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NAND and NOR Implementation

* We found that we could implement general
Boolean equations with these three primitives:
* AND
* OR
* NOT
= In this section we will find that either of two
gates, the NAND gate or the NOR gate can be
used to implement arbitrary logic functions.

* We use the Positive Logic Convention (where
all signals are active high) and a small circle to
on a symbol to represent NOT or invert.
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NAND Gates

= The basic positive logic NAND gate is denoted
by the following symbol:
¢ AND-Invert (NAND)

X —)
Y —3}— F(X,Y,Z)=X"Y Z
, —

= NAND comes from NOT AND, L. e., the AND
function with a NOT applied. We call this
symbol for a NAND gate an AND-Invert. The
small circle represents the invert function.

» If we apply DeMorgan's Law we get:
XY Z=X+Y+Z
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NAND Gates (Cont.)

= Applying DeMorgan's Law gives:
* Invert-OR (NAND)

X -
Y FX,Y,Z)=X+Y+7Z

Z
= We call this symbol for a NAND gate the Invert -
OR since all inputs are inverted, followed by the
OR function.

= Both symbols represent the NAND gate - it is
sometimes more logically descriptive to use one
form over the other.

= A NAND gate with one input degenerates to an

inverter.
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NAND Function Implementation

* NAND gates can implement a simplified Sum -of-
Products form. Constructing two level NAND-NAND
gate circuit: 5, —

B e—
(A,B,C,D)=A-B+C-D

C
D —
* The first level is two 2-input NAND gates using AND-
Invert. The second level is one 2-input NAND gate
using Invert-OR. Using the NAND relationship, we
have:

G(A,B,C,D)

.C.

I
=

|

AB
AB
A-

+ aQ
ac

+
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NAND Implementation (Cont.)

In the implementation, note that the bubbles are on opposite
ends of the same line.
Thus, they can be combined and deleted:
A —
B e—

G(A,B,C,D)
Cc —

D —

This form of the implementation is the Sum-of-Products form.
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NAND Implementation (Cont.)

* In the implementation, the bubbles are on opposite

ends of the same line.

" ByX= X , they can be combined and deleted:

A
B

C
D

G(A,B,C,D)

* A sum-of-products (SOP) form results
* To implement an equation like: F(A,B,C) = A + BC, the
NAND for A degenerates to a NOT since there is only

one input
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Degenerate AND Term

A —

A

B —
C —

* To implement the complement of F using
NAND gates, add an inverter to the output:

B —
C —
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* The degenerate NAND becomes an inverter:

F(A,B,C)

5—— FI(A,B,C)
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NAND-NAND Example

* Implement: F(w,x,y,z) = YZ+WX+Xy +y@ z

1 1 1 1 1 1 1 1
0 1 3 2 0 1 3 2
1 . 0 ] 0 1, (o . 0. 11 ]
X X
1 0 0 0 1 0 0 0
12 13 15 14 12 13 15 14
Y11 {1 o Y11 {1 oo
8 9 11 10 8 9 11 10
z z
F(w,x,y,z) F’ (w,x,y,z)
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Summary: Two-Level NAND Circuits

* Find minimum literal SOP form for F
and F

= Select SOP form with smallest literal
count

= Convert selected form to NAND circuit
using AND-invert (inverters for single
literal AND terms) and invert-OR
symbols

= If SOP form for F used, add inverter to
circuit output.
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NOR Gates

The basic positive logic NOR gate (Not-OR) is denoted

by the following symbol:
X .
OR-Invert ¢ ___ F(X,Y,Z)=X+Y+Z
(NOR) 7

This is called the OR-Invert, since it is logically an OR
function followed by an invert. By DeMorgan's Law we
have the following Invert-AND symbol for a NOR gate:

s

A single-input NOR gate is an inverter, too.

Invert-AND

Ll
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NOR Gates

= The basic positive logic NOR gate is denoted by
the following symbol:
¢ OR-Invert (NOR)

F(X|Y)Z)=X}+¥+7

* NOR comes from NOT OR, I. e., the OR
function with a NOT applied. We call this
symbol for a NOR gate an OR-Invert. The
small circle represents the invert function.

X
Y
Z

= If we apply DeMorgan's Law we get:
X+Y+=X Y Z
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NOR Gates (Cont.)

Applying DeMorgan's Law gives:
* Invert-AND (NOR)

x —(O .
Yy —QO FX,Y,Z)=X Y Z

z. —C
= We call this symbol for a NOR gate the Invert-
AND since all inputs are inverted, followed by the
AND function.

= Both symbols represent the NOR gate - it is
sometimes more logically descriptive to use one
form over the other.

= A NOR gate with one input degenerates to an

inverter.
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NOR Function Implementation

* NAND gates can implement a simplified Sum -of-
Products form. Constructing two-level NOR-NOR
circuit: A

B

. G(A,B,C,D)=(A+B)-(C+D)

* The first level is two 2-input NOR gates using OR-
Invert. The second level is one 2-input NOR gate using
Invert-AND.

= Using the NOR relationship, we have:

G(A,B,C,D) SABHCD)
= (AtB) (CD)
= (A+B) (C+D)
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Useful Transformations

From Involution (i.e. (A')' = A) and DeMorgan's Law, we
get the following useful equivalences:
(AeB) = ((AeB)")' & (A'+B')’

(A+B)= & (A'eB")’
((A+B)")'

(AeB)' & (A'+B')
(A+B)' & (A'eB")

These simple transformations can be used to manipulate a
two level network.
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Graphical Transformations

The relations from the previous slide lead to the

following transformations: _D_ :

AeB) = ((AeB)")' A'+B")’

(AeB) = ((AeB)")' & ( ) o
(A+B)= & (A'eB")’ '_’—c}

((A+B)")’

(AeB)' &  (A'+B") :DD_ — :3>_
(A+B)' & (A'eB")
— >

Recall that two bubbles in series can be removed from the
circuit
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General Two-level Implementations

We need to consider whether the form of a two-level
implementation is to be:

1.  SOP (AND-OR) or
2. POS (OR-AND).

Complemented output functions (i.e. AND-NOR or OR-
NAND) can be handled by complementing the function.

Given a function F expressed as a Karnaugh Map, we can
use the same general procedures we have used before to
minimize the function and express it in SOP or POS
form.
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General Implementations (Cont.)

Given a two level implementation desired, use the previous
transfromations to get it into one of the below forms. Then
follow the steps to transform the function to the desired form:

For Type: Use:

AND-OR Circle 1's in the K-Map and minimize

(SOP Form) (Also use for NAND-NAND)

AND-NOR Circle 0's in the K-Map and minimize

(SOP complemented)

OR-AND Circle 0's in the K-Map and minimize

(POS Form) SOP. Use DeMorgan's to transform to
POS. (Also use for NOR-NOR)

OR-NAND Circle 1's in the K-Map and minimize

(POS complemented) |SOP. Use DeMorgan's to transform to
POS.
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Implementation Example 1

Implement the function in NOR-OR.

We can remove the "Inverter' and replace it with the
complement of the input variable
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Implementation Example 2

B Implement the function in AND-NOR.
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Multi-level NAND Implementations

* Add inverters in two-level
implementation into the cost picture

" Attempt to “combine” inverters to reduce
the term count

" Attempt to reduce literal + term count by

factoring expression into POSOP or
SOPOS
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Multi-level NAND Example 1

" F=AB’+AC’+BA’+B (C’ 15inputs and 8 gates*
=AA+AB+AC+BA’+BB’+B(C
=AA+B’+C)+BA’+B’+ ()

7 inputs and 4 gates

A

T
B /9’3 >o— F

C

* Counting inverters (NOTS) as 1 input and 1 gate
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Multilevel NAND Example 2

= F=AB + AD’ + BC + CD’
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