
1

University of Wisconsin - Madison

ECE/Comp Sci 352 Digital Systems Fundamentals
Charles R. Kime Section 2 – Fall 2001

Chapter 2 – Combinational
Logic Circuits – Part 7

Charles Kime & Thomas Kaminski

© 2001 Prentice Hall, Inc

Logic and Computer Design Fundamentals

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 2

NAND and NOR Implementation

� We found that we could implement general
Boolean equations with these three primitives:
• AND
• OR
• NOT

� In this section we will find that either of two
gates, the NAND gate or the NOR gate can be
used to implement arbitrary logic functions.

� We use the Positive Logic Convention (where
all signals are active high) and a small circle to
on a symbol to represent NOT or invert.

2

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 3

NAND Gates

� The basic positive logic NAND gate is denoted
by the following symbol:
• AND-Invert (NAND)

� NAND comes from NOT AND, I. e., the AND
function with a NOT applied. We call this
symbol for a NAND gate an AND-Invert. The
small circle represents the invert function.

� If we apply DeMorgan's Law we get:

X
Y

Z

ZYXZYX ++++++++====⋅⋅⋅⋅⋅⋅⋅⋅

ZYX)Z,Y,X(F ⋅⋅⋅⋅⋅⋅⋅⋅====

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 4

NAND Gates (Cont.)

� Applying DeMorgan's Law gives:
• Invert-OR (NAND)

� We call this symbol for a NAND gate the Invert -
OR since all inputs are inverted, followed by the
OR function.

� Both symbols represent the NAND gate - it is
sometimes more logically descriptive to use one
form over the other.

� A NAND gate with one input degenerates to an
inverter.

X
Y

Z
ZYX)Z,Y,X(F ++++++++====

3

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 5

NAND Function Implementation

� NAND gates can implement a simplified Sum-of-
Products form. Constructing two level NAND-NAND
gate circuit:

� The first level is two 2-input NAND gates using AND-
Invert. The second level is one 2-input NAND gate
using Invert-OR. Using the NAND relationship, we
have:

DCBA)D,C,B,A(G ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅====
DCBA ⋅⋅⋅⋅⋅⋅⋅⋅ ++++====

DCBA ⋅⋅⋅⋅++++⋅⋅⋅⋅====

A

B

C

D

DCBA)D,C,B,A(G ⋅⋅⋅⋅++++⋅⋅⋅⋅====

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 6

NAND Implementation (Cont.)

In the implementation, note that the bubbles are on opposite
ends of the same line.
Thus, they can be combined and deleted:

A

B

C

D

G(A,B,C,D)

This form of the implementation is the Sum-of-Products form.

4

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 7

NAND Implementation (Cont.)

� In the implementation, the bubbles are on opposite
ends of the same line.

� By , they can be combined and deleted:

� A sum-of-products (SOP) form results
� To implement an equation like: F(A,B,C) = A + BC, the

NAND for A degenerates to a NOT since there is only
one input

A

B

C

D

G(A,B,C,D)

XX ====

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 8

Degenerate AND Term

� The degenerate NAND becomes an inverter:

� To implement the complement of F using
NAND gates, add an inverter to the output:

A

B

C

F(A,B,C)

A

B

C

F'(A,B,C)

5

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 9

NAND-NAND Example

� Implement:

x

z

w

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1 1 1

11

1

1 1

0 0

0 0 0

0 0

y

F’ (w,x,y,z)

x

y

z

w

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1 1 1

11

1

1 1

0 0

0 0 0

0 0

F(w,x,y,z)

zwyxxwzy)z,y,x,w(F ++++++++++++====

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 10

Summary: Two-Level NAND Circuits

� Find minimum literal SOP form for F
and F

� Select SOP form with smallest literal
count

� Convert selected form to NAND circuit
using AND-invert (inverters for single
literal AND terms) and invert-OR
symbols

� If SOP form for F used, add inverter to
circuit output.

6

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 11

NOR Gates

The basic positive logic NOR gate (Not-OR) is denoted
by the following symbol:

OR-Invert
 (NOR)

This is called the OR-Invert, since it is logically an OR
function followed by an invert. By DeMorgan's Law we
have the following Invert-AND symbol for a NOR gate:

X
Y

Z
Invert-AND

A single-input NOR gate is an inverter, too.

X
Y

Z

ZYX)Z,Y,X(F +++++====

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 12

NOR Gates

� The basic positive logic NOR gate is denoted by
the following symbol:
• OR-Invert (NOR)

� NOR comes from NOT OR, I. e., the OR
function with a NOT applied. We call this
symbol for a NOR gate an OR-Invert. The
small circle represents the invert function.

� If we apply DeMorgan's Law we get:
ZYXZYX ====++++++++

X
Y

Z
ZYX)Z,Y,X(F +++++====

7

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 13

NOR Gates (Cont.)

� Applying DeMorgan's Law gives:
• Invert-AND (NOR)

� We call this symbol for a NOR gate the Invert-
AND since all inputs are inverted, followed by the
AND function.

� Both symbols represent the NOR gate - it is
sometimes more logically descriptive to use one
form over the other.

� A NOR gate with one input degenerates to an
inverter.

ZYX)Z,Y,X(F ====
X
Y

Z

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 14

D)(CB)(A ++++++++ ++++

NOR Function Implementation

� NAND gates can implement a simplified Sum-of-
Products form. Constructing two-level NOR-NOR
circuit:

� The first level is two 2-input NOR gates using OR-
Invert. The second level is one 2-input NOR gate using
Invert-AND.

� Using the NOR relationship, we have:

)D,C,B,A(G ====
====

D)(CB)(A ++++++++====

(((()))) (((())))DCBA)D,C,B,A(G ++++⋅⋅⋅⋅++++====

A

B

C

D

D)(CB)(A ++++++++

8

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 15

Useful Transformations

From Involution (i.e. (A')' = A) and DeMorgan's Law, we
get the following useful equivalences:

(A••••B) = ((A••••B)')' ⇔⇔⇔⇔ (A'+B')'

(A+B) =
((A+B)')'

⇔⇔⇔⇔ (A'••••B')'

(A••••B)' ⇔⇔⇔⇔ (A'+B')

(A+B)' ⇔⇔⇔⇔ (A'••••B')

These simple transformations can be used to manipulate a
two level network.

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 16

Graphical Transformations
The relations from the previous slide lead to the
following transformations:

Recall that two bubbles in series can be removed from the
circuit

(A ••••B) = ((A ••••B)')' ⇔⇔⇔⇔ (A'+B')'

(A+B) =
((A+B)')'

⇔⇔⇔⇔ (A'••••B')'

(A ••••B)' ⇔⇔⇔⇔ (A'+B')

(A+B)' ⇔⇔⇔⇔ (A'••••B')

9

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 17

General Two-level Implementations

We need to consider whether the form of a two-level
implementation is to be:

1. SOP (AND-OR) or

2. POS (OR-AND).

Complemented output functions (i.e. AND-NOR or OR-
NAND) can be handled by complementing the function.

Given a function F expressed as a Karnaugh Map, we can

use the same general procedures we have used before to
minimize the function and express it in SOP or POS
form.

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 18

General Implementations (Cont.)

Given a two level implementation desired, use the previous
transfromations to get it into one of the below forms. Then
follow the steps to transform the function to the desired form:

For Type: Use:
AND-OR
(SOP Form)

Circle 1's in the K-Map and minimize
(Also use for NAND-NAND)

AND-NOR
(SOP complemented)

Circle 0's in the K-Map and minimize

OR-AND
(POS Form)

Circle 0's in the K-Map and minimize
SOP. Use DeMorgan's to transform to
POS. (Also use for NOR-NOR)

OR-NAND
(POS complemented)

Circle 1's in the K-Map and minimize
SOP. Use DeMorgan's to transform to
POS.

10

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 19

Implementation Example 1

Implement the function in NOR-OR.

A

B

C

1

1

1

1

10

0 0

We can remove the "Inverter" and replace it with the
complement of the input variable

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 20

Implementation Example 2

A

B

1

1

1

1

10

0 0

Implement the function in AND-NOR.

11

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 21

Multi-level NAND Implementations

� Add inverters in two-level
implementation into the cost picture

� Attempt to “combine” inverters to reduce
the term count

� Attempt to reduce literal + term count by
factoring expression into POSOP or
SOPOS

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 22

Multi-level NAND Example 1

� F = A B’ + A C’ + B A’ + B C’
= A A’ + A B’ + A C’ + B A’ + B B’ + B C’
= A (A’ + B’ + C’) + B (A’ + B’ + C’)

F

A

C

B

7 inputs and 4 gates

15 inputs and 8 gates*

* Counting inverters (NOTS) as 1 input and 1 gate

12

Logic and Computer Design Fundamentals
© 2001 Prentice Hall, Inc

Chapter 2-Part 7 23

Multilevel NAND Example 2

� F = AB + AD’ + BC + CD’

