organic matter for biogas formation should be as high as
possible.

• Selected substrate must be free from pathogens and other microbes which can
harm the fermentation process.

• Biogas composition has to be examined proper for further use.
• The fermentation residues may keep the suitable content to be applied it as

fertilizer.

A lot of substrates have been used for biogas production and reported in the
literature. In Table 1.8 a comprehensive list of different substrates utilized for
biogas production has been provided.

Cow manure is better substrate and is also useful for inoculation, manure from
other farm animals such as pigs, chickens and horses, fat from slaughter waste or
frying oil, organic household or garden waste, municipal solid waste and rotten
foodstuff is equally applicable for anaerobic digestion. Even organic waste from
hospitals containing paper and cotton, municipal sewage sludge, waste from agri-
culture or food production, organic-rich industrial waste water etc. can be used as
consumable substrate. Often, energy crops such as maize (whole plant including the
corn), clover, grass, young poplar and willow are especially grown for biogas
production and added purely or in mixture. To ensure a homogeneous substrate
quality throughout the year, the green plant material is usually stored as silage,

Table 1.7 General characteristics of the biogas produced through anaerobic digestion

Characteristics Corresponding values References

Composition 55–70% methane (CH4)
30–45% carbon dioxide (CO2)

Traces of other gases

Rasi et al. (2007)

Energy content 6.0–6.5 kWh m−3 Rao et al. (2010)

Explosion limits 6–12% biogas in air Kapdi et al. (2005)

Ignition temperature 650–750 °C Kolbitsch et al. (2008)

Critical pressure 75–89 bar Kapdi et al. (2005)

Critical temperature −82.5 °C Kapdi et al. (2005)

Normal density 1.2 kg m−3 Esteves et al. (2008)

Smell Rotten eggs smell Rasi et al. (2007)

Molar mass 16.043 kg kmol−1 Esteves et al. (2008)
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Table 1.8 Different feed stocks used for biogas production reported in literature

Substrate for biogas production References

Residuals from beverage production
Spent grain, fresh or ensilaged Malakhova et al. (2015), Wolters et al.

(2016)

Spent grain, dry

Apples pulp Géczi et al. (2015)

Apple mash Kafle and Kim (2013)

From fruits and vegetable waste Sagagi et al. (2009)

Animal waste
Slaughterhouse waste Ware and Power (2016), Fathya et al.

(2014)

Meat and bone meal Zarkadas et al. (2015)

Fat from the separator used ingelatine production Moeller and Görsch (2015)

Animal fat Martínez et al. (2016)

Blood Abdeshahian et al.(2016)

Greens, grass, cereals, vegetable wastes
Vegetable wastes Scano et al. (2014), Janczak et al. (2016)

Grass Rodriguez et al. (2017)

Hay Zhu et al. (2014)

Meadow grass, clover Kristensen et al. (2016)

Market wastes Sridevi et al. (2015)

Leaves of sugar beet Ohuchi et al. (2015)

Wheat bran Wolters et al. (2016)

Soybean Zhu et al. (2014)

Giant cane, cornsilages and pig slurry Luca et al. (2015)

Sugar beet cossettes and pig manure Aboudi et al. (2015)

Olivepomace and milk whey Battista et al. (2015)

Food waste and rice husk Haider et al. (2015)

Many flower, silvergrass and microalgae Li et al. (2015)

Sugar beet pulp silage and vinasse Zieminski and Kowalska-Wentel (2015)

Cow slurry, apple pulp and olive pomace Riggio et al. (2015)

Food waste and cattle manure Zarkadas et al. (2015)

Rice straw and cow manure Li et al. (2015a)

Rice straw and pig manure Li et al. (2015b)

Biodiesel waste glycerin and municipal wastewater
sludge

Razaviarani and Buchanan (2015)

Olive mill wastewater and liquid poultry manure Khoufi et al. (2015)

Sewage sludge and sugar beet pulp Montanes et al. (2015)

Pig manure and algae Astals et al. (2015)

Forage radish and dairy manure Belle et al. (2015)
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preferably by a process favoring homo fermentative lactobacilli to minimize carbon
loss (Gassen 2005). Biogas formation from plant fibres is generally a three-stage
process involving a different set of anaerobic and facultative anaerobic microor-
ganisms in each stage:

A. Hydrolysis of biomolecules
B. Acetogenesis: the production of acetic acid and carbon dioxide.
C. Methanogenesis with up to 70% (v/v) CH4 and 30% CO2 and the by-products

NH3 and H2S by slow-growing archaea, which are sensitive to acidification,
ammonia accumulation, low amounts of oxygen and other factors.

The bacterial community engaged in these three stages may be similar to those in
cows rumen (Einspanier et al. 2004) or wastewater treatment plants (Ariesyady
et al. 2007).

Further development of biogas technology is expected to increase production
efficiency. Presently, only up to a maximum of about 70% of the organic matter in
biomass is converted to CH4 and CO2. In order for this to increase, the hydrolysis
stage must be enhanced. The separation of the processes for hydrolysis and for
acetogenesis/methanogenesis allows for the application of different optimized
conditions in the two stages, such as pH and temperature adjustment. Aside from
the traditional mesophilic processes, thermophilic processes are being used more
frequently to speed up the reactions and especially to optimize biomass hydrolysis.
However, whereas in many industrial biogas plants the separation of the hydrolysis
stage has already been carried out, most agricultural biogas plants use the
single-stage technology.

Dried and desulfurized biogas is usually fuelled without CO2 separation into
stationary block heat and power plants connected to the biogas plants. Utilization of
the excess heat is rarely possible because farms are usually located far away from
residential or industrial areas where it could be used for domestic heating or
manufacturing processes. This is not a problem if biogas is compressed like
compressed natural gas stored in high-pressure cylinders and used in the engines of
urban co-generation plants. In addition, direct use in car combustion engines is
possible.

1.4.2 Composition of Biogas

Methane and carbon dioxide are major constituents of biogas with several impu-
rities. Its general characteristics have been listed in Table 1.7 already. Biogas
containing methane ratio above 45% is flammable. Influence of biogas components
on its quality has been shown in Table 1.9. It gives general idea about usual gas
constituents and their impact on the burning capacity of the biogas.
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1.4.2.1 Methane and Carbon Dioxide

Methane to carbon dioxide ratio in the biogas can be managed to some extent.
Following factors majorly effect:

• The presence of material rich in long chain hydrocarbon compounds having fat,
can enhance the biogas quality

• More liquid in the bioreactor can decrease the CO2 concentration in biogas as
the water keep dissolving the CO2, so reducing in the gas phase.

• Higher temperature during process of fermentation leads to low concentration of
CO2 dissolved in water.

• More CO2 is dissolved in water at higher pressures.

The content of hydrogen sulfide in biogas mostly depends on the process and the
type of waste used. Without a desulfurizing step, the concentration of H2S would
often exceeds 0.2% by volume.

Table 1.9 Typical components and impurities in biogas

Component Content
(volume)

Effect References

CO2 25–50% Lowers the calorific value
Increases the methane number and the
anti-knock properties of engines
Causes corrosion (low concentrated carbon
acid). If the gas is wet

Rasi et al.
(2007)

H2S 0–0.5% Damages alkali fuel cells
Corrosive effect in equipment and piping
systems (stress corrosion); many
manufacturers of engines therefore set an
upper limit of 0.05 by vol.%;
SO2 emissions after burners or H2S emissions
with imperfect combustion—upper limit 0.1 by
vol.%
Spoils catalysts

Soroushian
et al. (2006)

NH3 0–0.05% NOx emissions after burners damage fuel cells
Increases the anti-knock properties of engines

Burch and
Southward
(2000)

Water
vapors

1–5% Causes corrosion of equipment and piping
systems
Condensates damage instruments and plants
Risk of freezing of piping systems and nozzles

Kapdi et al.
(2005)

Siloxanes 0–
50 mg/m3

Act like an abrasive and damages engines Dewil et al.
(2006)
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1.4.3 Paybacks from Biogas Production

Biogas is a renewable energy source and has many applications. Several profits
have to be derived from the conversion of various substrates in a biogas plant:

• In many countries, governments subsidize the erection of biogas plants to give
the farmers an additional fuel source.

• Production of biogas from agricultural crops may maintain the structure of the
landscape.

• Left over agricultural residues that are no more wanted are frequently prone to
decomposition, but bioenergy can be generated.

• Landfill area can be minimized with the protection of the groundwater.
• Throwing away expenses of organic materials are reduced.
• Using plants as co-substrates increase the chances for recycling of the mineral

fertilizer.
• CO2 neutral production of energy is achieved.

1.5 Bioethanol

As the world population is increasing, the typical calorie consumption is on rise;
thus enhancing the pressure on production from rare arable land but simultaneously,
the energy requirement by developing nations is also increasing and the additional
fuel most likely will be demanded from alternative renewable sources such as
biofuel (Graham-Rowe 2011; Dutta et al. 2014).

In first generation ethanol production processes, readily available sugars or
starch are utilized. The ethanol produced is readily used in today’s engines. During
the process, CO2 is extracted from carbohydrates, which have a C/H/O ratio of
1:2:1 (Arshad et al. 2017). Ethanol, with its high (C + H) to O ratio, retains most of
the original energy content. Because cell can produce much less energy from this
anaerobic reaction than from oxidative respiration, it has to consume about ten
times the amount of substrate to gain the same amount of energy; 2–3 ATP com-
pared to 26–38 ATP in oxidative respiration, depending on the organism. This
higher turnover of substrate is an advantage for biotechnology. This anaerobic
fermentation also helps to avoid energy intensive aeration during industrial pro-
duction (Antoni et al. 2007).

1.5.1 Ethanol as Fuel in History

Since the humanity exists, the biofuel are in use over the history. Mankind had
relied on renewable energy resources like wood, windmills, water wheels and
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animals such as horses and oxen. Exploration of new energy resources was a major
driving force behind technological revolution. In the start of nineteenth century,
alcohols were over and over again reported as biofuel with the invention of ignition
engines using biofuel. Nikolaus August Otto used ethanol for his spark ignition
engine in the 1860s. Henry Ford also marketed his Model T, totally operating on
100% ethanol (Kovarik 1998). Ethanol production was widely abolished due to the
unbeatably low price of gasoline in the USA. Ethanol as a fuel was revived in the
1970s in Brazil where one of the largest bioethanol industries is located today. Like
modern crude oil refinery, the bio-industry for biofuel has a dual purpose in the
economy, as it is used as a supply of energy as well as basic chemicals (Zaborsky
1982). The upcoming “bio refinery” revitalizes the old tradition of a careful thrifty
economy and intends to make use of all energy and carbon stored in biomass,
feeding byproducts into secondary conversion process or refining them as fuel.

1.5.2 Ethanol Fermentation

Glycolysis is the series of reactions taking place entirely in the cytosol, is the
process of intracellular transformation of hexoses (glucose and fructose) into
pyruvate with the formation of ATP and NADH (Zamora 2009). In the beginning,
sugars are shifted inside the cell through facilitated diffusion (Weusthuis et al.
1994). Yeast cells keep many glucose transporters such as Gal2, Hxt1, Hxt2, Hxt3,
Hxt4, Hxt6 and Hxt7 (Maier et al. 2002). Firstly, the glucose is converted to
fructose 1,6-biphosphate. The reaction requires 2 ATP molecules, comprising three
steps (Ratledge 1991; Bellou et al. 2014). In the second phase, glyceraldehyde-
3-phosphate and dihydroxyacetone phosphate are made (Aggelis 2007). Then,
glyceraldehyde-3-phosphate is transferred to 1,3-biphosphoglycerate.

The reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase, involves
the synthesis of one mole of NADH. Afterward,1,3-Biphospho Glycerate is
transferred into 3-phosphoglycerate, reaction catalyzed by phosphoglycerate kinase,
with simultaneous release of one mole of ATP. In the end 3-phosphoglycerate is
converted into pyruvate which is the final product of glycolysis, with immediate
formation of another mole of ATP (Aggelis 2007; Festel 2008; Arshad et al.
2014b). So in this way, one mole of glucose in glycolysis creates two moles of
pyruvic acid and NADH with four moles of ATP. As two moles of ATP are
consumed to activate a mole of hexose molecule, balanced energy gain in gly-
colysis for the cell is remains only two ATP per hexose metabolized. Now pyruvate
formed through glycolysis can be utilized by yeasts in different metabolic pathways.

Obviously, the microbes have to regenerate NAD+ from the NADH to restore the
oxidation-reduction potential of the cell and done through fermentation or respi-
ration. Here the common trunk of glycolysis ends. Further, to proceed through
alcoholic fermentation, glycerol-pyruvic fermentation or respiration depends upon
various conditions (Rib´ereau-Gayon et al. 2006; Zamora 2009). In anaerobic
conditions, the reducing power of NADH produced through glycolysis must be
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transferred to an electron acceptor to regenerate NAD+ consumed by glycolysis.
The process is called alcoholic fermentation and occurs in the cytoplasm, where
acetaldehyde accepts the electrons (Ratledge 1991).

In addition to glycolysis, two additional enzymatic reactions occur in alcoholic
fermentation. Pyruvate decarboxylase performs decarboxylation of pyruvate into
acetaldehyde, using cofactors thiamine pyrophosphate and magnesium. In the end
acetaldehyde is reduced into ethanol recycling NADH to NAD+ by the alcohol
dehydrogenase enzyme using zinc as cofactor. The final products of alcoholic
fermentation, carbon dioxide and ethanol, are simply diffused out of the cell
(Arshad et al. 2011).

1.5.3 Substrates Utilized for Bioethanol Production

Bioethanol fermentation is considerably the largest scale microbial process.
Regardless of the simple or complex substrates utilized as microbial carbon sources
acquiescent for conversion to ethanol, all types of substrates firstly result in the
formation of hexoses, pentoses or glycerol (after the enzymatic, physical, chemical
or mechanical pretreatment) that will be fermented by the relevant microorganisms
in order to be converted into bioethanol. Major types of feedstock used in fuel
ethanol production are presented in Table 1.10. In industrial ethanol production
sugars present in sugar cane molasses or from enzymatically hydrolysed starch
(from corn or other grains) and batch fermentation with yeast Saccharomyces
cerevisiae is employed to produce ethanol.

Byproducts of the process include CO2 with low amounts of methanol, glycerol,
higher alcohols and acetic acid (Arshad et al. 2008). Ethanol does not need to be
rectified to high purity if it is to be used as a fuel. Alcoholic fermentation process of
sugars to ethanol has been well progressed in recent years. Alcoholic fermentation
biochemistry includes substrate degradation pathways (glycolysis, alcoholic fer-
mentation, glycerol-pyruvic fermentation and respiration for the case of the uti-
lization of hexoses, xylose catabolic pathways for the case of utilization of pentoses
and glycerol assimilation and glycolysis for the case of glycerol-converting

Table 1.10 Major feedstock
used for fuel ethanol
production

Feedstock References

Sugar cane juice Moreira and Goldemberg (1999)

Caasava Agrocadenas (2006)

Sugarbeet Poitrat (1999)

Wheat Agrocadenas (2006)

Corn Shapouri et al. (2003)

Sugarcane bagasse Moreira (2000)

Corn stover Kim and Dale (2004)

Wheat straw Kim and Dale (2004)

Biomass Berg (2001)

1 An Overview of Biofuel 21



microorganisms) and regulation between fermentation and respiration (Pasteur
effect, Crabtree effect, Kluyver effect and Custers effect).

Inhibitor sensitivity, product tolerance, ethanol yield and specific ethanol pro-
ductivity have been improved in modern industrial strains to the degree that up to
20% (v/v) of ethanol are produced in present-day industrial yeast fermentation
vessels from starch derived glucose. Substrates used for bioethanol production can
be categorized into three major types:

1.5.3.1 Feedstock Containing Sucrose

Major feed stocks containing sucrose are sugarcane and sugar beet. Approximately
70 and 110 L/ton ethanol is produced from sugar cane and sugar beet respectively.
Brazil alone produces 40% of world sugarcane. Sugar beet is the major feedstock
for bioethanol production in European countries.

1.5.3.2 Starch Containing Feedstock

In Europe and North America, ethanol is majorly produced from starch containing
feedstock such as corn, wheat and barley. In starch, D-glucose is linked through
a-1,4 linkage with specific branches of 1-6 bonds. Conversion of starch into its
monomer glucose is must require for ethanol fermentation. Corn is fermented into
ethanol, starting by either dry- or wet-milling.

1.5.3.3 Lignocellulose Biomass

Present corn-based ethanol production may not be socio economically sustainable
due to its impact on agricultural land usage and water shortage. The potential
alternative substrate is lignocellulose biomass for ethanol production. Advantages
and disadvantages about different methods for pretreatment of lignocellulose
materials have been presented in Table 1.11. The lignocellulose biomass includes
wood, straw, grasses, crop residues and other agricultural wastes, available in much
higher quantities as compare to starch and sucrose containing substrates. Glucose
yield is although much lower in cellulosic biomass as compared to sugar or starch
crops, but easily accessible vast mass makes it better option for fuel ethanol pro-
duction. Estimated potential of bioethanol production from agricultural residues is
about 491 billion L/year.

Important difference between sugar and lignocellulosic material is the readily
availability of substrate for fermentation. The technical process using lignocellu-
losic hydrolysates (Gray et al. 2006) is going to be better day by day. However, as
the enzymatic hydrolysis reaction of cellulose is about two orders of magnitude
slower than the average ethanol fermentation rate with yeast, there is a theoretical
gap in simultaneous scarification of cellulosic biomass and ethanol fermentation
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(SSF). This must be addressed if total biomass is to be fermented, not only glucose
syrups, for example from starch. Table 1.12 shows various fermentation processes
for ethanol production. The fermentation of pentose sugar with industrial yeast
strains is a difficult task and still under development (Hahn-Hagerdahl et al. 2007),
although some pilot plants are already running.

Biological ethanol fermentation from molasses and starch is basically a mature
technology. The utilization of non-food substrates such as cellulose-containing
waste material is in the pilot stage. The hydrolysis of cellulosic material by the
cellulase enzymes is very slow due to less porosity, crystal structure and presence of

Table 1.11 Advantages and disadvantages about different methods for pretreatment of lignocel-
lulose materials (Harmsen et al. 2010)

Pretreatment
process

Benefits Drawbacks

Biological Lignin and hemicellulose can be
decomposed easily
Least energy needed

Hydrolysis reaction is
much sluggish

Milling Crystal structure of cellulose can be relaxed Additional power required

Steam
explosion

Lignin can be converted to its components
easily
Better release of glucose molecules

Discharge of toxic
compounds
Partial degradation of
hemicellulose

CO2 explosion Much surface area exposed
Better in terms of cost
No toxic compounds generation

High pressure needed

Wet oxidation Better abstraction of lignin
Reduced formation of inhibitors

High cost

Organosolv Efficient decomposition of lignin and
hemicellulose

Drainage can cause
environmental issues

Diluted acid Lesser corrosion issues as compared to
concentrated acid

Byproducts are formed

Concentrated
acid

Much better glucose production Acid recovery is essential

Table 1.12 Various fermentation processes for ethanol production

Mode of
fermentation

Ethanol (g/L) in
fermentation broth

Productivity,
g/(L h)

Maximum
yield (%)

References

Batch 80–100 1–3 85–90 Claassen et al.
(1999)

Fed batch 53.7–98.1 9–31 81 Echegaray
et al. (2000)

Repeated
batch

89.3–92 2.7–5.25 80.5 Hojo et al.
(1999)

Continuous 70–80 7–8 94.5 Costa et al.
(2001)
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lignin and hemicellulose (Karim et al. 2017). More over the process also needs
utilization of C5 sugars to be economical. There are several approaches for the
pretreatment of such biomass to release the required sugars. Physical, chemical and
enzymatic treatments are availed. Availability of feedstock is not uniform
throughout the year and also varies from region to region. Production cost of
bioethanol is depended on the price of feedstock (Ray et al. 2017).

1.5.4 Ethanol Purification

Many yeast strains and their varieties are employed for industrial ethanol produc-
tion. Certain strains lead over others, in specific rate of fermentation, better yield,
efficient sugar utilization and higher tolerance of ethanol (Choudhary et al. 2017).
But the byproducts are unavoidable in each and every strain. Formation of
byproduct also depends on the purity of the substrate used. Acetaldehyde is one of
the major byproduct of this process. Some higher alcohols as isoamyle alcohol are
also produced as byproducts.

1.5.5 Ethanol as Fuel

Unlike petroleum, ethanol comes from renewable resources. It keeps cleaner
burning characteristics (Prasad et al. 2007) as compared to gasoline; thus produces
less greenhouse gases (McMillan 1997; Alzate and Toro 2006; Marchetti et al.
2007). Use of agro-industrial residues as raw material for ethanol fermentation, not
only provides alternative substrates but also reduces carbon dioxide emissions with
solution of their disposal problems. As ethanol is a biodegradable and compara-
tively highly soluble in water, has low toxicity risk. In case of any large spilling, far
less danger for the environment than those associated with conventional oils
(McMillan 1997). The potential of bioethanol production in totally non-aseptic
environment (Roukas 1995; Kopsahelis et al. 2012; Sarris et al. 2013; Sarris et al.
2014) makes the process easier to apply at industrial scale. The use of Ethanol in
place of petroleum could, provided that a renewable energy resource was used to
produce crops required to obtain ethanol and to distil fermented ethanol.

Ethanol is the compound of carbon and hydrogen atoms, with a hydroxyl group
have chemical formula C2H5OH, also known as ethyl alcohol or hydroxyl ethane.
Its molecule is small and light, as compared to most gasoline components. The
electrochemistry of the ethanol molecule is slightly exceptional being polar at one
end and non-polar at the other. It participates in hydrogen linkage with other
ethanol molecules or other polar substances due to presence of hydroxyl group. The
polar end help ethanol to be miscible in water or other polar compounds and the
non-polar end is advantageous in mixing with non-polar substances, such as
gasoline. Generally ethanol is produced in two forms: anhydrous, keeping water
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content less than 1%, or hydrous, having water content up to 10%. Purity of ethanol
above 96% cannot be achieved through conventional distillation. To convert
hydrous ethanol into anhydrous, separate technique as azeotropic distillation using
20–25% extra energy is used.

Generally ethanol in blended with gasoline in percentages from 5 to 85% (Kim
and Dale 2006) and diesel for its use as fuel. Above half of the fuel ethanol used
worldwide is blended with gasoline. Globally most prevalent blends are E85, E20

and E10 (Festel 2008). Primary reason for using ethanol as an additive to gasoline is
reduction in CO2 emissions. Ethanol addition also raises the octane number of the
fuel blend thus it can replace more costly octane‐boosting components such as
alkylate. Ethanol keeps oxygen, so gasoline burns more cleanly and reduces the
amount of harmful emissions of carbon monoxide (CO), particulates and unburned
gasoline components. Ethanol can be used in the trans-esterification of vegetable
oils for the production of fatty acid ethyl esters (Marchetti et al. 2007).

1.6 Conclusion

Owing to rapid growth of biofuel production in last decades biofuel are fulfilling
almost 3% of transport fuel needs worldwide. Such a rapid increase has given rise
to many concerns. World has faced increased in food prices worldwide and an
alarm to food security. Major advantage of biofuel in climate change mitigation has
been also facing questions. As the per energy equivalence, factory gate prices of
ethanol and biodiesel were almost higher as compared to refinery gate prices of
fossil based gasoline and diesel. Production costs of biofuel needs substantial
reduction to make these products completive. The technological breakthroughs can
do the best in future. Present production ways and techniques has been compre-
hensively discussed above.
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