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NAND and NOR Implementation

� We found that we could implement general 
Boolean equations with these three primitives:
• AND
• OR
• NOT

� In this section we will find that either of two 
gates, the NAND gate or the NOR gate can be 
used to implement arbitrary logic functions.

� We use the Positive Logic Convention (where 
all signals are active high) and a small circle to 
on a symbol to represent NOT or invert.
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NAND Gates

� The basic positive logic NAND gate is denoted 
by the following symbol:
• AND-Invert (NAND)

� NAND comes from NOT AND, I. e., the AND 
function with a NOT applied.   We call this 
symbol for a NAND gate an AND-Invert.   The 
small circle represents the invert function.  

� If we apply DeMorgan's Law we get: 

X
Y

Z

ZYXZYX ++++++++====⋅⋅⋅⋅⋅⋅⋅⋅

ZYX)Z,Y,X(F ⋅⋅⋅⋅⋅⋅⋅⋅====
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NAND Gates (Cont.)

� Applying  DeMorgan's Law gives:
• Invert-OR (NAND)

� We call this symbol for a NAND gate the Invert -
OR since all inputs are inverted, followed by the 
OR function. 

� Both symbols represent the NAND gate - it is 
sometimes more logically descriptive to use one 
form over the other.

� A NAND gate with one input degenerates to an 
inverter.

X
Y

Z
ZYX)Z,Y,X(F ++++++++====
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NAND Function Implementation

� NAND gates can implement a simplified Sum-of-
Products form.   Constructing two level NAND-NAND 
gate circuit:

� The first level is two 2-input NAND gates using AND-
Invert.   The second level is one 2-input NAND gate 
using Invert-OR.   Using the NAND relationship, we 
have: 

DCBA)D,C,B,A(G ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅====
DCBA ⋅⋅⋅⋅⋅⋅⋅⋅ ++++====

DCBA ⋅⋅⋅⋅++++⋅⋅⋅⋅====

A

B

C

D

DCBA)D,C,B,A(G ⋅⋅⋅⋅++++⋅⋅⋅⋅====
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NAND Implementation (Cont.)

In the implementation, note that the bubbles are on opposite 
ends of the same line.   
Thus, they can be combined and deleted:  

A

B

C

D

G(A,B,C,D)

This form of the implementation is the Sum-of-Products form. 
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NAND Implementation (Cont.)

� In the implementation, the bubbles are on opposite 
ends of the same line.  

� By             , they can be combined and deleted:

� A sum-of-products (SOP) form results
� To implement an equation like: F(A,B,C) = A + BC, the   

NAND for A degenerates to a NOT since there is only 
one input

A

B

C

D

G(A,B,C,D)

XX ====
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Degenerate AND Term

� The degenerate NAND becomes an inverter:

� To implement the complement of F using 
NAND gates, add an inverter to the output:

A

B

C

F(A,B,C)

A

B

C

F'(A,B,C)
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NAND-NAND Example

� Implement:

x
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w
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y

F’ (w,x,y,z)
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0 0

F(w,x,y,z)

zwyxxwzy)z,y,x,w(F ++++++++++++====
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Summary: Two-Level NAND Circuits

� Find minimum literal SOP form for F 
and F

� Select SOP form with smallest literal 
count

� Convert selected form to NAND circuit 
using AND-invert (inverters for single 
literal AND terms) and invert-OR 
symbols

� If SOP form for F used, add inverter to 
circuit output.
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NOR Gates

The basic positive logic NOR gate (Not-OR) is denoted 
by the following symbol: 

OR-Invert 
   (NOR) 

This is called the OR-Invert, since it is logically an OR 
function followed by an invert.   By DeMorgan's Law we 
have the following Invert-AND symbol for a NOR gate: 

X
Y

Z
Invert-AND 

A single-input NOR gate is an inverter, too.

X
Y

Z

ZYX)Z,Y,X(F +++++====
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NOR Gates

� The basic positive logic NOR gate is denoted by 
the following symbol:
• OR-Invert (NOR)

� NOR comes from NOT OR, I. e., the OR 
function with a NOT applied.   We call this 
symbol for a NOR gate an OR-Invert.   The 
small circle represents the invert function.  

� If we apply DeMorgan's Law we get: 
ZYXZYX ====++++++++

X
Y

Z
ZYX)Z,Y,X(F +++++====
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NOR Gates (Cont.)

� Applying  DeMorgan's Law gives:
• Invert-AND (NOR)

� We call this symbol for a NOR gate the Invert-
AND since all inputs are inverted, followed by the 
AND function. 

� Both symbols represent the NOR gate - it is 
sometimes more logically descriptive to use one 
form over the other.

� A NOR gate with one input degenerates to an 
inverter.

ZYX)Z,Y,X(F ====
X
Y

Z
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D)(CB)(A ++++++++ ++++

NOR Function Implementation

� NAND gates can implement a simplified Sum-of-
Products form.   Constructing two-level NOR-NOR 
circuit:

� The first level is two 2-input NOR gates using OR-
Invert.   The second level is one 2-input NOR gate using 
Invert-AND.  

� Using the NOR relationship, we have: 

)D,C,B,A(G ====
====

D)(CB)(A ++++++++====

(((( )))) (((( ))))DCBA)D,C,B,A(G ++++⋅⋅⋅⋅++++====

A

B

C

D

D)(CB)(A ++++++++
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Useful Transformations

From Involution (i.e. (A')' = A) and DeMorgan's Law, we 
get the following useful equivalences: 

(A••••B) = ((A••••B)')' ⇔⇔⇔⇔ (A'+B')' 

(A+B) = 
((A+B)')' 

⇔⇔⇔⇔ (A'••••B')' 

(A••••B)' ⇔⇔⇔⇔ (A'+B') 

(A+B)' ⇔⇔⇔⇔ (A'••••B') 
 

These simple transformations can be used to manipulate a 
two level network. 
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Graphical Transformations
The relations from the previous slide lead to the 
following transformations: 

Recall that two bubbles in series can be removed from the 
circuit 

(A ••••B) = ((A ••••B)')' ⇔⇔⇔⇔  (A'+B')' 

(A+B) = 
((A+B)')' 

⇔⇔⇔⇔  (A'••••B')' 

(A ••••B)' ⇔⇔⇔⇔  (A'+B') 

(A+B)' ⇔⇔⇔⇔  (A'••••B') 
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General Two-level Implementations

We need to consider whether the form of a two-level 
implementation is to be: 

1. SOP (AND-OR) or

2. POS (OR-AND).

Complemented output functions (i.e. AND-NOR or OR-
NAND) can be handled by complementing the function. 

 
Given a function F expressed as a Karnaugh Map, we can 

use the same general procedures we have used before to 
minimize the function and express it in SOP or POS 
form. 
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General Implementations (Cont.)

Given a two level implementation desired, use the previous 
transfromations to get it into one of the below forms.  Then 
follow the steps to transform the function to the desired form: 

For Type: Use: 
AND-OR 
(SOP Form) 

Circle 1's in the K-Map and minimize 
(Also use for NAND-NAND) 

AND-NOR 
(SOP complemented) 

Circle 0's in the K-Map and minimize 
 

OR-AND 
(POS Form) 

Circle 0's in the K-Map and minimize 
SOP.  Use DeMorgan's to transform to 
POS. (Also use for NOR-NOR) 

OR-NAND 
(POS complemented) 

Circle 1's in the K-Map and minimize 
SOP.  Use DeMorgan's to transform to 
POS. 
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Implementation Example 1

Implement the function in NOR-OR.   

A

B

C

1

1

1

1

10

0 0

We can remove the "Inverter" and replace it with the 
complement of the input variable 
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Implementation Example 2

A

B

1

1

1

1

10

0 0

Implement the function in AND-NOR.   
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Multi-level NAND Implementations

� Add inverters in two-level 
implementation into the cost picture

� Attempt to “combine” inverters to reduce 
the term count

� Attempt to reduce literal + term count by 
factoring expression into POSOP or 
SOPOS
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Multi-level NAND Example 1

� F = A B’ + A C’ + B A’ + B C’ 
= A A’ + A B’ + A C’ + B A’ + B B’ + B C’
= A (A’ + B’ + C’) + B (A’ + B’ + C’)

F

A

C

B

7 inputs and 4 gates

15 inputs and 8 gates*

* Counting inverters (NOTS) as 1 input and 1 gate
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Multilevel NAND Example 2

� F = AB + AD’ + BC + CD’


