# Functional Anatomy and Urine Formation by the Kidneys

### Functions of Kidney

- Excretion of wastes, foreign chemicals, drugs, hormone metabolites, food additives, pesticides
- Maintaining the proper osmolarity of body fluids
- *Regulating the quantity and concentration of most ECF ions*
- Excreting the end products of bodily metabolism, such as urea (from proteins), uric acid (from nucleic acids), creatinine (from muscle creatine), bilirubin (from hemoglobin)

- Regulation of
  - Water & electrolytes
  - Arterial pressure (by maintaining plasma volume)
  - Acid-Base balance

**Producing ertytrpoeitin** 

**Producing renin** 

1,25-Dihydroxycholecalciferol production

• Glucose synthesis

### Physiological Anatomy of Kidneys



- Two kidneys lying on post. Abd. wall
- Each weighing **150gms**
- Enclosed in a thin, tough capsule
- Medial indentation called Hilum
- On Cross sectional view Kidney has two zones
   Outer CORTEX & inner MEDULLA
- Renal pyramids
- Major & Minor Calyces
- Renal pelvis

### The functional unit of the kidney: Nephron







### REGIONAL DIFFERENCES IN NEPHRON STRUCTURE

#### CORTICAL

- 60-70%
- Glomeruli lie in cortex
- Short loops of Henle penetrating partly into medulla
- PTC surround the entire tubular system
- Smaller Glomruli
- Afferent arterioles are larger

#### JUXTAMEDULLARY

- 20-30%
- Glomeuli lie deep in cortex near medulla
- Long loops of Henle penetrating deep into medulla
- Efferent arterioles extend deep into medulla to give specialize PTC called VASA RECTA
- Larger Glomeruli
- Efferent arterioles are larger
  - Fenestrations present in Ascending VASA RECTA
- VASA RECTA are important in formation of concentrated urine
- Descending (non fenestrated)



### **Renal Blood Supply**





- Kidneys have excellent blood supply:
   0.5% total body weight but ~22% of C.O.
   (1100ml)
- Renal artery direct branch of Abd. Aorta
- Renal artery → Segmental A. → Interlobar A.
   → Arcuate A. → Interlobular A. (Radial A.) →
   Afferent arterioles → Glomerular capillaries
   → Efferent arterioles → Peritubular capillaries
- Renal circulation is unique ---- Has **TWO** capillary beds.

- Glomerular capillary hydrostatic pressure --- 60 mmHg
- Peritubular capillary hydrostatic pressure --- 13 mmHg
- Pressure regulated by resistance of afferent & efferent arterioles

### **VENOUS DRAINAGE**

Interlobular vein → Arcuate vein → Interlobar vein → Renal vein.

### URINE

- Daily production --- 1-2 liters/day
- Anuria: less than 100ml/day
- Oliguria: less than 400ml/day
- Polyuria: More than 2.5L/day
- Color: Colorless to deep yellow (effected by drugs, chemicals, disease conditions)
- PH: 5-6 (maximum 4.5-8)
- Glucose & Proteins: Present only in Pathological states

### Normal concentrations

- Glucose : NIL
- Proteins : NIL
- Sodium :
- Potassium :
- Calcium :
- Magnesium :
- Chloride :
- Ammonium :
- Urea :
- Creteanine :

90 mEq/L (50-130)

- 20-70 mEq/L
- 5-12 mEq/L
- 2-18 mEq/L
  - 50-130 mEq/L
  - 30-50 mEq/L
- 900 mg/dL
- 150 mg/dL

### The three basic renal processes

- Glomerular filtration
- Tubular reabsorption
- Tubular secretion
- Urinary excretion rate

Filtration rate - Reabsorption rate + Secretion rate







- The three basic processes involved in urine formation are regulated as per body needs
- Increase or decrease in sodium intake changes its rate of filtration, reabsorption
- For example, 10% increase in GFR from 180 to 198 L/Day may increase urine volume to 13 fold keeping reabsorption same
- Advantages of high GFR
  - Efficient removal of wastes
  - Maintainance of homeostasis (whole plasma is filtered 60 times each day)

## Glomerular Filtration—The First Step in Urine Formation

- Free filtration of large amounts of fluid
- Glomrular capillaries are impermeable to proteins
- Conc. of other constituents same as plasma except :
  - Calcium
  - Fatty acids
  - One half of these are bound to plasma proteins
- Normal GFR : 125ml/min or 180 L/Day
- GF is 20% of Renal Plasma Flow
- Determined by forces across the membrane & filtration coefficient

#### **FILTRATION FRACTION**

Fraction Of Renal Plasma That Is Filtered Each Minute FF = GFR/Renal Plasma Flow Normal FF = 0.2 or 20%

• Glomerular capillaries have high filtration coefficient

## Glomerular Capillary Membrane

- Have 3 instead of 2 layers
  - Endothelium
  - Basement membrane
  - Layer of epithelial cells
     (Podocytes) surrounding the outer surface of B.M.
- Despite these three layers free filtration occurs except for proteins
- Endothelium has pores (Fenestrations) like liver
- Endothelium has -ve charge
- B.M. has a meshwork of collagen & proteoglycan (Gives –ve charge) {Mesangial Cells}
- Outer epithelial layer has foot like processes called Podocytes separated by gaps (slit pores)





#### Filterability of Solutes Is Inversely Related to Their Size

#### Filterability of Substances by Glomerular Capillaries Based on Molecular Weight

| Substance | Molecular Weight | Filterability |
|-----------|------------------|---------------|
| Water     | 18               | 1.0           |
| Sodium    | 23               | 1.0           |
| Glucose   | 180              | 1.0           |
| Inulin    | 5,500            | 1.0           |
| Myoglobin | 17,000           | 0.75          |
| Albumin   | 69,000           | 0.005         |

- Negatively charged large molecules are filtered less easily than positively charged molecules of equal molecular size
- Mol. Size of Albumin 6nm
- Dextrans
- Size of pores 8nm
- Minimal change Nephropathy
- Proteinuria or Albuminuria



## **DETERMINANTS OF GFR**

- 1. Net filtration Pressure
- 2. Glomerular capillary filtration coefficient

 $GFR = K_f \times Net$  filtration pressure

Net filtration Pressure:

- Glomerular capillary Hydrostatic pressure (PG)
- Bowman's capsule Hydrostatic pressure (PB)
- Glomerular capillary colloid osmotic pressure ( $\pi_G$ )
- Bowman's capsule colloid osmotic pressure ( $\pi_B$ )

 $GFR = K_f \times (P_G - P_B - \pi_G + \pi_B)$ 



| Force                                                                                                                         | Effect             | Magnitude<br>(mm Hg)             |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|
| Glomerular<br>Capillary<br>Blood Pressure                                                                                     | Favors filtration  | 55                               |
| Plasma-Colloid<br>Osmotic<br>Pressure                                                                                         | Opposes filtration | 30                               |
| Bowman's<br>Capsule<br>Hydrostatic<br>Pressure                                                                                | Opposes filtration | 15                               |
| Net Filtration<br>Pressure<br>(Difference<br>between Force<br>Favoring<br>Filtration and<br>Forces<br>Opposing<br>Filtration) | Favors filtration  | <b>10</b><br>55 - (30 + 15) = 10 |

#### Forces Favoring Filtration (mm Hg)

Glomerular hydrostatic pressure = 60 Bowman's capsule colloid osmotic pressure = 0

### Forces Opposing Filtration (mm Hg)

Bowman's capsule hydrostatic pressure = 18 Glomerular capillary colloid osmotic pressure = 32

Net filtration pressure = 60 - 18 - 32 = +10 mm Hg

### Increased Glomerular Capillary Filtration Coefficient Increases GFR

**K**<sub>f</sub> = Product of hydraulic conductivity & Surface Area

### K<sub>f</sub> = GFR/Net filtration pressure

Kf = 125/10

= 12.5 ml/min/mm Hg

In terms of per 100gms

Kf = 4.2 ml/min/mm Hg

K<sub>f</sub> of other tissues is 400 times less than that of kidney = 0.01 ml/min/mmHg

### Increased Bowman's Capsule Hydrostatic Pressure Decreases GFR

- Normal pressure = 18 mm Hg
- Increased pressure reduces GFR
- Normally remains constant
- Not a primary mean of GFR regulation
- Increased in urinary tract obstruction
- E.g. Precipitation of Ca or Uric acid may lead to stone formation in urinary tract leading to obstruction

### Increased Glomerular Capillary Colloid Osmotic Pressure Decreases GFR

- Conc. of proteins increases by 20% as blood passes from afferent arterioles to efferent
- Colloid osmotic pressure in afferent arterioles = 28 mm Hg
- Colloid osmotic pressure in efferent arterioles = 36 mm Hg
   Average Colloid osmotic pressure in
   Glomerular capillaries = 32 mm Hg
- Two factors change the COP :
  - » The arterial plasma colloid osmotic pressure
  - » Fraction of plasma filtered by the glomerular capillaries (filtration fraction)

### Increased Glomerular Capillary Hydrostatic Pressure Increases GFR

- Normal pressure = 60 mm Hg
- Primary mean for physiological regulation of GFR
- Determined by three main factors:

» Arterial pressure

- » Afferent arteriolar resistance
- » Efferent arteriolar resistance

#### Factors That Can Decrease the Glomerular Filtration Rate (GFR)

| Physical Determinants*                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\downarrow K_{\rm f} \rightarrow \downarrow \rm GFR$                                                                                                                                      |
| $\uparrow P_B \rightarrow \downarrow GFR$                                                                                                                                                  |
| $\uparrow \pi_G \rightarrow \downarrow GFR$                                                                                                                                                |
| $\begin{array}{c} \downarrow \mathbf{P}_{\mathbf{G}} \rightarrow \downarrow \mathbf{GFR} \\ \downarrow \mathbf{A}_{\mathbf{P}} \rightarrow \downarrow \mathbf{P}_{\mathbf{G}} \end{array}$ |
| $\downarrow \mathbf{R}_{\mathbf{E}} \rightarrow \downarrow \mathbf{P}_{\mathbf{G}}$                                                                                                        |
| $\uparrow \mathbf{R}_{\mathbf{A}} \to \downarrow \mathbf{P}_{\mathbf{G}}$                                                                                                                  |
|                                                                                                                                                                                            |

#### Physiologic/Pathophysiologic Causes

- Renal disease, diabetes mellitus, hypertension
- Urinary tract obstruction (e.g., kidney stones)
- Renal blood flow, increased plasma proteins
- Arterial pressure (has only small effect due to autoregulation)
- Angiotensin II (drugs that block angiotensin II formation)
- Sympathetic activity, vasoconstrictor hormones (e.g., norepinephrine, endothelin)
# Physiological Control of GFR & RBF

- Glomerular capillary Hydrostatic pressure
- Bowman's capsule Hydrostatic pressure
- Glomerular capillary colloid osmotic pressure
- Bowman's capsule colloid osmotic pressure

# FACTORS AFFECTING CAPILLARY HYDROSTATIC & ONCOTIC PRESSURE

- Sympathetic nervous system
- Hormones
- Autacoids --- vasoactive substances that are released in the kidneys act locally
- Intrinsic renal feedback mechanisms





#### SYMPATHETIC STIMULATION DECREASES GFR

- Renal blood vessels especially the afferent & efferent arterioles have abundant sympathetic nerve supply
- Strong sympathetic stimulation → Renal arteriolar constriction → Decreased RBF & GFR
- Mild to moderate sympathetic stimulation → Little or no influence on RBF & GFR

## Autoregulation of GFR and Renal Blood Flow

- Relative constancy of RBF & GFR is referred as AUTOREGULATION
- Intrinsic renal feedback back mechanisms that keep the RBF & GFR relatively constant despite marked changes in Arterial blood pressure
- Major function of autoregulation is to maintain adequate GFR
   & precise control of renal excretion of salt & water
- GFR remains relatively constant in a wide range of Arterial pressure (75 mmHg --- 160 mmHg)



#### Role of Tubuloglomerular Feedback in Autoregulation of GFR

- Changes in NaCl conc at MACULA DENSA & control of arteriolar resistance
- TG feedback mechanism autoregulates RBF & GFR
- TG feedback mechanism has two components
  - AFFERENT ARTEROLAR
     FEEDBACK MECHANISM &
  - EFFERENT ARTEROLAR FEEDBACK MECHANISM
- JUXTAGLOMERULAR APPARATUS









#### Blockade of Angiotensin II Formation Further Reduces GFR During Renal Hypoperfusion

#### Myogenic Autoregulation of Renal Blood Flow and GFR

#### **MYOGENIC MECHANISM**

# **Renal Blood Flow**

- 22% of Cardiac Output (1100ml)
- 0.4-0.5% of total body weight
- On per gram basis kidney consumes oxygen twice the rate of brain but has blood supply 7 times that of brain
- Most of the oxygen consumed is utilized for Na reabsorption
- Increased RBF → Increased GFR → Increased Na Reabsorption → Increased oxygen consumption

# **Determinants of Renal Blood Flow**

- Determined by pressure gradient across the renal vasculature divided by total renal vascular resistance
- Renal artery pressure = systemic pressure
- Renal vein pressure = 3-4 mm Hg
- Main resistance lies in the interlobular arteries, afferent & efferent arterioles
- Resistance in these channels is controlled by sympathetic nervous system
- Changes in systemic blood pressure does effect the RBF but this effect is minimized by autoregulatory mechanisms
- RBF remains almost same in blood pressure b/w 80-170 mmHg

# Blood Flow in the Vasa Recta of the Renal Medulla Is Very Low Compared with Flow in the Renal Cortex Cortex --- 98-99% of RBF Medulla --- 1-2% of RBF

## HORMONAL AND AUTACOID CONTROL OF RENAL CIRCULATION

#### Nor-epinephrine & Epinephrine

- Released from adrenal medulla & sympathetic nerve endings during stressful conditions
- Potent constrictor of Afferent & Efferent arterioles
- Reduce RBF & GFR
- Blood levels of these hormones are parallel to sympathetic stimulation
- Have no influence under normal conditions

# ENDOTHELIN

- **Peptide** in nature
- Released from damaged vasular endothelial cells of kidney & other tissues
- Contributes in hemostasis when endothelial cells are damaged
- Plasma endothelin levels are raised in Pre-eclampsia (Toxemia of Pregnancy), ARF, Chronic Uremia (leading to renal vasoconstriction & decreased GFR in these conditions)

# **ANGIOTENSIN II**

- Overful vasoconstrictor of Efferent arterioles
- Increased Angiotensin II → Increased GFR & decreased RBF
- Reduced AP or Volume depletion → Angiotensin II → Increased efferent arteriolar tone → prevents decrease in GFR & decreases RBF → Increased tubular reabsorption (due to reduced blood flow in PTC) of Na & water → restoration of depleted blood volume & AP

## **Endothelial-Derived Nitric Oxide**

- Released by vascular endothelium throughout the body
- Decreases renal vascular resistance
- Basal level of NO important in maintaining the normal renal perfusion
- Drugs inhibiting formation of NO  $\rightarrow$  increased renal vascular resistance  $\rightarrow$  Decreased GFR & urinary Na excretion
- Impaired NO production cause of HYPERTENSION in some patients

#### **Prostaglandins and Bradykinin**

- Cause vasodilatation of renal vessels & increase the RBF & GFR
- Role in RBF regulation not important normally
- PG may help to prevent vasoconstriction of Afferent arterioles caused by sympathetic stimulation
- NSAIDs given in stressful conditions may reduce the renal perfusion and GFR

# Other Factors That Increase Renal Blood Flow and GFR High Protein Intake and Increased Blood

Glucose



# **Renal Blood Flow**

- 22% of Cardiac Output (1100ml)
- 0.4-0.5% of total body weight
- On per gram basis kidney consumes oxygen twice the rate of brain but has blood supply 7 times that of brain
- Most of the oxygen consumed is utilized for Na reabsorption
- Increased RBF → Increased GFR → Increased Na Reabsorption → Increased oxygen consumption

# **Determinants of Renal Blood Flow**

- Determined by pressure gradient across the renal vasculature divided by total renal vascular resistance
- Renal artery pressure = systemic pressure
- Renal vein pressure = 3-4 mm Hg
- Main resistance lies in the interlobular arteries, afferent & efferent arterioles
- Resistance in these channels is controlled by sympathetic nervous system
- Changes in systemic blood pressure does effect the RBF but this effect is minimized by autoregulatory mechanisms
- RBF remains almost same in blood pressure b/w 80-170 mmHg

# Blood Flow in the Vasa Recta of the Renal Medulla Is Very Low Compared with Flow in the Renal Cortex Cortex --- 98-99% of RBF Medulla --- 1-2% of RBF

# **TUBULAR REABSORPTION**

# Tubular Processing of the Glomerular Filtrate

#### **Tubular Reabsorption Includes Passive and Active Mechanisms**



# For a substance to be reabsorbed it must pass through



# **Proximal Tubular Reabsorption**

- Reabsorption of 65% of filtered load (Na & water)
- Special cellular arrangement
- Large no of mitochondria
- Extensive brush-border
- Large no of carrier proteins for co-transport & countertransport of Na
- Difference b/w reab. of Na in 1<sup>st</sup> & 2<sup>nd</sup> part of PT



# Sodium reabsorption









# Passive reabsorption of urea at the end of the proximal tubule



## Concentration of solutes along PT


#### Secretion of organic acid & Bases

- Secretion of Bile salts, oxalate, urate & catecholamines
- Drugs & Toxins
- Rapid clearance of drugs may be a problem in maintaining adequate therapeutic levels
- PAH is also rapidly secreted by PT

#### Loop of Henle

- Has three segments
  - Thin Descending segment
  - Thin Ascending segment
  - Thick Ascending segment

#### **Thin Descending segment**

- 20% of filtered load of water is reabsorbed
- Thin membrane
- Permeable to water, urea & Na

#### **Thin Ascending segment**

 Impermeable to water & very low permeability for solutes



#### Thick Ascending segment

- Reab of 25% of filtered load of Na, Cl, K
- Impermeable to water
- Thick, metabolically active cells
- Na-K ATPase Pump
- 1-Na, 2-Cl, 1-K
   Co- Transporter
- Site of action for Loop Diuretics (Frusemide, Bumetanide, Ethacrynic acid)



- Reabsorption of ions through paracellular pathway due to increased no of +ve charges
- Counter-transport of Na-H
- Due to reabsorption of large no of solutes the tubular fluid becomes dilute in the ascending segment



#### **Distal Tubule**

- Early part of DT has same reabsorptive properties as Thick segment
- Impermeable to water
- Reab of 5% of filtered load of Na & Cl
- Na-Cl Co-Transport
- Site of action for thiazide diuretics



#### Late Distal Tubule & Cortical Collecting Ducts

- Similar cellular anatomy & functions
- Two specialized types of cells
  - Principal Cells
  - Intercalated Cells



#### **Principal Cells**

- Reabsorb Na & secrete
   K ions
- Site of action for Ksparing diuretics



#### **Intercalated Cells**

#### Reabsorb K & secrete H ions

Carbonic Anhydrase

- Summary:
  - Reabsorption of Na & secretion of K ions in Late DT & CCD is Aldosterone dependant
  - Water Reabsorption is ADH dependant
  - Impermeable to Urea

#### Medullary Collecting Ducts

- Reabsorption of less than 10% of filtered of Na & water
- Cuboidal cells, smooth surface, very few mitochondria
- Permeability to water is controlled by ADH secretion
- High permeability for urea
- Can secrete H ions



#### Regulation of Tubular Reabsorption

# Intrinsic Renal Regulation Hormonal Regulation Nervous Regulation

#### PTC & Renal I.F. Physical Forces

Reabsorption = K<sub>f</sub> × Net reabsorptive force

#### Net absorptive force is the sum of:

- Peritubular capillary hydrostatic pressure (Pc)
- Interstitial fluid hydrostatic pressure (Pif)
- Interstitial fluid colloid osmotic pressure ( $\Box$  if)
- Normal rate of Reabsorption : 99% of GFR or 124ml/min





#### **Regulation of forces across PTC**

- PTC hydrostatic & COP directly influenced by Renal hemodynamic changes
- PTC hydrostatic pressure is regulated by
  - Arterial Pressure &
  - Afferent & Efferent arteriolar resistance
- PTC Colloid Osmotic Pressure is regulated by
  - Systemic Plasma COP
  - Filtration Fraction
- Filtration coefficient increases Reabsorption



#### Factors That Can Influence Peritubular Capillary Reabsorption

 $\begin{array}{c} \uparrow P_{c} \rightarrow \downarrow Reabsorption \\ \bullet \downarrow R_{A} \rightarrow \uparrow P_{c} \\ \bullet \downarrow R_{E} \rightarrow \uparrow P_{c} \\ \bullet \uparrow Arterial \ Pressure \rightarrow \uparrow P_{c} \\ \bullet \uparrow Arterial \ Pressure \rightarrow \uparrow P_{c} \\ \uparrow \pi_{c} \rightarrow \uparrow Reabsorption \\ \bullet \uparrow \pi_{A} \rightarrow \uparrow \pi_{c} \\ \bullet \uparrow FF \rightarrow \uparrow \pi_{c} \\ \uparrow K_{f} \rightarrow \uparrow Reabsorption \end{array}$ 

#### Renal Interstitial hydrostatic & COP



# Hormonal Regulation of reabsorption

#### ALDOSTERONE

- Zona glomerulosa cells of adrenal cortex
- Increases reabsorption of Na & secretion of K ions
- Site of action: Principal cells of CCT
- Mechanism: Increased Na-K ATPase activity & Increased Na permeability on luminal side
- Addison's Disease: Reduced or absent secretion
- Conn's Syndrome: Increased secretion

#### Angiotensin II

- Most potent Na retaining Hormone
- Increases Na & water reabsorption
- Mainly acts by three ways
  - Increases ALDOSTERONE secretion
  - Constriction of efferent arterioles
  - Stimulates Na reabsorption in PT, LOH, CT

#### Antidiuretic Hormone

- Realeased from Posterior Pituitary
- Site of action: DT, CT, CCT, MCD
- Specific receptors V<sub>2</sub> in epithelial cells
- Aquaporins --- Intracellular protein
- AQP-2, AQP-3, AQP-4

## ANP

- Released from cardiac Atria
- Stimulus for release --- Increased Atrial strech due to increased plasma plasma volume or raised AP
- Inhibits reasorption of Na & water from CD

### PTH

- Most powerful Ca regulating Hormone
- Increases tubular reabsorption of Ca from DT & LOH
- Also inhibits Phosphorus reabsorption from PT & increase s reabsorption of Mg

#### Sympathetic Nervous System

- Decreases Na & water excretion by constricting renal arterioles
- Also increases Na reabsorption from PT, Ascending thick segment of LOH, Distal tubules
- Increases renin & Angiotensin release



| Hormone                    | Site of Action                                                                     | Effects                                                                         |
|----------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Aldosterone                | Collecting tubule and duct                                                         | ^ NaCl, $H_2O$ reabsorption, $\uparrow K^*$ secretion, $\uparrow H^*$ secretion |
| Angiotensin II             | Proximal tubule, thick ascending loop of<br>Henle/distal tubule, collecting tubule | ↑ NaCl, H <sub>2</sub> O reabsorption, ↑ H <sup>+</sup> secretion               |
| Antidiuretic hormone       | Distal tubule/collecting tubule and duct                                           | ↑ H₂O reabsorption                                                              |
| Atrial natriuretic peptide | Distal tubule/collecting tubule and duct                                           | ↓ NaCl reabsorption                                                             |
| Parathyroid hormone        | Proximal tubule, thick ascending loop of<br>Henle/distal tubule                    | ↓ PO <sub>4</sub> <sup>-</sup> reabsorption, ↑ Ca <sup>++</sup> reabsorption    |

#### **Renal Physiology; Secretion**

Dr.Shahid Javed MBBS; PhD

#### Gastrointestinal system

- Overview
- Digestion of nutrients
- Absorption of nutrients and water
- Principles of GI regulation
- GI secretion and regulation
- GI motility and regulation
- Disorders of GIT



Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings



| Factors That Shift K*<br>Into Cells (Decrease<br>Extracellular [K*]) | Factors That Shift K <sup>+</sup><br>Out of Cells (Increase<br>Extracellular [K <sup>+</sup> ]) |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Insulin                                                              | Insulin deficiency (diabetes<br>mellitus)                                                       |
| Aldosterone                                                          | Aldosterone deficiency<br>(Addison's disease)                                                   |
| β-adrenergic stimulation                                             | β-adrenergic blockade                                                                           |
| Alkalosis                                                            | Acidosis                                                                                        |
|                                                                      | Cell lysis                                                                                      |
|                                                                      | Strenuous exercise                                                                              |
|                                                                      | Increased extracellular fluid<br>osmolarity                                                     |
|                                                                      |                                                                                                 |

#### Regulation of extracellular K



#### **Potassium Secretion**



#### Potassium secretion is controlled by Aldosterone



#### Factors affecting K secretion





## Hydrogen ion secretion in Proximal tubular cells



# Hydrogen ion secretion in type A intercalated tubular cells



#### Hydrogen ion secretion in type B intercalated tubular cells



#### Secretion of organic anions


# Secretion of organic cations



# Ca, Mg, Phosphate Transport

### **Urine Excretion**

### Water Reabsorption and Excretion



#### KIDNEYS EXCRETE EXCESS WATER BY FORMING DILUTE URINE

- Variation in renal excretion rate of water
- Urine osmolarity varies between 50-1200 mOsm/liter
- Regulation of water excretion independent of solute loss in urine
- ROLE OF ANTIDIURETIC HORMONE IN CONTROLLING URINE CONCENTRATION



### Formation of concentrated urine

- Two Basic requirements:
  - High ADH Levels &
  - High osmolarity of renal medullary interstitium
- COUNTER CURRENT MECHANISM
  - Counter Current Multiplier
  - Counter Current Exchanger
- ROLE OF VASA RECTA

#### Vertical osmotic gradient in medulla



# **COUNTERCURRENT MECHANISM**

- Osmolarity of interstitial fluid
- Osmolarity of renal medullary interstitium is very high --- 1200-1400 mOsm/L
- Factors responsible:
  - Active transport of Na & co-transport of other ions from ascending thick segment of LOH
  - Active transport of ions from CD
  - Facilitated diffusion of urea from inner MCD
  - Diffusion of small amount of water from MT





3 Countercurrent exchange (heat) in loop







### **COUNTERCURRENT MULTIPLIER**



# **ROLE OF DT & CD**



# COUNTERCURRENT EXCHANGE SYSTEM

- Formed by vasa recta
  - provide blood supply to medulla
  - do not remove NaCl from medulla
- Descending capillaries
  - water diffuses out of blood
  - NaCl diffuses into blood
- Ascending capillaries
  - water diffuses into blood
  - NaCl diffuses out of blood

# VASA RECTA

- Help preserve the hyperosmolarity
- Two special features of medullary blood flow:
  - Low blood flow --- less than 5%
  - Vasa recta serve as countercurrent exchanger



# MAINTENANCE OF OSMOLARITY IN RENAL MEDULLA





### ROLE OF UREA IN CONCENTRATING URINE

- Urea very useful in concentrating urine.
- High protein diet = more urea = more concentrated urine.
- Kidneys filter, reabsorb and secrete urea.
- Urea excretion rises with increasing urinary flow.

#### **CONTRIBUTION OF UREA (Urea Recycling)**

- Urea contriutes about 40-50% in forming hyperosmolar interstitium
- Passively reabsorbed from tubules
- Dependant on ADH
- main site: Medullary ducts
- Urea transporters: UT-A I & AIII
- Activated by ADH
- Dietary protein intake important in forming concentrated urine
- High urea levels in impaired renal function



### Role of Vassopressin











Concentration of urine may be as low as 100 mOsm as it leaves collecting tubule

### Control of ADH secretion

| Increase ADH        | Decrease ADH                   |
|---------------------|--------------------------------|
| ↑ Plasma osmolarity | ↓ Plasma osmolarity            |
| ↓ Blood volume      | ↑ Blood volume                 |
| ↓ Blood pressure    | ↑ Blood pressure               |
| Nausea              |                                |
| Hypoxia             |                                |
| Drugs:              | Drugs:                         |
| Morphine            | Alcohol                        |
| Nicotine            | Clonidine (antihypertensive)   |
| Cyclophosphamide    | Haloperidol (dopamine blocker) |

# Mictuirition

Micturition is the process by which the urinary bladder empties when it becomes filled

- Progressive filling of bladder
- Mictuirition Reflex (Emptying of reflex)
- Autonomic Reflex
- Can be controlled by higher centres

### Physiologic Anatomy of Urinary Bladder



### Physiologic Anatomy of Urinary Bladder

- Composed of Smooth muscles
  - Body
  - Neck (posterior urethra)
- Detrusor muscle --- Smooth muscles of U.B.
- Low resistance pathways b/w muscle cells
  - Trigone
  - Rugae
  - Ureters enter through trigone
- Internal Sphincter (Lies in bladder neck)
- External sphincter (lies in urogenital Diaphragm)

# Nerve supply of Urinary Bladder

• Pelvic nerves from sacral plexus

- S-2--- S-3

- Sensory & Motor fibers
- Motor nerves --- Parasympathetic (Long Preganglionic part)
- Skeletal motor fiber
  - Pudendal Nerve (External sphincter)
- Sympathetic Supply

— L-2

- Supply blood vessels
- Sensory- pain, fullness sensation

- Transport of urine from kidneys to bladder through ureter
- Collecting Ducts > Calyces > Renal Pelvis > Ureter
- Ureters
  - Smooth muscles
  - Sympathetic & parasympatheic nerve supply
  - Intramural nerve supply
- Ureters enter bladder through **TRIGONE**
- VESICOURETERAL REFLEX
- URETERORENAL REFLEX

### **CYSTOMETROGRAM**



#### Figure 26-7

Normal cystometrogram, showing also acute pressure waves (dashed spikes) caused by micturition reflexes.

# **Mictuirition Reflex**

- Mictuirition Reflex is a single complete cycle of:
  - Progressive & rapid increase of pressure
  - Period of sustained pressure
  - Return of pressure to basal level
- Basal tone of detrusor muscle
- Mictuirition Contractions
  - Superimposed contractions of detrusor muscle initiated by sensory strech receptors
- Mictuirition reflex is self generative

# Control of Mictuirition by Brain

- Facilitative & inhibitory center in brain stem ( Pons )
- Cerebral cortex
- Higher centers keep:
  - -mictuirition reflex partially inhibited
  - Can prevent mictuirition
  - -Can initiate mictuirition
- Voluntary Mictuirition

# **Abnormalities of Mictuirition**

### ATONIC BLADDER

- Destruction of sensory nerve fibers from bladder to spinal cord
- Causes
  - Injury to spinal cord at sacral level
  - Syphilis (Tabes Dorsalis) Tabetic Bladder
- Overflow Incontinence
# Automatic Bladder

- Spinal cord injury above sacral segments
- Sacral segments intact
- Mictuirition reflexes suppressed during early days after injury because of spinal shock
- Return of mictuirition after few days is bladder is empties properly
- Unannounced periodic emptying of bladder
- Some patients can control urination by stimulation of skin in genital area

# Uninhibited Neurogenic Bladder

- Frequent & uncontrolled emptying of urinary bladder
- Cause: Loss of inhibitory signals from higher centers
- Spinal cord or brain stem damage

### RENAL PHYSIOLOGY

### CLEARANCE METHODS & TUBULAR MAXIMUM

### Transport Maximum

- Most substances that are actively reabsorbed or secreted, there is a limit to the rate at which the solute can be transported known as the transport maximum or TMax
- Saturation of specific transport systems involved when tubular load exceeds the carrier protein or enzyme capacity
- Glucose reabsorption in proximal tubules exhibits Tmax.
- □ Tmax for Glucose is 365mg/min



Passively reabsorbed substances do not demonstrate a transport maximum as their rates of transport is determined by:

- 1. Electrochemical gradient for diffusion across the membrane
- 2. The permeability of the membrane for the substance
- 3. The time that the fluid containing the substance remains within the tubule. (Gradient-time transport)

Some actively transported substances also exhibit Gradient-time transport. E.g. Sodium

- Increased Na concentration gradient or
- Reduced blood flow in PTC
- Tmax of Na can be increased by ALDOSTERONE

### Renal threshold for glucose



### **Renal Clearance**

Volume of plasma that is completely cleared of the substance per unit time by the kidneys

- Clearance rate(ml/min) = urine concentration (quantity/ml urine) × urine flow rate (ml/min)/plasma concentration of the substance (quantity/ml plasma)
- Used to assess the excretory functions of kidneys.
  GFR, Tubular Reabsorption & Secretion can also be estimated.

### Clearance Rate= Excretion Rate Plasma Conc. $C_s = U_s \times V$ $P_s$

- □ GFR = Clearance of a substance that is freely filtered, neither reabsorbed nor secreted
- RBF = Clearance of a substance that is completely cleared from the plasma

#### Inulin Clearance CAN BE USED TO ESTIMATE GFR

- Polysaccharide molecule
- Molecular weight = 5200
- Not produced in the body
- Freely filtered
- No reabsorption or secretion
- Its clearance rate = GFR



#### Creatinine Clearance CAN BE USED TO ESTIMATE GFR

- By product of muscle metabolism
- Cleared thru GF mainly
- Can be used to assess the GFR
- Partly secreted
- Error in plasma conc. calculation



#### PAH Clearance CAN BE USED TO ESTIMATE RPF

- About 90% is cleared from the plasma by the kidneys
- Can be used to assess the RBF
- PAH Clearance is also known as Extraction Ratio

Total renal plasma flow = Clearance of PAH/Extraction ratio of PAH



### **Filtration Fraction**

# FF = GFR (inulin clearance)/RPF (PAH clearance = 125/650 = 0.19=20%

# Tubular Reabsorption & Secretion

Urine flow rate = 1 ml/min Urine concentration of sodium (U<sub>Na</sub>) = 70 mEq/L = 70 µEq/ml Plasma sodium concentration = 140 mEq/L = 140 µEq/ml GFR (inulin clearance) = 100 ml/min

### Clearance of different substances

| Substance  | Clearance Rate (ml/min) |
|------------|-------------------------|
| Glucose    | 0                       |
| Sodium     | 0.9                     |
| Chloride   | 1.3                     |
| Potassium  | 12.0                    |
| Phosphate  | 25.0                    |
| Inulin     | 125.0                   |
| Creatinine | 140.0                   |
|            |                         |

# RENAL PHYSIOLOGY By Dr. Shahid Javed MBBS, PhD.

#### BODY FLUID COMPARTMENTS ECF & ICF FLUIDS

#### • HARMONY IN BODY FLUID CONCENTRATION IS VERY VITAL FOR HOMEOSTASIS

# • Maintenance of nearly constant conditions in the internal environment.

#### • FLUID INTAKE AND OUTPUT ARE BALANCED DURING STEADY STATE CONDITIONS

INTAKE = OUTPUT



# **DAILY WATER INTAKE**

- Two Sources
  - 1. Ingested Food & water = 2100ml/ day
  - 2. Synthesized in the body = 200ml/ day

Total Intake = 2300ml/ day

- Intake is highly variable
  - Climate
  - Habits
  - Level of physical activity

# **DAILY LOSS OF BODY WATER**

#### Insensible losses from:

- Skin (350 ml/day)
- Respiratory Tract (350 ml/day)
- Total = 700 ml/day
- Insensible loss of water from skin is independent of sweating.
- Minimized by cholesterol filled cornified layer of epithelium.
- Increased loss in cases of burns

- Water loss through respiratory tract is utilized in humidification of inspired air
- Air is humidified to a vapor pressure of 47mmHg
- Vapor pressure of atmosphere reaches ommHg during winter

### FLUID LOSS IN SWEAT

- Normal fluid loss in sweat is 100ml/day
- Increased up to liters in:
  - Exercise
  - Hot Weather

### FLUID LOSS IN FECES

- Normal = 100ml/day
- Increased up to liters in patients of severe diarrhea

# **FLUD LOSS BY KIDNEYS**

- Most important in regulation of water and electrolyte balance
- Is highly variable.
- Urine volume is variable ---o.5L/day to 20L/day.
- Salt intake highly variable ---Na intake 20mEq/day to 500mEq/day.



#### Daily Intake and Output of Water (ml/day)

|                  | Normal | Prolonged,<br>Heavy Exercise |
|------------------|--------|------------------------------|
| Intake           |        |                              |
| Fluids ingested  | 2100   | ?                            |
| From metabolism  | 200    | 200                          |
| Total intake     | 2300   | ?                            |
| Output           |        |                              |
| Insensible-skin  | 350    | 350                          |
| Insensible—lungs | 350    | 650                          |
| Sweat            | 100    | 5000                         |
| Feces            | 100    | 100                          |
| Urine            | 1400   | 500                          |
| Total output     | 2300   | 6600                         |

# **Body Fluid Compartments**

#### Two main compartments:

- Extracellular compartment
- Intracellular compartment
- Transcellular fluid (1-2 liters)
  - Synovial fluid
  - Peritoneal fluid
  - Pericardial fluid
  - CSF
  - aqueous humor
  - Specialized type of ECF (1.5% of B.Wt.)
- In a 70kg adult TBW is 60% of B.Wt. i.e. 42liters
  - Percentage changes with age, gender, degree of obesity

## **Intracellular Fluid Compartment**

- 2/3 of body water (40% body weight) is present in the 75 trillion cells.
- Fluid in each cell is a mixture of several constituents but concentration of these is almost same in all cells.

## **Extracellular Fluid Compartment**

- 1/3 of body water (20% body weight)
- 14 liters in a 70kg adult
- Two compartments
  - 1/4<sup>th</sup> the blood plasma (water=4.5% body weight)
  - 3/4<sup>th</sup> interstitial fluid and lymph (water=15% body weight)
- Plasma
  - Non-cellular part of blood
  - Continuous exchange of fluids b/w plasma and interstitial fluid
  - Same composition as interstitial fluid except proteins



# **Blood Volume**

- Blood is a part of ECF as well as ICF
- 7% of B.Wt.
- 5 liters
- 60% of blood --- plasma
- 40% of blood --- RBC
- These %ages vary with age, gender, weight.

## Hematocrit (Packed Cell Volume)

- Fraction of blood composed of RBCs
- Determined by centrifugation of blood
- Actual PCV is 3-4% less than actual
  - Normal Values
    - Males 0.40
    - Females 0.36
      - Decrease in ----- anemias
      - Increased in ----- polycythemias

# Measurements of fluids in different body compartments

#### Indicator-Dilution Method

#### Principle

An indicator is placed in the compartment & allowed to disperse evenly and then analyzed extent of dilution.

• Can be used to measure volume of all body compartments as long as:

- Indicator disperses evenly throughout the compartment
- Indicator disperses only in that compartment
- Indicator is not metabolized or excreted



### DETERMINATION OF VOLUMES OF SPECIFIC COMPARTMENTS OF BODY

Measurement of Total Body Water

- Radioactive water
  - Tritium or
  - Heavy water
- Antipyrine
  - Highly lipid soluble

# **MEASUREMENT OF ECF**

 Can be measured by injecting a substance that does not permeate the cell membrane

- Radioactive sodium
- Radioactive chloride
- Radioactive iothalamate
- Thiosulfate ion
- Inulin
# **CALCULATION OF ICF**

No method of direct measurementCan be calculated

ICF = TBW - ECF

### **MEASUREMENT OF PLASMA VOLUME**

- Can be measured by substance that does not permeate the capillary membrane & remains in vascular system
  - Radioactive Albumin
  - Evans blue dye (Binds to Plasma proteins)

Calculation of Interstitial Fluid Interstitial fluid volume = ECF volume – Plasma volume

# MEASUREMENT OF BLOOD VOLUME

- Radioactive labelled RBCs
- Can also be calaculated

Total blood volume = <u>Plasma volume</u> 1 - Hematocrit

| Table 25-3. Measurement of Body Fluid Volumes |                                                                                                          |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Volume                                        | Indicators                                                                                               |  |
| Total body<br>water                           | <sup>3</sup> H <sub>2</sub> O, <sup>2</sup> H <sub>2</sub> O, antipyrine                                 |  |
| Extracellular<br>fluid                        | <sup>22</sup> Na, <sup>125</sup> I-iothalamate, thiosulfate, inulin                                      |  |
| Intracellular<br>fluid                        | (Calculated as total body water - Extracellular fluid volume)                                            |  |
| Plasma<br>volume                              | <sup>125</sup> I-albumin, Evans blue dye (T-1824)                                                        |  |
| Blood volume                                  | <sup>51</sup> Cr-labeled red blood cells, or calculated as blood volume = Plasma volume/(1 - Hematocrit) |  |
| Interstitial<br>fluid                         | (Calculated as extracellular fluid volume - Plasma volume)                                               |  |

- Maintenance of adequate fluids in ECF & ICF ----- Important Clinical problem
- Hydrostatic forces & Colloid osmotic forces across capillary membrane responsible for this equilibrium within ECF
- Osmotic effect of solutes responsible for equilibrium b/w ICF & ECF
- Important role of Cell membrane

# Osmosis

Net diffusion of water across a selectively permeable membrane from a region of high water concentration to one that has a lower water concentration.

#### **OSMOSIS**



# **CELL MEMBRANE**

- Semipermeable membrane
- Highly water soluble
- Almost impermeable to solutes
- Addition or removal of solutes from one side results in osmosis
- Rate of diffusion of water molecules is called Rate of Osmosis

# **MOLES & OSMOLES**

- Total no. of osmotically active particles in a solution is measured in Osmoles
- 1 OSM = 1 mole (If substance does not dissociate)
- A solution containing 1 mole of glucose in a liter has a conc. of 1 osm/liter
- 1 mole of NaCl = 2 osm/liter
- 1 mole of Na2SO4 = 3 osm/liter
- 1 milliosmole (mOsm) = 1/1000 Osm

## **OSMOLALITY & OSMOLARITY**

- No. of osmoles per kg of water— OSMOLALITY
- No. of osmoles per liter of water is OSMOLARITY
- In dil. solutions like body fluids both are same

# **OSMOTIC PRESSURE**

• The amount of pressure required to oppose the movement of water molecules, and to stop osmosis --- Osmotic Pressure

 It is the indirect measurement of solutes & water.

• Higher the osmotic pressure, lower the water content.

## **OSMOTIC PRESSURE & OSMOLARITY**

- Osmotic pressure directly proportional to no. of osmotically active particles
- Independent of molecular wt
- Albumin & Glucose exert same osmotic pressure
- NaCl has double osmotic effect

- Each mOsm/Liter of a solute exerts an osmotic pressure of 19.3 mmHg
- Calculating the osmolarity & osmotic pressure of a solution
- 1 liter 0.9% NaCl solution
- 308 mosm/liter
- Osmotic pressure of 5944 mm Hg
- Correction factor(Osmotic Coefficient) 0.93
- Corrected osmolarity = 286mosm/liter

- Osmolarity of body fluids
- Na & Cl --- maintain osmolarity of ECF (80%)
- K --- maintains osmolarity of ICF
- Plasma osmolarity slightly higher than Interstitial fluid
- Corrected osmolarity --- 282 mosm/liter

# **COMPARISON OF ECF & ICF**

Osmolar Substances in Extracellular and Intracellular Fluids

|                                        | Plasma (m0sm/L H₂0) | Interstitial (mOsm/L H₂O) | Intracellular (m0sm/L H <sub>2</sub> 0) |
|----------------------------------------|---------------------|---------------------------|-----------------------------------------|
| Na <sup>+</sup>                        | 142                 | 139                       | 14                                      |
| $K^+$                                  | 4.2                 | 4.0                       | 140                                     |
| Ca <sup>++</sup>                       | 1.3                 | 1.2                       | 0                                       |
| Mg <sup>+</sup>                        | 0.8                 | 0.7                       | 20                                      |
| CI                                     | 108                 | 108                       | 4                                       |
| HCO <sub>3</sub>                       | 24                  | 28.3                      | 10                                      |
| $HPO_4^-, H_2PO_4^-$                   | 2                   | 2                         | 11                                      |
| SO <sub>4</sub>                        | 0.5                 | 0.5                       | 1                                       |
| Phosphocreatine                        |                     |                           | 45                                      |
| Carnosine                              |                     |                           | 14                                      |
| Amino acids                            | 2                   | 2                         | 8                                       |
| Creatine                               | 0.2                 | 0.2                       | 9                                       |
| Lactate                                | 1.2                 | 1.2                       | 1.5                                     |
| Adenosine triphosphate                 |                     |                           | 5                                       |
| Hexose monophosphate                   |                     |                           | 3.7                                     |
| Glucose                                | 5.6                 | 5.6                       |                                         |
| Protein                                | 1.2                 | 0.2                       | 4                                       |
| Urea                                   | 4                   | 4                         | 4                                       |
| Others                                 | 4.8                 | 3.9                       | 10                                      |
| Total mOsm/L                           | 301.8               | 300.8                     | 301.2                                   |
| Corrected osmolar activity (mOsm/L)    | 282.0               | 281.0                     | 281.0                                   |
| Total osmotic pressure at 37°C (mm Hg) | 5443                | 5423                      | 5423                                    |

#### MAINTAINANCE OF OSMOTIC EQUILIBRIUM B/W ECF & ICF

- Minute changes in solute conc. lead to large increase or decrease in osmotic pressure
- Hypertonic
- Isotonic
- Hypotonic
- o.9% NaCl solution
- 5% Glucose solution



- Isosmotic
- Hyposmotic
- Hyperosmotic
- Permeating and non-permeating solutes
- NaCl
- Urea

Osmotic equilibrium is maintained within minutes

#### Regulation of water and salt balance











DVLT = organum vasculosum laminae terminalis SFO = subfornical organ NTS = Nucl. tractus solitarii

#### VOLUME & OSMOLARITY OF ECF & ICF IN ABNORMAL STATES

- WATER INGESTION
- DEHYDRATION
- I/V INFUSION
- GIT LOSSES
- PROFUSE SWEATING
  - WATER MOVES RAPIDLY ACROSS THE MEMB.
  - CELL MEMB. IMPERMEABLE TO SOLUTES

# Effect of addition of 2 Liters of 3% NaCl to ECF

#### Step 1. Initial Conditions

|                     | Volume<br>(Liters) | Concentration<br>(mOsm/L) | Total<br>(mOsm) |
|---------------------|--------------------|---------------------------|-----------------|
| Extracellular fluid | 14                 | 280                       | 3,920           |
| Intracellular fluid | 28                 | 280                       | 7,840           |
| Total body fluid    | 42                 | 280                       | 11,760          |

# SOLUTIONS USED FOR NUTRITIVE PURPOSES

- Glucose
- Amino acids
- Homogenized fat solution

# CLINICAL ABNORMALITIES OF FLUID VOLUME REGULATION

#### • Hyponatremia

#### • Hypernatremia

# Hyponatremia Defined

#### • Definition: Serum Na+ <135 meq/L

- Generally associated with decreased osmolality to <275
- Most common electrolyte abnormality in the US
- Occurs in 3% of hospitalized patients

#### Caused by retention of water

- Usually a drop in osmolality will suppress ADH to allow excretion of the excess water via dilute urine
- Most forms of hyponatremia are associated with elevated ADH (whether appropriate or inappropriate), which concentrates urine

# Signs & Symptoms

- More profound when the decrease in sodium is **very large** or occurs **rapidly** (i.e. over hours)
- Generally asymptomatic if Na+ level >125
- Symptoms include:
  - Headache
  - Nausea, vomiting
  - Muscle cramps
  - Disorientation, depressed reflexes, lethargy, restlessness
  - Seizure, coma, permanent brain damage, respiratory arrest, brainstem herniation & death
    - Serious complications are more commonly seen in primary polydipsia, after surgery, and in menstruating women

# Causes of hyponatremia

| Decreased total body water | GI losses (diarrhea, emesis), diuretics,<br>Addisons Disease                                        |
|----------------------------|-----------------------------------------------------------------------------------------------------|
| Increased total body water | CHF, acute renal failure, SIADH, water<br>intoxication (dilute formula feeding),<br>Bronchogenic CA |
| Normal total body water    | Hyperglycemia                                                                                       |
| Pseudohyponatremia         | Severe hyperlipidemia or hypoproteinemia                                                            |

•Hyperglycemia leads to hyperosmolarity with translocation of fluids from intracellular to extracellular space

•Pseudohyponatremia: displacement of plasma water resulting in falsely low serum by laboratory measurement

### Clinical manifestations of hyponatremia

- Neurologic symptoms related to edema caused by hypo-osmolarity
  - Children at higher risk due to higher brain-to-skull ratio
- Symptoms include headache, nausea, emesis, weakness, disorientation
- Severity worsens as edema increases leading to signs of cerebral herniation
  - Respiratory changes, posturing, pupillary changes, seizure

# Fluid management goals Hyponatremia with neurologic symptoms is a medical emergency

| Clinical picture                                      | Fluid                | Rate                                                                                                                                                                     |
|-------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seizure                                               | 3% hypertonic saline | raise serum sodium by 4-8<br>mEq/L/hour until seizure<br>activity stops                                                                                                  |
| No seizure activity but<br>not at neurologic baseline | 3% hypertonic saline | raise serum sodium by<br>1mEq/L/hour until:<br>-patient at baseline<br>-plasma sodium increases by<br>20-25mEq/L <u>OR</u><br>-serum sodium increases to<br>125-130mEq/L |
| Asymptomatic                                          | o.9% normal saline   | raise sodium no faster than<br>o.5 mEq/L/hour                                                                                                                            |

# Hypernatremia

• Defined as serum sodium >/= 145mEq/L

#### • Causes:

| Excess sodium intake        | Concentrated formula, salt ingestion (seawater, accidental), hypertonic IV fluids, sodium bicarbonate, blood products                                                                       |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Increased free water losses | <ol> <li>Renal: diabetes insipidus, tubular disorder</li> <li>GI: diarrhea, vomiting, colostomy/ileostomy<br/>output, malabsorption</li> <li>Insensible: fever, tachypnea, burns</li> </ol> |
| Decreased free water intake | Ineffective breastfeeding, poor access to water,<br>blunted thirst mechanisms, fluid restriction                                                                                            |

### Clinical Manifestations and Evaluation of Hypernatremia

- Early neurologic signs include agitation and irritability → can progress to seizure and coma
- Neurologic exam can reveal increased tone, brisk reflexes and rigidity
- Lab evaluation can include:
  - Serum osmolarity
  - Serum glucose
  - Urine osmolarity and specific gravity

# Neurologic Sequelae

- In acute phase:
  - Intracellular fluid moves to extracellular space-volume loss in brain separation from meninges
- If hypernatremia has existed for >2-3 days:
  - Neurons protect themselves by making osmolytes to maintain gradient
  - With rapid correction, neurons can swell leading to cerebral edema
- Mortality estimated at 10-16% despite correct rate of rehydration

# What is this ????




- Abnormal accumulation of fluid in the body tissues
  - Intracellular Edema
  - Extracellular Edema

# Intracellular Edema

- Three main causes
  - Hyponatremia
  - Depression of Metabolic systems
  - Lack of adequate nutrients
    - Lack or decrease in tissue blood supply
    - Inflammatory conditions lead to edema

# Extracellular Edema

- Two general causes
  - Abnormal leakage of fluid from plasma into interstitial spaces across the capillaries
  - Failure of lymphatics to return fluid back to plasma (Lymphedema)
- Increased capillary fluid filtration is the most common cause

# **Organ specific:**

- Brain: Cerebral edema
- Lung: Intra-alveolar=pulmonary edema, intrapleural=pleural effusion
- Peritoneum=ascites
- Severe generalized edema=anasarca

# Factors increasing Capillary filtration

- Increased capillary filtration coefficient.
- Increased capillary hydrostatic pressure.
- Decreased plasma colloid osmotic pressure

# Lymphatic Blockage

- Failure of lymphatics to return plasma proteins back to plasma.
- Causes
  - Infections of lymph nodes. e.g., Filaria Nematode
  - Cancers
  - Surgical removal of lymph nodes. e.g., Radical Mastectomy

# SUMMARY OF CAUSES OF EXTRACELLULAR EDEMA

### 1. Increased capillary pressure

#### A. Excessive kidney retention of salt and water

- 1. Acute or chronic kidney failure
- 2. Mineralocorticoid excess

#### **B.** High venous pressure and venous constriction

- 1. Heart failure
- 2. Venous obstruction
- 3. Failure of venous pumps
  - (a) Paralysis of muscles
  - (b) Immobilization of parts of the body
  - (c) Failure of venous valves

#### C. Decreased arteriolar resistance

- 1. Excessive body heat
- 2. Insufficiency of sympathetic nervous system
- 3. Vasodilator drugs

#### II. Decreased plasma proteins

- A. Loss of proteins in urine (nephrotic syndrome)
- B. Loss of protein from denuded skin areas
  - 1. Burns
  - 2. Wounds
- C. Failure to produce proteins
  - 1. Liver disease (e.g., cirrhosis)
  - 2. Serious protein or caloric malnutrition

#### III. Increased capillary permeability

- A. Immune reactions that cause release of histamine and other immune products
- B. Toxins
- C. Bacterial infections
- D. Vitamin deficiency, especially vitamin C
- E. Prolonged ischemia
- F. Burns

#### **IV. BLOCKAGE OF LYMPH RETURN**

A. Cancer

B. Infections (e.g., filaria

nematodes)

C. Surgery

D. Congenital absence or abnormality of lymphatic vessels

# Safety Factors Preventing Edema

- Low compliance of interstitium when I.F. pressure is in negative range
- 10-50 fold increase in lymph flow
- Wash down of interstitial fluid protein concentration

#### Low Compliance of Interstitium

- Normal I.F. pressure = -3mmHg
- Slight suction pressure
- Low compliance when pressure is in negative range



# Importance of Interstitial Gel

- Interstitium is in the form of gel supported by proteoglycan filaments
- Accumulation of free fluid in +ve range
- Pitting Edema
- Non-Pitting Edema

# **Increased Lymph Flow**

- 10-50 fold increase in lymph flow
- Removal of fluids and proteins from interstitium
- 7mm Hg

# Washdown of I.F. proteins

- Increased I.F. volume --- Increased I.F. pressure
- Increased lymph flow
- Increased removal of proteins
- 7mm Hg

# Summary of safety factors

- Low compliance=3 mmHg
- Increased lymph flow=7 mmHg
- Washdown of Plasma Proteins=7mmHg
- Total safety factor = 17mmHg

# Fluids in potential spaces

- Pleural cavity
- Pericardial cavity
- Peritoneal cavity
- Synovial cavity

# Effusion

- Collection of fluid in potential spaces
- Pleural effusion, pericardial effusion
- Ascites--- collection of fluid in peritoneal cavity. (May be upto 20 liters)
- Cause of effusion--- Infection, Injury, lymphatic blockage

# Kidney and Acid Base Balance

- Kidneys adjust their rate of hydrogen ion excretion by varying the extent of hydrogen ion secretion
- Kidneys conserve or excrete bicarbonate ions depending on the plasma hydrogen ion concentration
- Kidneys secrete ammonia during acidosis to buffer secreted hydrogen ions
- The phosphate buffer system is an important urinary buffer





