

## TUBULAR REABSORPTION

# Tubular Processing of the Glomerular Filtrate

**Tubular Reabsorption Includes Passive and Active Mechanisms** 





# For a substance to be reabsorbed it must pass through



# Proximal Tubular Reabsorption

- Reabsorption of 65% of filtered load (Na & water)
- Special cellular arrangement
- Large no of mitochondria
- Extensive brush-border
- Large no of carrier proteins for co-transport & countertransport of Na
- Difference b/w reab. of Na in 1<sup>st</sup> & 2<sup>nd</sup> part of PT



# Sodium reabsorption







# Passive reabsorption of urea at the end of the proximal tubule



# Concentration of solutes along PT





- Secretion of Bile salts, oxalate, urate & catecholamines
- Drugs & Toxins
- Rapid clearance of drugs may be a problem in maintaining adequate therapeutic levels
- PAH is also rapidly secreted by PT



# Loop of Henle

- Has three segments
  - Thin Descending segment
  - Thin Ascending segment
  - Thick Ascending segment

#### Thin Descending segment

- 20% of filtered load of water is reabsorbed
- Thin membrane
- Permeable to water, urea & Na

#### Thin Ascending segment

Impermeable to water & very low permeability for solutes





### Thick Ascending segment

- Reab of 25% of filtered load of Na, Cl, K
- Impermeable to water
- Thick, metabolically active cells
- Na-K ATPase Pump
- 1-Na, 2-Cl, 1-KCo- Transporter
- Site of action for Loop
   Diuretics (Frusemide,
   Bumetanide, Ethacrynic acid)





- Reabsorption of ions through paracellular pathway due to increased no of +ve charges
- Counter-transport of Na-H
- Due to reabsorption of large no of solutes the tubular fluid becomes dilute in the ascending segment





## Distal Tubule

- Early part of DT has same reabsorptive properties as Thick segment
- Impermeable to water
- Reab of 5% of filtered load of Na & Cl
- Na-Cl Co-Transport
- Site of action for thiazide diuretics





# Late Distal Tubule & Cortical Collecting Ducts

- Similar cellular anatomy & functions
- Two specialized types of cells
  - Principal Cells
  - Intercalated Cells





# **Principal Cells**

- Reabsorb Na & secreteK ions
- Site of action for Ksparing diuretics





### **Intercalated Cells**

- Reabsorb K & secrete H ions
- Carbonic Anhydrase

- Summary:
  - Reabsorption of Na & secretion of K ions in Late DT & CCD is Aldosterone dependant
  - Water Reabsorption is ADH dependant
  - Impermeable to Urea



# Medullary Collecting Ducts

- Reabsorption of less than 10% of filtered of Na & water
- Cuboidal cells, smooth surface, very few mitochondria
- Permeability to water is controlled by ADH secretion
- High permeability for urea
- Can secrete H ions





# Regulation of Tubular Reabsorption



- Intrinsic Renal Regulation
- Hormonal Regulation
- Nervous Regulation

## PTC & Renal I.F. Physical Forces

- Reabsorption = K<sub>f</sub> × Net reabsorptive force
- Net absorptive force is the sum of:
  - Peritubular capillary hydrostatic pressure (Pc)
  - Peritubular capillary colloid osmotic pressure (□ c)
  - Interstitial fluid hydrostatic pressure (P<sub>if</sub>)
  - Interstitial fluid colloid osmotic pressure (□ if)
- Normal rate of Reabsorption : 99% of GFR or 124ml/min







- PTC hydrostatic & COP directly influenced by Renal hemodynamic changes
- PTC hydrostatic pressure is regulated by
  - Arterial Pressure &
  - Afferent & Efferent arteriolar resistance
- PTC Colloid Osmotic Pressure is regulated by
  - Systemic Plasma COP
  - Filtration Fraction
- Filtration coefficient increases Reabsorption

# Factors That Can Influence Peritubular Capillary Reabsorption

- $\uparrow P_c \rightarrow \downarrow Reabsorption$ 
  - $\downarrow R_A \rightarrow \uparrow P_c$
  - $\downarrow R_E \rightarrow \uparrow P_c$
  - ↑ Arterial Pressure → ↑ P<sub>c</sub>
- $\uparrow \pi_c \rightarrow \uparrow$  Reabsorption
  - $\uparrow \pi_{\Lambda} \rightarrow \uparrow \pi_{c}$
  - ↑ FF → ↑ π<sub>c</sub>
- $\uparrow K_f \rightarrow \uparrow$  Reabsorption

## Renal Interstitial hydrostatic & COP







# Hormonal Regulation of reabsorption

## **ALDOSTERONE**

- Zona glomerulosa cells of adrenal cortex
- Increases reabsorption of Na & secretion of K ions
- Site of action: Principal cells of CCT
- Mechanism: Increased Na-K ATPase activity & Increased Na permeability on luminal side
- Addison's Disease: Reduced or absent secretion
- Conn's Syndrome: Increased secretion

# Angiotensin II

- Most potent Na retaining Hormone
- Increases Na & water reabsorption
- Mainly acts by three ways
  - Increases ALDOSTERONE secretion
  - Constriction of efferent arterioles
  - Stimulates Na reabsorption in PT, LOH, CT

## **Antidiuretic Hormone**

- Realeased from Posterior Pituitary
- Site of action: DT, CT, CCT, MCD
- Specific receptors V<sub>2</sub> in epithelial cells
- Aquaporins --- Intracellular protein
- AQP-2, AQP-3, AQP-4

# ANP

- Released from cardiac Atria
- Stimulus for release --- Increased Atrial strech due to increased plasma plasma volume or raised AP
- Inhibits reasorption of Na & water from CD

# PTH

- Most powerful Ca regulating Hormone
- Increases tubular reabsorption of Ca from DT & LOH
- Also inhibits Phosphorus reabsorption from PT & increase s reabsorption of Mg



- Decreases Na & water excretion by constricting renal arterioles
- Also increases Na reabsorption from PT, Ascending thick segment of LOH, Distal tubules
- Increases renin & Angiotensin release



| Hormone                    | Site of Action                                                                     | Effects                                                                                       |
|----------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Aldosterone                | Collecting tubule and duct                                                         | ↑ NaCl, H <sub>2</sub> O reabsorption, ↑ K <sup>+</sup> secretion, ↑ H <sup>+</sup> secretion |
| Angiotensin II             | Proximal tubule, thick ascending loop of<br>Henle/distal tubule, collecting tubule | ↑ NaCl, H <sub>2</sub> O reabsorption, ↑ H <sup>+</sup> secretion                             |
| Antidiuretic hormone       | Distal tubule/collecting tubule and duct                                           | ↑ H <sub>z</sub> O reabsorption                                                               |
| Atrial natriuretic peptide | Distal tubule/collecting tubule and duct                                           | ↓ NaCl reabsorption                                                                           |
| Parathyroid hormone        | Proximal tubule, thick ascending loop of<br>Henle/distal tubule                    | ↓ PO <sub>4</sub> - reabsorption, ↑ Ca <sup>++</sup> reabsorption                             |