University of Wisconsin - Madison
ECE/Comp Sci 352 Digital Systems Fundamentals
Charles R. Kime Section 2 — Fall 2001

Logic and Computer Design Fundamentals

Chapter 2 — Combinational
Logic Circuits — Part 7

Charles Kime & Thomas Kaminski

© 2001 Prentice Hall, Inc

NAND and NOR Implementation

* We found that we could implement general
Boolean equations with these three primitives:
* AND
* OR
* NOT
= In this section we will find that either of two
gates, the NAND gate or the NOR gate can be
used to implement arbitrary logic functions.

* We use the Positive Logic Convention (where
all signals are active high) and a small circle to
on a symbol to represent NOT or invert.

Logic and Computer Design Fundamentals Chapter 2-Part 7 2
2001 Prentice Hall, Inc

NAND Gates

= The basic positive logic NAND gate is denoted
by the following symbol:
¢ AND-Invert (NAND)

X —)
Y —3}— F(X,Y,Z)=X"Y Z
, —

= NAND comes from NOT AND, L. e., the AND
function with a NOT applied. We call this
symbol for a NAND gate an AND-Invert. The
small circle represents the invert function.

» If we apply DeMorgan's Law we get:
XY Z=X+Y+Z

Logic and Computer Design Fundamentals Chapter 2-Part 7 3
2001 Prentice Hall, Inc

NAND Gates (Cont.)

= Applying DeMorgan's Law gives:
* Invert-OR (NAND)

X -
Y FX,Y,Z)=X+Y+7Z

Z
= We call this symbol for a NAND gate the Invert -
OR since all inputs are inverted, followed by the
OR function.

= Both symbols represent the NAND gate - it is
sometimes more logically descriptive to use one
form over the other.

= A NAND gate with one input degenerates to an

inverter.

Logic and Computer Design Fundamentals Chapter 2-Part 7 4
2001 Prentice Hall, Inc

NAND Function Implementation

* NAND gates can implement a simplified Sum -of-
Products form. Constructing two level NAND-NAND
gate circuit: 5, —

B e—
(A,B,C,D)=A-B+C-D

C
D —
* The first level is two 2-input NAND gates using AND-
Invert. The second level is one 2-input NAND gate
using Invert-OR. Using the NAND relationship, we
have:

G(A,B,C,D)

.C.

I
=

|

AB
AB
A-

+ aQ
ac

+
Logic and Computer Design Fundamentals B D Chapter 2-Part 7 5
2001 Prentice Hall, Inc

NAND Implementation (Cont.)

In the implementation, note that the bubbles are on opposite
ends of the same line.
Thus, they can be combined and deleted:
A —
B e—

G(A,B,C,D)
Cc —

D —

This form of the implementation is the Sum-of-Products form.

Logic and Computer Design Fundamentals Chapter 2-Part 7 6
2001 Prentice Hall, Inc

NAND Implementation (Cont.)

* In the implementation, the bubbles are on opposite

ends of the same line.

" ByX= X , they can be combined and deleted:

A
B

C
D

G(A,B,C,D)

* A sum-of-products (SOP) form results
* To implement an equation like: F(A,B,C) = A + BC, the
NAND for A degenerates to a NOT since there is only

one input

Logic and Computer Design Fundamentals

© 2001 Prentice Hall, Inc

Chapter 2-Part 7 7

Degenerate AND Term

A —

A

B —
C —

* To implement the complement of F using
NAND gates, add an inverter to the output:

B —
C —

© 2001 Prentice Hall. Inc

Logic and Computer Design Fundamentals

* The degenerate NAND becomes an inverter:

F(A,B,C)

5—— FI(A,B,C)

Chapter 2-Part 7 8

NAND-NAND Example

* Implement: F(w,x,y,z) = YZ+WX+Xy +y@ z

1 1 1 1 1 1 1 1
0 1 3 2 0 1 3 2
1 . 0] 0 1, (o . 0. 11]
X X
1 0 0 0 1 0 0 0
12 13 15 14 12 13 15 14
Y11 {1 o Y11 {1 oo
8 9 11 10 8 9 11 10
z z
F(w,x,y,z) F’ (w,x,y,z)
Logic and Computer Design Fundamentals Chapter 2-Part 7 9

© 2001 Prentice Hall, Inc

Summary: Two-Level NAND Circuits

* Find minimum literal SOP form for F
and F

= Select SOP form with smallest literal
count

= Convert selected form to NAND circuit
using AND-invert (inverters for single
literal AND terms) and invert-OR
symbols

= If SOP form for F used, add inverter to
circuit output.

Logic and Computer Design Fundamentals Chapter 2-Part 7 10
2001 Prentice Hall, Inc

NOR Gates

The basic positive logic NOR gate (Not-OR) is denoted

by the following symbol:
X .
OR-Invert ¢ ___ F(X,Y,Z)=X+Y+Z
(NOR) 7

This is called the OR-Invert, since it is logically an OR
function followed by an invert. By DeMorgan's Law we
have the following Invert-AND symbol for a NOR gate:

s

A single-input NOR gate is an inverter, too.

Invert-AND

Ll

Logic and Computer Design Fundamentals Chapter 2-Part 7 11
2001 Prentice Hall, Inc

NOR Gates

= The basic positive logic NOR gate is denoted by
the following symbol:
¢ OR-Invert (NOR)

F(X|Y)Z)=X}+¥+7

* NOR comes from NOT OR, I. e., the OR
function with a NOT applied. We call this
symbol for a NOR gate an OR-Invert. The
small circle represents the invert function.

X
Y
Z

= If we apply DeMorgan's Law we get:
X+Y+=X Y Z

Logic and Computer Design Fundamentals Chapter 2-Part 7 12
2001 Prentice Hall, Inc

NOR Gates (Cont.)

Applying DeMorgan's Law gives:
* Invert-AND (NOR)

x —(O .
Yy —QO FX,Y,Z)=X Y Z

z. —C
= We call this symbol for a NOR gate the Invert-
AND since all inputs are inverted, followed by the
AND function.

= Both symbols represent the NOR gate - it is
sometimes more logically descriptive to use one
form over the other.

= A NOR gate with one input degenerates to an

inverter.

Logic and Computer Design Fundamentals Chapter 2-Part 7 13
2001 Prentice Hall, Inc

NOR Function Implementation

* NAND gates can implement a simplified Sum -of-
Products form. Constructing two-level NOR-NOR
circuit: A

B

. G(A,B,C,D)=(A+B)-(C+D)

* The first level is two 2-input NOR gates using OR-
Invert. The second level is one 2-input NOR gate using
Invert-AND.

= Using the NOR relationship, we have:

G(A,B,C,D) SABHCD)
= (AtB) (CD)
= (A+B) (C+D)

Logic and Computer Design Fundamentals Chapter 2-Part 7 14
2001 Prentice Hall, Inc

Useful Transformations

From Involution (i.e. (A')' = A) and DeMorgan's Law, we
get the following useful equivalences:
(AeB) = ((AeB)")' & (A'+B')’

(A+B)= & (A'eB")’
((A+B)")'

(AeB)' & (A'+B')
(A+B)' & (A'eB")

These simple transformations can be used to manipulate a
two level network.

Logic and Computer Design Fundamentals Chapter 2-Part 7 15
2001 Prentice Hall, Inc

Graphical Transformations

The relations from the previous slide lead to the

following transformations: _D_ :

AeB) = ((AeB)")' A'+B")’

(AeB) = ((AeB)")' & () o
(A+B)= & (A'eB")’ '_’—c}

((A+B)")’

(AeB)' & (A'+B") :DD_ — :3>_
(A+B)' & (A'eB")
— >

Recall that two bubbles in series can be removed from the
circuit

Logic and Computer Design Fundamentals Chapter 2-Part 7 16
2001 Prentice Hall, Inc

General Two-level Implementations

We need to consider whether the form of a two-level
implementation is to be:

1. SOP (AND-OR) or
2. POS (OR-AND).

Complemented output functions (i.e. AND-NOR or OR-
NAND) can be handled by complementing the function.

Given a function F expressed as a Karnaugh Map, we can
use the same general procedures we have used before to
minimize the function and express it in SOP or POS
form.

Logic and Computer Design Fundamentals Chapter 2-Part 7 17
2001 Prentice Hall, Inc

General Implementations (Cont.)

Given a two level implementation desired, use the previous
transfromations to get it into one of the below forms. Then
follow the steps to transform the function to the desired form:

For Type: Use:

AND-OR Circle 1's in the K-Map and minimize

(SOP Form) (Also use for NAND-NAND)

AND-NOR Circle 0's in the K-Map and minimize

(SOP complemented)

OR-AND Circle 0's in the K-Map and minimize

(POS Form) SOP. Use DeMorgan's to transform to
POS. (Also use for NOR-NOR)

OR-NAND Circle 1's in the K-Map and minimize

(POS complemented) |SOP. Use DeMorgan's to transform to
POS.

Logic and Computer Design Fundamentals Chapter 2-Part 7 18

© 2001 Prentice Hall. Inc

Implementation Example 1

Implement the function in NOR-OR.

We can remove the "Inverter' and replace it with the
complement of the input variable

Logic and Computer Design Fundamentals Chapter 2-Part 7 19
2001 Prentice Hall, Inc

Implementation Example 2

B Implement the function in AND-NOR.

Logic and Computer Design Fundamentals Chapter 2-Part 7 20
2001 Prentice Hall, Inc

10

Multi-level NAND Implementations

* Add inverters in two-level
implementation into the cost picture

" Attempt to “combine” inverters to reduce
the term count

" Attempt to reduce literal + term count by

factoring expression into POSOP or
SOPOS

Logic and Computer Design Fundamentals Chapter 2-Part 7 21
2001 Prentice Hall, Inc

Multi-level NAND Example 1

" F=AB’+AC’+BA’+B (C’ 15inputs and 8 gates*
=AA+AB+AC+BA’+BB’+B(C
=AA+B’+C)+BA’+B’+ ()

7 inputs and 4 gates

A

T
B /9’3 >o— F

C

* Counting inverters (NOTS) as 1 input and 1 gate

Logic and Computer Design Fundamentals Chapter 2-Part 7 22
2001 Prentice Hall, Inc

11

Multilevel NAND Example 2

= F=AB + AD’ + BC + CD’

Logic and Computer Design Fundamentals Chapter 2-Part 7 23
2001 Prentice Hall, Inc

12

