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Preface

The role of statistics in quality management in general and Six Sigma in
particular has never been so great. Quality control cannot be dissociated
from statistics and Six Sigma finds its definition in that science.

In June 2005, we decided to create sixsigmafirst.com, a website aimed
at contributing to the dissemination of the Six Sigma methodology. The
site was primarily focusing on tutorials about Six Sigma. Since statis-
tical analysis is the fulcrum of that methodology, a great deal of the site
was slated to enhance the understanding of the science of Statistics.
The site has put us in contact with a variety of audiences that range
from students who need help with their homework to quality control
managers who seek to better understand how to apply some statistics
tools to their daily operations.

Some of the questions that we receive are theoretical while others are
just about how to use some statistics software to conduct an analysis
or how to interpret the results of a statistical testing.

The many questions that we have been getting have brought about
the idea of writing a comprehensive book that covers both statistical
theory and helps to better understand how to utilize the most widely
used software in statistics.

Minitab and Excel are currently the most preponderant software tools
for statistical analysis; they are easy to use and provide reliable results.
Excel is very accessible because it is found on almost any Windows-
based operating system and Minitab is widely used in corporations and
universities.

But we believe that without a thorough understanding of the theory
behind the analyses that these tools provide, any interpretation made
of results obtained from their use would be misleading.

That is why we have elected to not only use hundred of examples
in this book, with each example, each study case being analyzed from
a theoretical standpoint, using algebraic demonstrations, but we also
graphically show step by step how to use Minitab and Excel to come to
the same conclusions we obtained from our mathematical reasoning.

This comprehensive approach does help better understand how the
results are obtained and best of all, it does help make a better interpre-
tation of the results.

We hope that this book will be a good tool for a better understanding
of statistics theory through the use of Minitab and Excel.

ix
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Chapter

1
Introduction

Learning Objectives:

� Clearly understand the definition of Six Sigma
� Understand the Six Sigma methodology
� Understand the Six Sigma project selection methods
� Understand balanced scorecards
� Understand how metrics are selected and integrated in scorecards
� Understand how metrics are managed and aligned with the organi-

zation’s strategy
� Understand the role of statistics in quality control and Six Sigma
� Understand the statistical definition of Six Sigma

A good business performance over a long period of time is never the
product of sheer happenstance. It is always the result of a well-crafted
and well-implemented strategy. A strategy is a time-bound plan of
structured actions aimed at attaining predetermined objectives. Not
only should the strategy be clearly geared toward the objectives to
be attained, but it should also include the identification of the re-
sources needed and the definition of the processes used to reach the
objectives.

Over the last decades, several methodologies have been used to im-
prove on quality and productivity and enhance customer satisfaction.
Among the methodologies used for these purposes, Six Sigma has so far
proved to be one of the most effective.

1
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2 Chapter One

1.1 Six Sigma Methodology

Six Sigma is a meticulous, data-driven methodology that aims at gen-
erating quasi-perfect production processes that would result in no more
than 3.4 defects per 1 million opportunities. By definition, Six Sigma
is rooted in statistical analysis because it is data-driven and is a strict
approach that drives process improvements through statistical mea-
surements and analyses.

The Six Sigma approach to process improvements is project driven.
In other words, areas that show opportunities for improvements are
identified and projects are selected to proceed with the necessary im-
provements. The project executions follow a rigorous pattern called the
DMAIC (Define, Measure, Analyze, Improve, and Control). At every step
in the DMAIC roadmap, specific tools are used, and most of these tools
are statistical.

Even though Six Sigma is a project-driven strategy, the initiation of
a Six Sigma deployment does not start with project selections. It starts
with the overall understanding of the organization in terms of how it
defines itself, in terms of what its objectives are, how it measures itself,
what performance metrics are crucial for it to reach its objectives and
how those metrics are analyzed.

1.1.1 Define the organization

Defining an organization means putting it precisely in its context; it
means defining it in terms of its objectives, in terms of its internal
operations and in terms of its relations with its customers and suppli-
ers.

Mission statement. Most companies’ operational strategies are based
on their mission statements. A mission statement (sometimes called
strategic intent) is a short inspirational statement that defines the pur-
pose of the organization and its core values and beliefs. It tells why the
organization was created and what it intends to achieve in the future.

Mission statements are in general very broad in perspective and not
very precise in scope. They are mirrors as well as rudders: they are mir-
rors because they reflect what the organization is about, and they are
rudders because they point the direction that the organization should
be heading. Even though they do not help navigate through obstacles
and certainly do not fix precise quarterly or annual objectives, such as
the projected increase of Return On Investment (ROI) by a certain per-
centage for a coming quarter, mission statements should clearly define
the company’s objective so that management can align its strategy with
that objective.
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What questions should an organization ask? Every organization’s exis-
tence depends on the profits derived from the sales of the goods or
services to its customers. So to fulfill its objectives, an organization
must elect to produce goods or services for which it has a competi-
tive advantage and it must produce them at the lowest cost possible
while still satisfying its customers. The decision on what to produce
raises more questions and addresses the nature of the organization’s
internal processes and its relations with its suppliers, customers, and
competitors.

So to define itself, an organization must answer the following ques-
tions:

� How to be structured?
� What to produce?
� How to produce its products or services?
� Who are its customers?
� Who are its suppliers?
� Who are its competitors?
� Who are its competitors’ customers and suppliers?

Internal Production Processes

Resource Allocation

Mission Statement 
Objective determination

Organizational Structure

Competitors

Suppliers

 Nature of products

Quality of the products

Price of the products

Speed of delivery

Who are their customers?

What’s the quality of their 
products?

Who are their suppliers?

What are their prices?

How profitable are 
they?

The
Organization The Customers

What are their 
expectations?

How pleased are they 
with the products and 

services?

What to produce?

What is the volume of 
their purchase?

Figure 1.1
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What does an organization produce? Years ago, a U.S. semiconductor
supply company excelled in its operations and was the number one
in its field in America. It won the Malcolm Baldrige National Quality
Award twice and was a very well-respected company on Wall Street;
its stocks were selling at about $85 a share in 1999. At that time, it
had narrowed the scope of its operations to mainly manufacturing and
supplying electronic components to major companies.

After it won the Baldrige Award for the second time, the euphoria of
the suddenly confirmed success led its executives to decide to broaden
the scope of its operations and become an end-to-end service provider—
to not only supply its customers (who were generally computer manu-
facturers) with all the electronic components for their products but also
to provide the aftermarket services, the repair services, and customer
services for the products. The company bought repair centers where
the end users would send their damaged products for repair and also
bought call centers to handle the customer complaints. About a year
after it broadened the scope of its operations, it nearly collapsed. Its
stocks plunged to $3 a share (where they still are), it was obliged to sell
most of the newly acquired businesses and had to lay off thousands of
employees and is still struggling to redefine itself and gain back its lost
market share.

At one point, Daimler-Benz, the car manufacturer, decided to expand
its operations to become a conglomerate that would include comput-
ers and information technology services and aeronautics and related
activities. That decision shifted the company’s focus from what it does
best and it started to lose its efficiency and effectiveness at making
and selling competitive cars. Under Jac Nasser, Ford Motor Company
went through the same situation when it decided to expand its services
and create an end-to-end chain of operations that would range from
the designing and manufacturing of the cars to distribution networks
to the servicing of the cars at the Ford automobile repair shops. And
there again, Ford lost the focus to its purpose, which was just to design,
manufacture, and sell competitive cars.

What happened to these companies shows how crucial it is for an
organization to not only elect to produce goods or services for which
it is well suited, because it has the competence and the capabilities
to produce, but it must also have the passion for it and must be in a
position to constantly seek and maintain a competitive advantage for
those products.

How does the organization produce its goods or services? One of the es-
sential traits that make an organization unique is its production pro-
cesses. Even though competing companies usually produce the same
products, they seldom use the exact same processes. The production
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processes determine the quality of the products and the cost of pro-
duction; therefore, they also determine who the customers are and the
degree to which they can be retained.

Who are the organization’s customers? Because an organization grows
through an increase in sales, which is determined by the number of
customers it has and the volume of their purchases, a clear identifi-
cation and definition of the customers becomes a crucial part of how
an organization defines itself. Not only should an organization know
who its customers are but, to retain them and gain their long term
loyalty and increase them in numbers and the volume of their pur-
chases, it should strive to know why those customers choose it over its
competitors.

Who are the organization’s suppliers? In global competitive markets, the
speeds at which the suppliers provide their products or services and
the quality of those products and services have become vital to the
survival of any organization. Therefore, the selection of the suppliers
and the type of relationship established with them is as important as
the selection of the employees who run the daily operations because,
in a way, the suppliers are nothing but extensions of an organization’s
operations. A supplier that provides a car manufacturer with its needed
transmission boxes or its alternators may be as important to the car
manufacturer’s operations as its own plant that manufactures its doors.
The speed of innovation for a major manufacturer can be affected by
the speed at which its suppliers can adapt to new changes.

Most companies have understood that fact and have engaged in long-
term relationships founded on a constant exchange of information and
technologies for a mutual benefit. For instance, when Toyota Motor
Company decided to put out the Prius, its first hybrid car, if its sup-
pliers of batteries had not been able to meet its new requirements
and make the necessary changes to their operations to meet Toyota’s
demands on time, this would have had negative impacts on the pro-
jected date of release of the new cars and their cost of production. Toy-
ota understood that fact and engaged in a special relationship with
Matsushita Electric’s Panasonic EV Energy to get the right batteries
for the Prius on time and within specifications. Therefore, the defini-
tion of an organization must also include who its suppliers are and the
nature of their relationship.

Who are the organization’s competitors? How your competitors perform,
their market share, the volume of their sales, and the number of their
customers are gauges of your performance. An organization’s rank in
its field is not necessarily a sign of excellence or poor performance;
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some companies deliberately choose not be the leaders in the products
or services they provide but still align their production strategies with
their financial goals and have excellent results.

Yet in a competitive global market, ignoring your competitors and
how they strive to capture your customers can be a fatal mistake. Com-
petitors are part of the context in which an organization evolves and
they must be taken into account. They can be used for benchmarking
purposes.

Who are the competitors’ customers and suppliers? When Carlos Ghosn
became the CEO of Nissan, he found the company in total disarray.
One of the first projects he initiated was to compare Nissan’s cost of
acquisition of parts from its suppliers to Renault’s cost of acquisition of
parts. He found that Nissan was paying 20 percent more than Renault
to acquire the same parts. At that time, Nissan was producing about
two million cars a year. Imagine the number of parts that are in a car
and think about the competitive disadvantage that such a margin could
cause for Nissan.

An organization’s competitors’ suppliers are its potential suppliers.
Knowing what they produce, how they produce it, the speed at which
they fulfill their orders, and the quality and the prices of their products
must be relevant to the organization.

1.1.2 Measure the organization

The overall performance of an organization is generally measured in
terms of its financial results. This is because ultimately profit is the
life blood of an enterprise. When an organization is being measured
at the highest level—as an entity—financial metrics such as the ROI,
the net profit, the Return On Assets (ROA), and cash flow are used to
monitor and assess performance. Yet, these metrics cannot explain why
the organization is performing well or not; they are just an expression
of the results, indicators of what is happening. They do not explain the
reason why it is happening.

Good or bad financial performance can be the result of non-financial
factors such as customer retention, how the resources are managed, how
the internal business processes are managed or with how much training
the employees are provided. How each one of these factors contributes
to the financial results can be measured using specific metrics. Those
metrics that called mid-level metrics in this book (to differentiate from
the high-level metrics used to measure financial results) are also just
indicators of how each one of the factors they measure is performing
without explaining why they are doing so. For instance, suppose that the
Days’ Supply of Inventory (DSI) is a mid-level metric used to monitor
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how many days worth of inventory are kept in a warehouse. DSI can
tell us “there is three or four days’ worth of inventory in the warehouse”
but it will not tell us why.

How high or low the mid-level metrics are is also explained by still
lower-level factors that contribute to the performance of the factors
measured by the mid-level metrics. The lower-level metrics can range
from how often employees are late to work to the sizes of the sam-
ples taken to measure the quality of the products. They are factors
that explain the fluctuations of mid-level metrics such as the Customer
Satisfaction Index (CSI). A high or low CSI only indicates that the cus-
tomers are satisfied or unsatisfied, but it does not tell us why. The
CSI level is dependent on still other metrics such as the speed of de-
livery and the quality of the products. So there is a vertical relation-
ship between the factors that contribute to the financial results of an
organization.

A good example of correlation analysis between metrics in a man-
ufacturing or distribution environment would be the study of how all
the different areas of operations in those types of industries relate to
the volume of held inventory. The higher the volume of held inven-
tory, the more money will be needed for its maintenance. The money
needed for its maintenance comes under the form of expenses for the
extra direct labor needed to stock, pick, and transfer the products,
which requires extra employees; extra equipment such as forklifts, ex-
tra batteries, and therefore more electricity and more trainers to train
the employees on how to use the equipment; more RF devices, there-
fore more IT personnel to maintain the computer systems. A high vol-
ume of physical inbound or outbound inventory will also require more
transactions in the accounting department because not only are the
movements of products for production in progress financially tracked
but the insurance paid on the stock of inventory is also a proportion
of its value and the space the inventory occupies is also rented real
estate.

The performance of every one of the areas mentioned above is mea-
sured by specific metrics, and as their fluctuations can be explained by
the variations in the volume of inventory, it becomes necessary to find
ways and means to quantify their correlations to optimize the produc-
tion processes.

Measuring the organization through balanced scorecards. Metrics are
measurements used to assess performance. They are very important
for an organization because not only do they show how a given area
of an organization performs but also because the area being measured
performs according to the kind of metric used to assess its performance.
Business units perform according to how they are measured; therefore,
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Figure 1.2 Metrics correlation diagram

selecting the correct metrics is extremely important because it ulti-
mately determines performance.

Many organizations tabulate the most important metrics used to
monitor their performance in scorecards. Scorecards are organized and
structured sets of metrics used to translate strategic business objectives
into reality. They are report cards that consist of tables containing sets
of metrics that measure the performance of every area of an organiza-
tion. Every measurement is expected to be at a certain level at a given
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time. Scorecards are used to see if the measured factors are meeting
expectations.

In their book, The Balanced Scorecard, Robert S. Kaplan and David
P. Norton show how a balance must be instilled in the scorecards to
go beyond just monitoring the performance of the financial and non-
financial measures to effectively determine how the metrics relate to
one another and how they drive each other to enhance the overall perfor-
mance of an enterprise. Balanced scorecards can help determine how to
better align business metrics to the organization’s long and short-term
strategies and how to translate business visions and strategies into
actions.

There is not a set standard number of metrics used to monitor per-
formance for an organization. Some scorecards include hundreds of
metrics while others concentrate on the few critical ones. Kaplan and
Norton’s approach to balanced scorecards is focused on four crucial el-
ements of an organization’s operations:

� Financial
� Customer
� Internal business processes
� Learning and growth
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Learning and Growth
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Even though Kaplan and Norton did extensively elaborate on the
importance of the suppliers, they did not include them in their bal-
anced scorecards. Suppliers are a crucial element for an organization’s
performance—their speed of delivery and the quality of their products
can have very serious repercussions on an organization’s results.

Solectron supplies Dell, IBM, and Hewlett-Packard with computer
parts and also repairs their end users’ defective products, so in a way,
Solectron is an extension to those companies operations. Should it sup-
ply them with circuit boards with hidden defects that are only notice-
able after extensive use, this can cost the computer manufacturers cus-
tomers and profit. Motorola supplies Cingular Wireless with mobile
phones but Cingular’s customers are more likely to blame Cingular
than they would blame Motorola for poor reception even when the de-
fects are due to a poor manufacturing of the phones. So suppliers must
be integrated into the balanced score cards.

1.1.3 Analyze the organization

If careful attention is not given to how metrics relate to one another in
both vertical and horizontal ways, scorecards can end up being nothing
but a stack of metrics that may be a good tool to see how the different
areas of a business perform but not an effective tool to align those met-
rics to a business strategy. If the vertical and horizontal contingence
between the metrics is not established and made obvious and clear, it
would not be right to qualify the scorecards as balanced and some of
the metrics contained in them may not be adequate and relevant to the
organization.

A distribution center for a cellular phone service provider used Qual-
ity Assurance (QA) audit fail rate as a quality metric in its scorecard.
They took a sample of the cell phones and accessories and audited them
at the end of the production line; if the fail rate was two percent, they
would multiply the volume of the products shipped by 0.02 to deter-
mine the projected volume of defective phones or accessories sent to
their customers. The projected fail rate is used by customer services
to plan for the volume of calls that will be received from unhappy
customers and allocate the necessary human and financial resources
to respond to the customers’ complaints.

The projected volume of defective products sent to the customers has
never come anywhere close to the volume of customer complaints, but
they were still using the two metrics in the same scorecard. It is obvious
that there should be a correlation between these two metrics. If there
is none, one of the metrics is wrong and should not be used to explain
the other.
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The purpose of analyzing the organization is primarily to determine if
the correct metrics are being used to measure performance and, if they
are, to determine how the metrics relate to one another, to quantify that
relationship to determine what metrics are performance drivers, and
how they can be managed to elevate the organization’s performance
and improve its results.

What metrics should be used and what is the standard formula to calculate
metrics? Every company has a unique way of selecting the metrics it
uses to measure itself, and there is no legal requirement for companies
to measure themselves, let alone to use a specific metric. Yet at the
highest level of an enterprise, financial metrics are generally used to
measure performance; however, the definition of these metrics may not
be identical from one company to another. For instance, a company
might use the ROA to measure the return it gets from the investments
made in the acquisition of its assets. The questions that come to mind
would be: “What assets? Do the assets include the assets for which the
accounting value has been totally depleted but are still being used, or
is it just the assets that have an accounting value? What about the
revenue—does it include the revenue generated from all the sales or is
it just the sales that come from the products generated by a given set
of assets?”

The components of ROA for one company may be very different from
the components of the same metrics in a competing company. So in
the “Analyze the Organization” phase, not only should the interactions
between the metrics be assessed but the compositions of the metrics
themselves must be studied.

How to analyze the organization. Most companies rely on financial ana-
lysts to evaluate their results, determine trends, and make projections.
In a Six Sigma environment, the Master Black Belt plays that role.
Statistical tools are used to determine what metrics are relevant to the
organization and in what area of the organization they are appropri-
ate; those metrics and only those are tracked in the scorecards. Once the
metrics are determined, the next step will consist in establishing corre-
lations between the metrics. If the relationships between the relevant
measurements are not established, management will end up concen-
trating on making local improvements that will not necessarily impact
the overall performance of the organization.

These correlations between the measurements can be horizontal
when they pertain to metrics that are at the same level of operations.
For instance, the quality of the product sent to the customers and on-
time delivery are both factors that affect the CSI. And a correlation can
be found between quality and on-time delivery because poor quality
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can cause more rework, which can affect the time it takes to complete
customer orders.

An example of a vertical correlation would be the effect of training on
productivity and the effect of productivity and customer satisfaction and
the effect of those factors on profit. In a nutshell, the composition of ev-
ery metric, how the metrics measure the factors they pertain to and how
they affect the rest of the organization must be understood very well.

This understanding is better obtained through statistical analysis.
Historic data are analyzed using statistics to measure the organic com-
position of the metrics, the interactions between them and how they
are aligned with respect to the overall organizational strategy. The sta-
tistical measurement of the metrics also enables the organization to
forecast its future performance and better situate itself with regard to
its strategic objectives.

1.1.4 Improve the organization

The theory of constraints is founded on the notion that all business op-
erations are sequences of events, interrelated processes that are linked
to one another like a chain, and at any given time one process will act
as the weakest link—the bottleneck—and prevent the whole “chain”
from achieving its purpose. To improve on the organization’s perfor-
mance, it is necessary to identify the weakest link and improve it. Any
improvement made on any process other than the one that happens
to be the bottleneck may not improve the overall performance of the
organization; it may even result in lowering its performance.

One company claimed to extensively use Six Sigma projects to drive
performance. The results of the projects were posted on a board and
they seemed to always be excellent and the plant seemed to be saving
millions of dollars a year, but were the project savings really reflected in
the company’s quarterly financial results? They seemed too good to be
true and because the projects that the Black Belts work on tend to con-
centrate on local optima without considering the contingence between
departments, improving one process or department in the organiza-
tion may not necessarily positively impact the overall organizational
performance.

For instance, if the company improves on its shipping department
while it still fails to better the time it takes to fill customer orders, the
improvement made in the shipping process will not have any impact
in the overall operations. The correlations between departments’ mea-
surements and processes must be taken into account when selecting a
project. Once the Master Black belt analyzes the organization, he or she
determines what the areas that show opportunity for improvement are
and selects a Black Belt to work on a project to address the bottleneck.
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Once the Black belt is selected, he or she works on the project follow-
ing the same DMAIC process:

Define the 
Organization

Measure The 
Organization

Analyze The 
Organization

Improve The 
Organization

Define its Strategic 
Intent

Define its organizational 
structures

Define it in terms of its 
objectives

What does it produce? 
Define it in relation with 

its customers and 
Suppliers

Create measurement 
systems for all aspects 

of operations. 
 Organize the metrics 
used to measure the 

organization in a 
Balanced Scorecard

Analyze the 
measurement system 
Determine the right 

metrics for 
measurement

Determine correlations 
between metrics

Determine the area in 
the organization that 

requires special 
attention.

Select a project and a 
Black belt to work on it

Define Measure Analyze Improve Control

Purpose:
Define the scope 
of the project, its 
customers and 

stakeholders and 
its objectives. 
Determine the 

resources, develop 
a plan

Identify the KPIV 
and the KPOV 

Determine the CTQs 
define the metrics 

used to measure the 
CTQs

Measuring the 
current process 

capabilities

Determine
correlations between 

KPIV and KPOV 
Determine the root 
causes of possible 

problems
Determine the best 
metrics to measure 

performance

Based on the 
results of the 

Analyze phase, 
develop and 

implement process 
changes.

Determine the 
standard process 

to be followed, 
monitor the 

process,
communicate
and train the 
employees.

Figure 1.3 Six Sigma project selection process

Notice that at the organization level, we did not include a Control phase.
This is because improvement is a lifelong process and after improve-
ments are made, the organization still needs to be continuously mea-
sured, analyzed, and improved again.

1.2 Statistics, Quality Control, and
Six Sigma

The use of statistics in management in general, and quality control in
particular, did not begin with Six Sigma. Statistics has started to play
an increasingly important role in quality management since Walter
Shewhart from the Bell Laboratories introduced the Statistical Process
Control (SPC) in 1924.

Shewhart had determined in the early years of the twentieth century
that the variations in a production process are the causes of products’
poor quality. He invented the control charts to monitor the production
processes and make the necessary adjustments to keep them under
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control. At that time, statistics as a science was still in its infancy,
and most of its developments took place in the twentieth century. As it
was becoming more and more refined, its application in quality control
became more intense. The whole idea was not to just control quality but
to measure it and accurately report it to ultimately reduce defects and
rework and improve on productivity.

From W. Edward Deming to Genichi Taguchi, statisticians found
ways to use more and more sophisticated statistical tools to improve on
quality. Statistics has since been so intrinsically integrated into quality
control that it is difficult to initiate quality improvement without the
use of statistics. In a production process, there is a positive correlation
between the quality of a product and productivity. Improving the pro-
duction process to where the production of defective parts is reduced
will lead to a decrease in rework and returned products.

1.2.1 Poor quality defined as a deviation
from engineered standards

The quality of a product is one of the most important factors that deter-
mine a company’s sales and profit. Quality is measured in relation to
the characteristics of the products that customers’ expect to find, so the
quality level of the products is ultimately determined by the customers.

The customers’ expectations about a product’s performance, reli-
ability, and attributes are translated into Critical-To-Quality (CTQ)
characteristics and integrated into the products’ design by the design
engineers. While designing the products, engineers must also take into
account the resources’ (machines, people, materials) capabilities—that
is, their ability to produce products that meet the customers’ expecta-
tions. They specify exactly the quality targets for every aspect of the
products.

But quality comes with a cost. The definition of the Cost Of Quality
(COQ) is contentious. Some authors define it as the cost of nonconfor-
mance, that is, how much producing nonconforming products would
cost a company. This is a one-sided approach because it does not con-
sider the cost incurred to prevent nonconformance and, above all in a
competitive market, the cost of improving the quality targets.

For instance, in the case of an LCD (liquid crystal display) manu-
facturer, if the market standard for a 15-inch LCD with a resolution
of 1024 × 768 is 786,432 pixels and a higher resolution requires more
pixels, improving the quality of the 15-inch LCDs and pushing the com-
pany’s specifications beyond the market standards would require the
engineering of LCDs with more pixels, which would require extra cost.

In the now-traditional quality management acceptance, the engi-
neers integrate all the CTQ characteristics in the design of their new
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products and clearly specify the target for their production processes
as they define the characteristics of the products to be sent to the
customers. But because of unavoidable common causes of variation
(variations that are inherent to the production process and that are
hard to eliminate) and the high costs of conformance, they are obliged to
allow some variation or tolerance around the target. Any product that
falls within the specified tolerance is considered to meet the customers’
expectations, and any product outside the specified limits would be con-
sidered as nonconforming.

Even after the limits around the targets are specified, it is impossible
to eliminate variations from the production processes. And since the
variations are nothing but deviations from the engineered targets, they
eventually lead to the production of substandard products. Those poor-
quality products end up being a financial burden for organizations. The
deviations from the engineered standards are statistically quantified
in terms of standard deviation, or sigma (σ ).

1.2.2 Sampling and quality control

The high volumes of mass production, whether in manufacturing or
services, make it necessary to use samples to test the conformance of
production outputs to engineered standards. This practice raises sev-
eral questions:

� What sample size would reflect the overall production?
� What inferences do we make when we use the samples to test the

whole production?
� How do we interpret the results and what makes us believe that the

samples reflect the whole population?

These are practical questions that can only be answered through sta-
tistical analysis.

1.3 Statistical Definition of Six Sigma

Six Sigma is defined as a methodology that aims at a quasi-perfect pro-
duction process. Some authors define it as a methodology that aims at a
rate of 3.4 defects per million opportunities (DPMO), but the 3.4 DPMO
remains very controversial among the Six Sigma practitioners.

Why 6? Why �? And why 3.4 DPMO? To answer these questions, we must
get acquainted with at least three statistical tools: the mean, the stan-
dard deviation, and the normal distribution theory.
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In the design phase of their manufacturing processes, businesses cor-
rectly identify their customers’ needs and expectations. They design
products that can be consistently and economically manufactured to
meet those expectations. Every product exhibits particular character-
istics, some of which are CTQ because their absence or their lack of
conformance to the customers’ requirement can have a negative im-
pact on the reliability of the product and on its value. Because of the
importance of the CTQ characteristics, after deciding what to produce
the design engineers set the nominal values and the design parameters
of the products. They decide on what would be the best design under
current circumstances.

For the sake of discussion, consider a rivet manufacturer. Rivets are
pins that are used to connect mating parts. Each rivet is manufactured
for a given size of hole, so the rivet must exhibit certain characteristics
such as length and diameter to properly fit the holes it is intended for
and correctly connect the mating parts. If the diameter of the shaft is
too big, it will not fit the hole and if it is too small, the connection
will be too loose. To simplify the argument, only consider one CTQ
characteristic—the length of the rivet, which the manufacturer sets
to exactly 15 inches.

1.3.1 Variability: the source of defects

But a lot of variables come into action when the production process
is started, and some of them can cause variations to the process over
a period of time. Some of those variables are inherent to the produc-
tion process itself (referred to as noise factors by Taguchi) and they
are unpredictable sources of variation in the characteristics of the
output. The sources of variation are multiple and can be the result
of untrained operators, unstable materials received from suppliers,
poorly designed production processes, and so on. Because the sources
of variation can be unpredictable and uncontrollable, when it is accept-
able to the customers businesses specify tolerated limits around the
target.

For instance, our rivet manufacturer would allow ±0.002 inches
added to the 15-inch rivets it produces; therefore, 15 inches becomes
the length of the mean of the acceptable rivets.

The mean is just the sum of all the scores divided by their number,

x =
∑

x
N

Because all the output will not necessarily match the target, it becomes
imperative for the manufacturer to be able to measure and control the
variations.
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The most widely used measurements of variation are the range and
the standard deviation. The range is the difference between the highest
and the lowest observed data. Because the range does not take into
account the data in between, the standard deviation will be used in
the attempt to measure the level of deviation from the set target. The
standard deviation shows how the data are scattered around the mean,
which is the target.

The standard deviation (s) is defined as

s =

√√√√√
n∑

i=1
(xi − x)

n − 1

for small samples, where x is the mean, xi is ith rivet observed, n is
the number of rivets observed, and n − 1 is the degrees of freedom. It
is used to derive an unbiased estimator of the population’s standard
deviation.

If the sample is greater than or equal to 30 or the whole population
is being studied, there would be no need for a population adjustment
and the Greek letter σ will be used instead of s. Therefore, the standard
deviation becomes

σ =
√∑

(x − µ)
N

where µ is the arithmetic mean and N represents the population ob-
served.

Suppose that the standard deviation in the case of our rivet manu-
facturer is 0.002, and ±3σ from the mean are allowed. In that case, the
specified limits around a rivet would be 15 ± 0.006 inches (0.002 × 3 =
0.006). So any rivet that measures between 14.994 inches (15 − 0.006)
and 15.006 inches (15 + 0.006) would be accepted, and anything outside
that interval would be considered as a defect.

1.3.2 Evaluation of the process
performance

Once the specified limits are determined, the manufacturer will want
to measure the process performance to know how the output compares
to the specified limits. They will therefore be interested in two aspects
of the process, the process capabilities and the process stability. The
process capability refers to the ability of the process to generate prod-
ucts that are within the specified limits, and the process stability refers
to the manufacturer’s ability to predict the process performance based
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on past experience. In most cases, the SPC is used for that purpose and
control charts are used to interpret the production patterns.

Because it would be costly to physically inspect every rivet that comes
off the production lines, a sample will be taken and audited at specified
intervals of time and an estimation will be derived for the whole pro-
duction to determine the number of defects.

1.3.3 Normal distribution and process
capability

A distribution is said to be normal when most of the observations are
clustered around the mean. In general, manufactured products are nor-
mally distributed and when they are not, the Central Limit Theorem
usually applies. So the normal distribution is used when samples are
taken from the production line and the probability for a rivet being
defective is estimated.

The density function of the normal distribution is

f (x) = 1

σ
√

2π
e−(x−µ)2/2σ 2

The curve associated with that function is a bell-shaped curve that
spreads from −∞ to +∞ and never touches the horizontal line. The
area under the curve represents the probabilities for an event to occur,
and the whole area under the curve is estimated to be equal to 1.

In the graph in Figure 1.4, the area between the USL and the LSL
represents the products in conformance and the darkened areas at the
tails of the curve represent the defective ones.

If the manufacturer uses the sigma scale and sets the specifica-
tions to ±3σ , how many rivets should we expect to be within specifica-
tion?

LSL USL15

Figure 1.4
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TABLE 1.1

Range Percentage of products Percentage of Nonconformance
around µ in conformance nonconforming products out of a million

−1σ to +1σ 68.26 31.74 317,400
−2σ to +2σ 95.46 4.54 45,400
−3σ to +3σ 99.73 0.27 2700
−4σ to +4σ 99.9937 0.0063 63
−5σ to +5σ 99.999943 0.000057 0.57
−6σ to +6σ 99.9999998 0.00000002 0.002

Because the area under the normal curve that uses σ scale has al-
ready been statistically estimated (see Table 1.1), we can derive an
estimation of the quantity of the products that are in conformance.

The probability for a rivet to be between µ − 3σ and µ + 3σ is
0.9973, and the probability for it to be outside the limits will be 0.0027
(1 − 0.9973). In other words, 99.73 percent of the rivets will be within
the specified limit, or 2700 out of 1 million will be defective.

Suppose that the manufacturer improves the production process and
reduces the variation to where the standard deviation is cut in half and
it becomes 0.001. Bear in mind that a higher standard deviation implies
a higher level of variation and that the further the specified limits are
from the target µ, the more variation is tolerated and therefore the
more poor-quality products are tolerated (a 15.0001-inch long rivet is
closer to the target than a 15.005-inch long rivet).

Table 1.2 shows the level of quality associated with σ and the specified
limits (µ + zσ ). Clearly, the quality level at ±6σ after improvement is
the same as the one at ±3σ when σ was 0.002 (14.994, 15.006) but the
quantity of conforming products has risen to 99.9999998 percent and
the defects per million have dropped to 0.002. An improvement of the
process has lead to a reduction of the defects.

TABLE 1.2

(µ = 15) 0.002 0.001

(µ + 1σ ) 15.002 15.001
(µ − 1σ ) 14.998 14.999
(µ + 2σ ) 15.004 15.002
(µ − 2σ ) 14.996 14.998
(µ + 3σ ) 15.006 15.003
(µ − 3σ ) 14.994 14.997
(µ + 4σ ) 15.008 15.004
(µ − 4σ ) 14.998 14.996
(µ + 5σ ) 15.010 15.005
(µ − 5σ ) 14.990 14.995
(µ + 6σ ) 15.012 15.006
(µ − 6σ ) 14.988 14.994
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LSL Initial Mean New Mean USL
3.4 DPMO

Figure 1.5 Caption

What does 3.4 DPMO have to do with all this? We see in Table 1.2 that
a 6σ -level corresponds to 0.002 defects per 1 million opportunities. In
fact, 3.4 DPMO is obtained at about ±4.5σ . But this only applies to a
static process — in other words, to a short-term process.

According to the Motorola Six Sigma advocates, small shifts that are
greater than 1.5σ will be detected and corrective actions taken, but
shifts smaller than 1.5σ can go unnoticed over a period of time. In
the long run, an accumulation of small shifts in the process average
will lead to a drift in the standard deviation of the process. So in the
worst case, the noise factors will cause a process average shift that will
result in it being 1.5σ away from the target, therefore only 4.5σ will be
the distance between the new average process and the closest specified
limit. And 4.5σ corresponds to 3.4 DPMO (Figure 1.5).

Note that manufacturers seldom aim at 3.4 DPMO. Their main objec-
tive is to use Six Sigma for the sake of minimizing defects to the lowest
possible rates and increase customer satisfaction. 3.4 DPMO and the
1.5 sigma shift remain very controversial among the six sigma practi-
tioners.
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Chapter

2
An Overview of Minitab

and Microsoft Excel

Learning Objectives:

� Understanding the primary tools used in Minitab and Excel

The complexity involved in manipulating some statistics formulae and
the desire to get the results quickly have resulted in the creation of a
plethora of statistical software. Most of them are very effective tools at
solving problems quickly and are very easy to use.

Minitab has been around for many years and has proven to be very
sophisticated and easy to use. It has also been adopted by most Six
Sigma practitioners as a preferred tool. The statistics portion of Mi-
crosoft Excel’s functionalities does not match Minitab’s capabilities but
because it is easy to access and easy to use, Excel is widely used by pro-
fessionals.

2.1 Starting with Minitab

From a Microsoft desktop, Minitab is opened like any other program,
either by double-clicking on its icon or from the Windows Start Menu.
Once the program is open, we obtain a window that resembles the one
shown in Figure 2.1. The top part of the window resembles most Mi-
crosoft programs. It has a title bar, a menu bar, and a tool bar.

The session window displays the output of the statistical analy-
sis while the worksheets store the data to be analyzed. The work-
sheets resemble Excel’s spreadsheets but their functionalities are to-
tally different. Some operations can be directly performed on the Excel

23
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Title Bar

Menu Bar

Tool Bar

The Session window is used 
to output the results

Minitab worksheet is different 
from Excel spread sheet 

even though they look alike. 
They do not perform the 
same functions and have 
very few similarities and 

capabilities

Figure 2.1

spreadsheet but would require extra steps when using Minitab. Minitab
does not offer the same flexibility as Excel outside of statistical analysis.

Column header without any text

Column names

Column header for column 
containing a text

Column header for a column 
containing dates

The worksheets come with default column headers. The default headers
start with the letter “C” and a number. If the columns are filled with
numeric data only, their headers remain unchanged; if the columns
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contain text data, “-T” will be added to the default header; if the data
contained in the columns are dates or times, “-D” will be added to the
default header.

Underneath the column headers we have the column names, which
are blank when the Minitab window is first opened. The column names
are entered or pasted with the data. These names are important because
they will follow the data throughout the analysis and will be part of the
output.

2.1.1 Minitab’s menus

Minitab uses some namings on the menu bar that are common to most
Microsoft products. The content and the layout of the File menu are
close to Excel’s File menu with a few exceptions. The shortcuts are the
same in both Excel and Minitab: Ctrl+n is for a new file and Ctrl+p is
for the print function.

File menu. The “New. . . ” option of the File menu will prompt the user
to choose between a new project and a new worksheet. Choosing a
new project will generate a new session window and a new worksheet,
whereas choosing a new worksheet will maintain the current session
window but create a new worksheet.

The “Open Project . . . ” option will list all the previously saved Minitab
projects so that the user can make a selection from prior work. The
“Project Description . . . ” option enables the user to save a project under
a new name along with comments and the date and time.

Will show existing previously 
saved Minitab projects in 
Microsoft open dialog box

{The last projects worked on

{
Store the project name, 

location, date and 
comments

Adds a new worksheet to the 
project, saves existing one

} Import data from other filesor 
existing database
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Edit menu. Except for “Command Line Editor,” “Edit Last Dialog” and
“Worksheet Links,” all the other options are the usual options found on
Microsoft Edit menus. The “Command Line Editor” opens a dialog box
in which the user can type in the commands they would want to execute.

When a value is missing from a set of data in a column, Minitab uses
an asterisk (*) to fill out the empty cell. The “Edit Last Dialog” option
enables the user to modify the default symbol. The symbols may not
change on the worksheet, but once the data are copied and pasted to a
spreadsheet, the selected symbols will show.

Used to add and / or manage 
new links to the project

Data menu. The Data menu helps organize the data before the analyses
are conducted. The first option, “Subset Worksheet . . . ,” generates a new
worksheet and the user can determine what part of the data from the
existing worksheet can be exported to the new one and under what con-
ditions that operation is to be done.
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Used to copy and paste dat 
from active Worksheet to a 
new one. This is done filling 

up the fields in the dialog 
box that opens up when the 

command is clicked.

Divides data in a selected 
worksheet into several 

worksheets.
Also used to unstack data

Combines open worksheets 
into one

Convert Columns into 
rows and rows into 

columns Combines several columns 
into one

Divides previously stacked 
columns into several 

columns

Calc menu. The Calc menu enables options such as the Minitab Calcu-
lator and basic functions such as adding or subtracting columns.

Generates the Minitab 
Calculator which is different 

from the standard 
calculators.{

Provide basic statistics 
calculations for row and 

columns

Helps speed up basic 
calculations such as 

subtracting the mean from 
every observation in a 

column

Creates columns with the 
same pattern such as text or 

numbers.

Essentially used in contour 
plots. Creates vectors.

Generates random numbers 
based on a selected 

probability distribution Lists the probability 
distributions used by Minitab.

Basic functionalities of the Minitab Calculator. The Minitab Calculator is
very different from a regular calculator. It is closer to Excel’s Insert
Function dialog box.
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Column or cell where the
results should be stored

Columns names are 
automatically filled Define the calculations to be 

made. Determine the 
columns or cells to be 
considered for the test.

Example

1. Generate 25 rows of random numbers that follow a Poisson distribution
with a mean of 25 in C1, C2, and C3.

2. Store the square root of C1 in C4.
3. After generating the numbers, sum the three columns and store the result

in C5.
4. Find the medians for each row and store the results in C6.
5. Find all cells in C1 that have greater values than the ones in C2 on the

same rows. Store the results in C7.
6. Find the total value of all the cells in C1 and store the results in C8.

Solution

1. Generating random numbers. Open a new Minitab worksheet. From the
menu bar, select “Calc,” then select “Random Data” and then select “Pois-
son . . . ”
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Fill out the fields in the Poisson distribution dialog box, then press the
“OK” button.

The three first columns will be filled with 25 random numbers following
the Poisson distribution.
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2. Storing the square root of C1 in C4. To get the Minitab Calculator, select
“Calc” from the menu bar and then select “Calculator . . . ”

The Minitab Calculator then appears. In the “Store result in variable”
field, enter “C4.” Select “Arithmetic” from the “Functions” drop-down list
and select “Square root” from the list box. “SQRT(number)” appears in the
“Expression” text box, and enter “C1” in place of number. Then press the
“OK” button and the square root values appear in column C4.

3. Summing the three columns and storing the results in C5. To add up the
columns, the user has two options. One option is to complete the dialog
box as indicated in Figure 2.11, using the “plus” sign, and then pressing
the “OK” button.

Column C5 is then filled with the sum of C1, C2, and C3.
The other option would be to select “Row Statistics” from the “Func-

tions” drop-down list and choose “Sum” from the list box below it.
“RSUM(number, number, . . . )” appears in the “Expression” text box, re-
place number with each of the column names, and then press “OK” and
C5 will be filled with sum of the columns.
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4. Finding the medians for each row and store the results in C6. Remem-
ber that we are not looking for the median within an individual column
but rather across columns. From the “Functions” drop-down list, select
“Row Statistics.” “RMEDIAN(number,number, . . . )” then appears in the
“Expression” text box, and replace each number with C1, C2, and C3, and
then press “OK.” The median values across the three columns appear in
C6.

5. Finding all the cells in column C1 that have greater values than the ones in
column C2 on the same rows. In the field “Store result in variable,” enter
“C7.“ In the “Expression” text box, enter “C1 > C2,” then press “OK” and
the column C7 will be filled with values of 0 and 1. The zeros represent
the cells in C1 whose values are lower than the corresponding cells in
C2.

6. Find the total value of all the cells in C1 and store the results in C8. In
the field “Store result in variable,” enter “C8.” From the “Functions” drop-
down list, select “Statistics” and then choose “Sum” in the list box beneath
it. “SUM(number)” appears in the “Expression” text box, replace number
with “C1,” and then press “OK” and the total should appear in the first
cell of column C8.

Help menu. Minitab has spared no effort to build solid resources under
the Help menu. It contains very rich tutorials is and easy to access. The
Help menu can be accessed from the menu bar but it can also be accessed
from any dialog box. The Help menu contains examples and solutions
with the interpretations of the results. The tutorials can be accessed
by selecting “Help” and then selecting “Tutorials” or by pressing the
“Help” button on any dialog box.

Example The user is running a regression analysis and would like to know
how to interpret the results. To understand how the test is conducted and
how to interpret the results, all that must be done is to open a Regression
dialog box and select the Help button. Select “Stat,” then select “Regression”
and from the drop-down list, select “Regression” again. Once the dialog box
opens, press the “Help” button.
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After pressing “Help,” the tutorial window will appear. The tutorials contain
not only an overview of the topic but also practical examples on how to solve
problems and how to interpret the results obtained.
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Another way to access the Help menu and get interpretations of the results
that are actually generated after conducting an analysis is to right-click
on the output in the session window and select “StatGuide,” or by pressing
Shift+F1.

The StatGuide appears under two windows: MiniGuide and StatGuide. The
MiniGuide contains the links to the different topics that are found on the
StatGuide.

2.2 An Overview of Data Analysis with Excel

Microsoft Excel is the most powerful spreadsheet software on the con-
sumer market today. Like any other spreadsheet software, it is used
to enter, organize, store, and analyze data and display the results in a
comprehensive way. Most of the basic probabilities and descriptive sta-
tistical analyses can be done using built-in tools that are preloaded in
Excel. Some more complex tools required to perform further analyses
are contained in the add-ins found in the “Tools” menu. Excel’s sta-
tistical functionalities are not a match for Minitab. However, Excel is
very flexible and allows the creation of macros to enable the user to
personalize the program and add more capabilities to it.
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The flexibility of Excel’s macros has made it possible to create very
rich and powerful statistical programs that have become widely used.
In this book, we will only use the capabilities built into the basic Excel
package. This will reduce the ability to perform some analyses with
Excel but the use of a specific additional macro-generated program will
require the user to purchase that program.

The basic probability and descriptive statistics analyses are per-
formed through the “Insert Function” tool. The “Insert Function” is
accessed either by selecting its shortcut on the tool bar,

or by selecting “Insert” on the menu bar and then selecting “Func-
tion . . . ”
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In either case, the “Insert Function” dialog box will appear.
This box contains more than just statistical tools. To view all the

available functions, select “All” from the “Select a Category” drop-down
list and all the options will appear in alphabetical order in the “Select
a function” list box. To only view the statistics category, select “Statis-
tical.”

Once the category has been selected, press “OK” and the “Function
Arguments” dialog box appears. The forms that this dialog box takes
depend on the category selected, but areas of the different parts can
be reduced to 5. The dialog box shown in Figure 2.2 pertains to the bi-
nomial distribution.

Once the analysis is completed, it is displayed either on a separate
worksheet or in a preselected field.

2.2.1 Graphical display of data

Both Minitab and Excel display graphics in windows separate from the
worksheets. Excel’s graphs are obtained from the Chart Wizard. The
Chart Wizard is obtained either by selecting “Insert” on the menu bar
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The fields where the data
being analyzed or the 

selected rows or columns 
are entered. 

Details the expected results

Defines what should be 
entered in the active field

Displays the results of the 
analysis

Links to the help menu for 
the selected category

Figure 2.2

and then selecting “Chart . . . ” or by selecting the Chart Wizard shortcut
on the tool bar.

When the Chart Wizard dialog box appears, the user makes a selection
from the “Chart type” list menu and follows the four subsequent steps
to obtain the graph.
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2.2.2 Data Analysis add-in

The tools under the Statistical category in the “Insert Function” dialog
are only for basic probability and descriptive statistics; they are not fit
for more complex data analysis. Analyses such as regression or ANOVA
cannot be performed using the Insert Function tools. These are done
through Data Analysis, which is an add-in that can be easily installed
from the Tools menu.

To install Data Analysis, select “Tools” from the menu bar, then select
“Add-Ins . . . ”
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The Add-Ins dialog box then appears.
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Check the options “Analysis ToolPack” and “Analysis ToolPack — VBA”
and the press the “OK” button. This action will add the “Data Analy-
sis . . . ” option to the Tools menu.
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To browse all the capabilities offered by Data Analysis, select that op-
tion from the Tools menu and then scroll down the Analysis Tools list
box.

These options will be examined more extensively throughout this book.



Chapter

3
Basic Tools for Data Collection,

Organization and Description

Learning Objectives:

� Understand the fundamental statistical tools needed for analysis
� Understand how to collect and interpret data
� Be able to differentiate between the measures of location
� Understand how the measures of variability are calculated
� Understand how to quantify the level of relatedness between vari-

ables
� Know how to create and interpret histograms, stem-and-leaf and box

plot graphs

Statistics is a science of collecting, analyzing, representing, and inter-
preting numerical data. It is about how to convert raw numerical data
into informative and actionable data. As such, it applies to all spheres
of management. The science of statistics is in general divided into two
areas:

� Descriptive statistics, which deals with the analysis and description
of a particular population in its entity. Population in statistics is just
a group of interest. That group can be composed of people or objects
of any kind.

� Inference statistics, which seeks to make a deduction based on an
analysis made using a sample of a population.

This chapter is about descriptive statistics. It shows the basic tools
needed to collect, analyze, and interpret data.

41
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3.1 The Measures of Central Tendency Give
a First Perception of Your Data

In most cases, a single value can help describe a set of data. That value
can give a glimpse of the magnitude or the location of a measurement of
interest. For instance, when we say that the average diameter of bolts
that are produced by a given machine is 10 inches, even though we know
that all the bolts may not have the exact same diameter, we expect their
dimension to be close to 10 inches if the machine that generated them
is well calibrated and the sizes of the bolts are normally distributed.

The single value used to describe data is referred to as a measure of
central tendency or measure of location. The most common measures
of central tendency used to describe data are the arithmetic mean, the
mode, and the median. The geometric mean is not often used but is
useful in finding the mean of percentages, ratios, and growth rates.

3.1.1 Arithmetic mean

The arithmetic mean is the ratio of the sum of the scores to the number
of the scores.

Arithmetic mean for raw data. For ungrouped data—that is, data that has
not been grouped in intervals—the arithmetic mean of a population is
the sum of all the values in that population divided by the number of
values in the population:

µ =
N∑

i=1

Xi

N

where
µ is the arithmetic mean of the population
Xi is the ith value observed
N is the number of items in the observed population
� is the sum of the values

Example Table 3.1 shows how many computers are produced during five
days of work. What is the average daily production?

TABLE 3.1

Day Production

1 500
2 750
3 600
4 450
5 775
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Solution

µ = 500 + 750 + 600 + 450 + 775
5

= 615

Using Minitab. After having pasted the data into a worksheet, select
“Calc” and then “Calculator . . . ”

Select the field where you want to store the results. In this case, we
elected to store it in C3. Select the “Functions” drop-down list, select
“Statistical,” and then select “Mean.” Notice that “MEAN” appears in
the Expression text box with number in parenthesis and highlighted.
Double-click on “Production” in the left-most text box and then press
“OK.”

Then the result appears in C3.
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Another way to get the same result using Minitab would be to select
“Stat,” then “Basic Statistics,” and then “Display Descriptive Statistics.”

After selecting “Production” for the Variables field, select “Statistics”
and check the option “Mean.” Then press “OK,” and press “OK” again.

The result will display as shown in Figure 3.1.

Descriptive Statistics: Production

Variable    Mean 
production 615.0

Figure 3.1
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Using Excel. After having pasted the data into a worksheet, either se-
lect “Insert” and then “Function” or just select the “Insert Function”
shortcut.

In the “Insert Function” dialog box, select “Statistical” and then
“AVERAGE.”
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In the “Function Arguments” dialog box, enter the range of the numbers
in the Number1 field. Notice that the result of the formula shows on the
box even before you press “OK.”

Example Table 3.2 shows the daily production of five teams of workers over
a period of four days. Each team has a different number of workers. What is
the average production per worker during that period?

Total production over the four days = 750 + 400 + 700 + 600 = 2450
Total number of workers = 15 + 13 + 12 + 10 = 50
Mean production per worker = 2450/50 = 49

TABLE 3.2

Number of workers
Day Team per team Production

1 1 15 750
2 2 13 400
3 3 12 700
4 4 10 600

Arithmetic mean of grouped data. Sometimes the available data are
grouped in intervals or classes and presented in the form of a frequency
distribution. The data on income or age of a population are often pre-
sented in this way. It is impossible to exactly determine a measure of
central tendency, so an approximation is done using the midpoints of
the intervals and the frequency of the distribution:

µ =
∑

f X
N
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where µ is the arithmetic mean, X is the midpoint, f is the frequency
in each interval, and N is the total number of the frequencies.

Example The net revenues for a group of companies are organized as shown
in Table 3.3. Determine the estimated arithmetic mean revenue of the com-
panies.

TABLE 3.3

Revenues ($ millions) Number of companies

18–22 3
23–27 17
28–32 10
33–37 15
38–42 9
43–47 3
48–52 14
53–57 5

Solution

Revenues Number of Midpoint of
($ millions) companies revenues fX

18–22 3 20 60
23–27 17 25 425
28–32 10 30 300
33–37 15 35 525
38–42 9 40 360
43–47 3 45 135
48–52 14 50 700
53–57 5 55 275

Total: 76 — 2780

µ =
∑

f X
N

= 2780
76

= 36.579

So the mean revenue per company is $36.579 million.

3.1.2 Geometric mean

The geometric mean is used to find the average of ratios, indexes, or
growth rates. It is the nth root of the product of n values:

GM = n
√

(x1) (x2) ..... (xn)

Suppose that a company’s revenues have grown by 15 percent last year
and 25 percent this year. The average increase will not be 20 percent,
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as with an arithmetic mean, but instead will be

GM =
√

15 × 25 =
√

375 = 19.365

Using Excel. After having pasted the data into a worksheet and select-
ing the field to store the result, select the “Insert Function” shortcut and
in the “Function” dialog box, select “Statistical” and then “GEOMEAN.”

In the “Function Argument” dialog box, enter the range into the Num-
ber1 text box. The results appear by “Formula result.”
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3.1.3 Mode

The mode is not a very frequently used measure of central tendency but
it is still an important one. It represents the value of the observation
that appears most frequently. Consider the following sample measure-
ment:

75, 60, 65, 75, 80, 90, 75, 80, 67

The value 75 appears most frequently, thus it is the mode.

3.1.4 Median

The median of a set of data is the value of x such that half the mea-
surements are less than x and half are greater. Consider the following
set of data:

12, 25, 15, 19, 40, 17, 36

The total n = 7 is odd. If we rearrange the data in order of increasing
magnitude, we obtain:

12, 15, 17, 19, 25, 36, 40

The median would be the fourth value, 19.

3.2 Measures of Dispersion

The measures of central tendency only locate the center of the data; they
do not provide information on how the data are spread. The measures
of dispersion or variability provide that information. If the values of the
measures of dispersion show that the data are closely clustered around
the mean, the mean would be a good representation of the data and a
good and reliable average.

Variation is very important in quality control because it determines
the level of conformance of the production process to the set standards.
For instance, if we are manufacturing tires, an excessive variation in
the depth of the treads of the tires would imply a high rate of defective
products.

The study of variability also helps compare the spread in more than
one distribution. Suppose that the arithmetic mean of a daily produc-
tion of cars in two manufacturing plants is 1000. We can conclude that
the two plants produce the same number of cars every day. But an ob-
servation over a certain period of time might show that one produces
between 950 and 1050 cars a day and the other between 450 and 1550.
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So the second plant’s production is more erratic and has a less stable
production process.

The most widely used measures of dispersion are the range, the vari-
ance, and the standard deviation.

3.2.1 Range

The range is the simplest of all measures of variability. It is the differ-
ence between the highest and the lowest values of a data set.

Range = highest value − lowest value

Example The weekly output on a production line is given in Table 3.4.

TABLE 3.4

Day Production

1 700
2 850
3 600
4 575
5 450
6 900
7 300

The range is 900 − 300 = 600.
The concept of range will be investigated more closely when we study the

Statistical Process Control (SPC).

3.2.2 Mean deviation

The range is very simple; in fact, it is too simple because it only considers
two values in a set of data. It is not informative about the other values. If
the highest and the lowest values in a distribution are both outliers (i.e.,
extremely far from the rest of the observations), then the range would
be a very bad measure of spread. The mean deviation, the variance,
and the standard deviation provide more information about all the data
observed.

Single deviations from the mean for a given distribution measure the
difference between every observation and the mean of the distribution.
The deviation indicates how far an observation is away from a mean
and it is denoted X − µ. The sum of all the deviations from the mean is
given as �(X − µ), and that sum is always equal to zero.

In Table 3.5, the production for Day 1 deviates from the mean by 75
units. Consider the example in Table 3.5 and find the sum of all the
deviations from the production mean.
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TABLE 3.5

Day Production X − µ

1 700 75
2 850 225
3 600 −25
4 575 −50
5 450 −175
6 900 275
7 300 −325

Total 4375 0

Mean 625 —

The mean deviation measures the average amount by which the values
in a population deviate from the mean. Because the sum of the devi-
ations is always equal to zero, it cannot be used to measure the mean
deviation; another method should be used instead.

The mean deviation is the sum of the absolute values of the deviations
from the mean divided by the number of observations in the population.
The absolute value of the sum of the deviations from µ is used because∑

(X − µ) is always equal to zero. The mean deviation is written as

MD =

N∑
i=1

|xi − µ|

N

where xi is the value of each observation, µ is the arithmetic mean of
the observation, |xi − µ| is the absolute value of the deviations from the
mean, and N is the number of observations.

Example Use Table 3.4 to find the mean deviation of the weekly production.

Solution We need to find the arithmetic mean first.

µ = 700 + 850 + 600 + 575 + 450 + 900 + 300
7

= 625

We will add another column for the absolute values of the deviations from
the mean.
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TABLE 3.6

Day Production |X − µ|
1 700 75
2 850 225
3 600 25
4 575 50
5 450 175
6 900 275
7 300 325

Total — 1150

MD = 1150
7

= 164.29

The mean deviation is 164.29 items produced a day. In other words, on av-
erage 164.29 items produced deviated from the mean every day during that
week.

3.2.3 Variance

Because �(X − µ) equals zero and the use of absolute values does not
always lend itself to easy manipulation, the square of the deviation from
the mean is used instead. The variance is the average of the squared
deviation from the arithmetic mean. (For the remainder of this chapter,
whenever we say “mean,” we will understand arithmetic mean.) The
variance for the population mean is denoted by σ 2 for whole populations
or for samples greater than 30:

σ 2 =

N∑
i=1

(Xi − µ)2

N

For samples, the letter s will be used instead and the sum of square of
the deviations will be divided by n – 1.

s2 =

n∑
i=1

(xi − x)2

n − 1

If we want to find the variance for the example in Table 3.4, we will add
a new column for the squared deviation.
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TABLE 3.7

Day Production (X − µ)2

1 700 5625
2 850 50,625
3 600 625
4 575 2500
5 450 30,625
6 900 75,625
7 300 105,625

Total — 271,250

σ 2 = 271, 250
7

= 38, 750

The variance is not only a high number but it is also difficult to interpret
because it is the square of a value. For that reason, we will consider the
variance as a transitory step in the process of obtaining the standard
deviation.

Using Excel, we must to distinguish between the variance based on a
sample (ignoring logical values and text in the sample), variance based
on a sample (including logical values and text), and variance based on
a population. We will use the latter.
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Select “OK,” then select the “Function Arguments” dialog box, and then
select the fields under “Production.”

3.2.4 Standard deviation

The standard deviation is the most commonly used measure of vari-
ability. It is the square root of the variance:

σ =
√

σ 2 =
√∑

(X − µ)2

N

Note that the computation of the variance and standard deviation de-
rived from a sample is slightly different than it is from a whole popula-
tion. The variance in that case is noted as s2 and the standard deviation
as s.

s =
√

s2 =

√√√√√
n∑

i=1
(xi − x)2

n − 1

Sample variances and standard deviations are used as estimators of a
population’s variance and standard deviation. Using n − 1 instead of N
results in a better estimate of the population. Note that the smaller the
standard deviation, the closer the data are scattered around the mean.
If the standard deviation is zero, this means all the data observed are
equal to the mean.
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3.2.5 Chebycheff’s theorem

Chebycheff’s theorem allows us to determine the minimum proportion of
the values that lie within a specified number of the standard deviation
of the mean. Given the number k greater than or equal to 1 and a set
of n measurements a1, a2, . . . an, at least

(
1 − 1

k2

)
of the measurements

lie within k standard deviations of their mean.

Example A sample of bolts taken out of a production line has a mean of 2
inches in diameter and a standard deviation of 1.5. At least what percentage
of the bolts lie within ±1.75 standard deviations from the mean?

Solution

1 − 1
k2

= 1 − 1
1.752

= 1 − 1
3.0625

= 0.6735

At least 67.35 percent of the bolts are within ±1.75 standard deviations from
the mean.

3.2.6 Coefficient of variation

A comparison of one or more measures of variability is not possible
using the variance or the standard deviation. We cannot compare the
standard deviation of the production of bolts to one of the availability of
parts. If the standard deviation of the production of bolts is 5 and that of
the availability of parts is 7 for a given time frame, we cannot conclude
that the standard deviation of the availability of parts is greater than
that of the production of bolts, and therefore the variability is greater
with the parts. For a meaningful comparison to be made, a relative
measure called the coefficient of variation is used.

The coefficient of variation is the ratio of the standard deviation to
the mean:

cv = σ

µ

for a population and

cv = s

X

for a sample.

Example A sample of 100 students was taken to compare their income and
expenditure on books. The standard deviations and means are summarized
in Table 3.8. How do the relative dispersions for income and expenditure on
books compare?
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TABLE 3.8

Statistics Income ($) Expenditure on books

X 750 70
s 15 9

Solution For the students’ income:

cν =
(

15
750

)
× 100 = 2%

For their expenditure on books:

cν =
(

9
70

)
× 100 = 12.86%

The students’ expenditure on books is more than six times as variable as
their income.

3.3 The Measures of Association Quantify
the Level of Relatedness between Factors

Measures of association are statistics that provide information about
the relatedness between variables. These statistics can help estimate
the existence of a relationship between variables and the strength of
that relationship. The three most widely used measures of association
are the covariance, the correlation coefficient, and the coefficient of de-
termination.

3.3.1 Covariance

The covariance shows how the variable y reacts to a variation of the
variable x. Its formula is given as

cov (X, Y) =
∑

(xi − µx)
(
yi − µy

)
N

for a population and

cov (X, Y) =
∑

(xi − x̄) (yi − ȳ)
n − 1

for a sample.

Example Based on the data in Table 3.9, how does the variable y react to a
change in x?
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TABLE 3.9

x y

9 10
7 9
6 3
4 7

Solution

x y x − µx y − µy (x − µx)(y − µy)

9 10 2.5 2.75 6.875
7 9 0.5 1.75 0.875
6 3 −0.5 −4.25 2.125
4 7 −2.5 −0.25 0.625

µx = 6.5 µy =7.25 10.5

cov (X, Y) = 10.5
4

= 2.625

Using Excel In the “Insert Function” dialog box, select “COVAR” and
then select “OK.”

Fill in Array1 and Array2 accordingly and the results are obtained.
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A result of 2.625 suggests that x and y vary in the same direction. As x
increases, so does y, and when x is greater than its mean, so is y.

The covariance is limited in describing the relatedness of x and y. It
can show the direction in which y moves when x changes but it does
not show the magnitude of the relationship between x and y. If we say
that the covariance is 2.65, it does not tell us much except that x and y
change in the same direction. A better measure of association based on
the covariance is used by statisticians.

3.3.2 Correlation coefficient

The correlation coefficient (r) is a number that ranges between −1 and
+1. The sign of r will be the same as the sign of the covariance. When
r equals −1, we conclude that there is a perfect negative relationship
between the variations of the x and the variations of the y. In other
words, an increase in x will lead to a proportional decrease in y. When
r equals zero, there is no relation between the variation in x and the
variation in y. When r equals +1, we conclude that there is a positive
relationship between the two variables—the changes in x and the
changes in y are in the same direction and in the same proportion. Any
other value of r is interpreted according to how close it is to −1, 0, or +1.

The formula for the correlation coefficient is

ρ = Cov (X, Y)
σxσy
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for a population and

r = cov (X, Y)
sxsy

for a sample.

Example Given the data in Table 3.10, find the correlation coefficient be-
tween the availability of parts and the level of output.

TABLE 3.10

Week Parts Output

1 256 450
2 250 445
3 270 465
4 265 460
5 267 462
6 269 465
7 270 466

Solution

TABLE 3.11

Week Parts (x) Output (y) x − µx (x − µx)2 y − µy (y − µy)2 (x − µx)(y − µy)

1 256 450 −7.85714 61.73469 −9 81 70.71429
2 250 445 −13.8571 192.0204 −14 196 194
3 270 465 6.142857 37.73469 6 36 36.85714
4 265 460 1.142857 1.306122 1 1 1.142857
5 267 462 3.142857 9.877551 3 9 9.428571
6 269 465 5.142857 26.44898 6 36 30.85714
7 270 466 6.142857 37.73469 7 49 43

Total 1847 3213 0 366.8571 0 408 386

Mean 263.8571 459

Stdev 7.239348 7.634508

Cov 55.14286

We will have to find the covariance and the standard deviations for the Parts
and the Output to find the correlation coefficient.

ρ = cov (X, Y)
σxσy

The covariance will be

Cov(x, y) = (x − µx)(y − µy)
N

= 386
7

= 55.143
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The standard deviation for the Parts will be

σx =
√∑

(X − µx)2

N
=

√
366.8571

7
= 7.2393

The standard deviation for the Output will be

σY =
√∑

(y − µY)2

N
=

√
408

7
= 7.635

Therefore, the correlation coefficient will be

r = 55.143
7.2393 × 7.635

= 0.9977

Using Minitab. After entering the data in a worksheet, from the Stat
menu select “Basic Statistics” and then “Correlation . . . ”

In the “Correlation” dialog box, insert the variables in the “Variables”
textbox and then select “OK.”
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The output shows that r = 0.998

Correlations: Parts, Output

Pearson correlation of Parts and Output = 0.998 
P-Valve = 0.000

The correlation coefficient r = 0.9977201, which is very close to 1, so we
conclude that there is a strong positive correlation between the avail-
ability of parts and the level of the output.

Using Excel. We can also determine the correlation coefficient using
Excel. After selecting the cell to store the results, select the “Insert
Function” button. In the subsequent dialog box, select “CORREL.”
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In the “Function Arguments” dialog box, insert the ranges of the vari-
ables in Array1 and Array2, and the results appear.

3.3.3 Coefficient of determination

The coefficient of determination (r2) measures the proportion of changes
of the dependent variable y that are explained by the independent vari-
able x. It is the square of the correlation coefficient r and for that reason,
it is always positive and ranges between zero and one. When the coeffi-
cient of determination is zero, the variations of y are not explained by
the variations of x. When r2 equals one, the changes in y are explained
fully by the changes in x. Any other value of r2 must be interpreted
according to how close it is to zero or one.

For the previous example, r was equal to 0.998, therefore r2 = 0.998
× 0.998 = 0.996004. In other words, 99.6004 percent of the variations
of y are explained by the variations in x.

Note that even though the coefficient of determination is the square of
the correlation coefficient, the correlation coefficient is not necessarily
the square root of the coefficient of determination.

3.4 Graphical Representation of Data

Graphical representations can make data easy to interpret by just look-
ing at graphs. Histograms, stem-and-leaf, and box plots are types of
graphs commonly used in statistics.

3.4.1 Histograms

A histogram is a graphical summary of a set of data. It enables the ex-
perimenter to visualize how the data are spread, to see how skewed
they are, and detect the presence of outliers. The construction of a
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histogram starts with the division of a frequency distribution into equal
classes, and then each class is represented by a vertical bar.

Using Minitab, we can construct the histogram for the data in Table
3.11. Go to “Graph→ Histogram” and then, in the “Histogram” dialog
box, select “With Fit” and select “OK.” The “Histogram—With Fit” di-
alog box pops up and insert the variables into the “Graph variables:”
textbox, then select “Multiple Graphs . . . ”

The “Histogram—Multiple Graphs” dialog box pops up, and select the
option In separate panels of the same graph.

Select “OK” and then “OK” again.
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A first glance shows that none of the data set is normally distributed,
and they are both skewed to the right. The two sets of data seem to be
highly correlated.

3.4.2 Stem-and-leaf graphs

A stem-and-leaf graph resembles a histogram and like a histogram, it is
used to visualize the spread of a distribution and indicate around what
values the data are mainly concentrated. The stem-and-leaf graph is
essentially composed of two parts: the stem, which is on the left side of
the graph, and the leaf on the right.

Consider the data in Table 3.12.

TABLE 3.12

302 287 277 355 197 403
278 257 286 388 189 407
313 288 213 178 188 404

The first step in creating a stem-and-leaf graph is to reorganize the
data in ascending or descending order.

178 188 189 197 213 257 277 278 286
287 288 302 313 355 388 403 404 407

The stem will be composed of the first digits of all numbers, and the
leaf will be the second digit. The numbers that start with 1 have 7, 8,
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8 again, and 9 as the second digits. There are three numbers starting
with 4 and all of them have 0 as a second digit.

1 7889
2 1577888
3 158
4 000

The stem-and-leaf graph shows that most of the data are clustered
between 210 and 288. Excel does not provide a function for stem-and-
leaf graphs without using macros.

Generating a stem-and-leaf graph using Minitab Open the Stem and Leaf
Graph.mpj document on the included CD. On the Menu bar, select
“Graph” and then select “Stem and Leaf.” In the “Stem and Leaf” di-
alog box, select “Stem and leaf test” and then select “OK.” The output
should look like that in Figure 3.2.

Note that there is a slight difference in presentation with the graph
we first obtained. This is because the Minitab program subdivides the
first digits.

Stem-and Leaf Display: Stem and leaf

Steam-and-leaf of Stem and leaf N = 18 
Leaf Unit = 10

1
4
5
5
6
8

(3)
7
5
5
4
4
3

1
1
2
2
2
2
2
3
3
3
3
3
4

7
889
1

5
77
888
01

5

8
000

Figure 3.2
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3.4.3 Box plots

The box plot, otherwise known as a box-and-whisker plot or “five num-
ber summary,” is a graphical representation of data that shows how the
data are spread. It has five points of interest, which are the quartiles,
the median, and the highest and lowest values. The plot shows how
the data are scattered within those ranges. The advantage of using the
box plot is that when it is used for multiple variables, not only does it
graphically show the variation between the variables but it also shows
the variations within the ranges.

To build a box plot we need to find the median first.

39 51 54 61 73 78 87 87 92 93
95 97 97 102 102 107 109 111 113

The median is the value in the middle of a distribution. In this case, we
have an uneven distribution: the median is 93, the observation in the
middle. The first quartile will be the median of the observations on the
left of 93—in this case, 73. The upper quartile will be the median of the
observations on the right of 93—therefore, 102.

The first step in drawing the graph will consist in drawing a graded
line and plotting on it the values that have just been determined. The
last step will consist in drawing a rectangle, the corners of which will
be the quartiles. The interquartile range will be the difference between
the upper and lower quartiles, e.g., 102 – 73 = 29.

113

102

93

73

39

The purpose of a box plot is not only to show how the data are spread
but also to make obvious the presence of outliers. To determine the
presence of outliers, we first need to find the interquartile range (IQR).
The IQR measures the vertical distance of the box; it is the difference
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between the upper quartile and the lower quartile values. In this case,
it will be the difference between 102 and 73, and therefore equal to 29.

An outlier is defined as any observation away from the closest quartile
by more than 1.5 IQR. An outlier is considered extreme when it is away
from the closest quartile by more than 3 IQR.

1.5 IQR = 1.5 × 29 = 43.5

3 IQR = 3 × 29 = 87

So any observation smaller than 73 − 43.5 = 29.5 or greater than 102
+ 43.5 = 145.5 is considered as an outlier. We do not have any outliers
in this distribution but the graph shows that the data are unevenly
distributed with more observations concentrated below the median.

Using Minitab, open the worksheet Box Whiskers.mpj on the included
CD, then from the Graph menu, select “Box plot,” then select the “Sim-
ple” option, and then select “OK.”
Select “Parts” in the “Graph variable” textbox and select “OK.” You
should obtain the graph shown in Figure 3.3.

Clicking on any line on the graph would give you the measurements
of the lines of interest.

Figure 3.3
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Using box plots to compare the variability of several distributions. Not only
do box plots show how data are spread within a distribution, they also
help compare variability within and between distributions and even
visualize the existence of correlations between distributions.

Example The data in Table 3.13 represents the temperature of two rooms:
one was built with metal door and window frames and the other one without
any metal. We want to determine if there is a difference between the two
rooms and the level of temperature variability within the two rooms.

Open heat.mpj on the included CD, then from the Graph menu, select
“Boxplots.” In the “Boxplots” dialog box, select “Multiple Y’s Simple” and
then select “OK.” In the “Multiple Y’s Simple” dialog box, insert the “With
Metal” and “Without Metal” values in the Variables textbox and then select
“OK.”

TABLE 3.13

With metal Without metal

52 58
81 62
83 65
79 71
89 59
89 60
98 99
96 60
98 96
99 93
95 87
99 89
99 92
99 85
101 81

The graph of Figure 3.4 should appear.
The graphs show that there is a large disparity between the two groups,

and for the room with metal the heat level is predominantly below the me-
dian. For the room without metal, the temperatures are more evenly dis-
tributed, albeit most of the observations are below the median.

3.5 Descriptive Statistics—Minitab and
Excel Summaries

Both Excel and Minitab offer ways to summarize most of the descrip-
tive statistics measurements in one table. The two columns in Table
3.14 represent the wages paid to employees and the retention rates
associated to each level of wages.
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Figure 3.4

Using Minitab and Excel, we want to find the mean, the variance, the
standard deviation, the median, and the mode for each column.

TABLE 3.14

Wages ($) Retention rate (%)

8.70 72
8.90 72
7.70 65
7.60 66
7.50 64
7.80 67
8.70 72
8.90 73
8.70 72
6.70 59
7.50 67
7.60 67
7.80 68
7.90 69
8.00 71

Using Minitab. Open the file Wage Retention.mpj on the included CD
and from the Stat menu, select “Basic Statistics” and then “Display
Descriptive Statistics . . . ”
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Then in the “Display Descriptive Statistics” dialog box, insert “Wages”
and “Retention” in the Variables textbox.

Then click on the “Statistics” command button and in the “Descriptive
Statistics—Statistics” dialog box, check the options to include in the
output, and then select “OK.” If we want to see the graphs that describe
the columns, select “Graph” and then make the selection. The result
should look like that shown in Figure 3.5.

Figure 3.5

Using Excel. Open the file RetentionWages.xls on the included CD, then
select “Tool” and then “Data Analysis.” In the “Data Analysis” dialog
box, select “Descriptive Statistics” and then select “OK.” We select the
two columns at the same time in the “Input Range,” check the options
Label and Summary Statistics, and then select “OK.” Excel’s output
should look like that of Figure 3.6.
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Figure 3.6

Exercises Bakel Distribution Center maintains a proportion of 0.5 CXS
parts to the overall inventory. In other words, the number of CXS parts
available in the warehouse must always be 50 percent of the inventory
at any given time. But the management has noticed a great deal of
increase in back orders, and sometimes CXS parts are overstocked.

Based on the samples taken in Table 3.15, using Minitab and Excel:

TABLE 3.15

Total inventory Part CXS

1235 125
1234 123
1564 145
1597 156
1456 125
1568 148
1548 195
1890 165
1478 145
1236 123
1456 147
1493 186

a. Show the means and the standard deviations for the two frequen-
cies.

b. Determine if there is a perfect correlation between the inventory
and part CXS.
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c. Find the coefficient of variation for the inventory and part CXS.
d. Find the correlation coefficient for the inventory and part CXS.
e. Determine the portion of variation in the inventory that is ex-

plained by the changes in the volume of part CXS.
f. Using Minitab, draw box plots for the two frequencies on separate

graphs.
g. Determine the stem-and-leaf graphs for the two frequencies.
h. Using Minitab and then Excel, show the descriptive statistics sum-

maries.

The table can be found on file InventoryParts.xls and InventoryParts.mpj
on the accompanying CD.
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4
Introduction to Basic Probability

Learning Objectives:

� Understand the meaning of probability
� Be able to distinguish between discrete and continuous data
� Know how to use basic probability distributions
� Understand when to use a particular probability distribution
� Understand the concept of Rolled Throughput Yield and DPMO and

be able to use a probability distribution to find the RTY

In management, knowing with certitude the effects of every decision on
Operations is extremely important, yet uncertainty is a constant in any
endeavor. No matter how well-calibrated a machine is, it is impossible
to predict with absolute certainty how much part-to-part variation it
will generate. Based on statistical analysis, an estimation can be made
to have an approximate idea about the results. The area of statistics
that deals with uncertainty is called probability.

We all deal with the concept of probability on a daily basis, sometimes
without even realizing it. What are the chances that 10 percent of your
workforce will come to work late? What is the likelihood that the ship-
ment sent to the customers yesterday will reach them on time? What
are the chances that the circuit boards received from the suppliers are
defect free?

So what is probability? It is the chance, or the likelihood, that some-
thing will happen. In statistics, the words “chance” and “likelihood”
are seldom used to describe the possibilities for an event to take place;
instead, the word “probability” is used along with some other basic con-
cepts whose meanings differ from our everyday use. Probability is the

73
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measure of the possibility for an event to take place. It is a number
between zero and one. If there is a 100 percent chance that the event
will take place, the probability will be one, and if it is impossible for it
to happen, the probability will be zero.

An experiment is the process by which one observation is obtained.
An example of an experiment would be the sorting out of defective parts
from a production line. An event is the outcome of an experiment. Deter-
mining the number of employees who come to work late twice a month
is an experiment, and there are many possible events; the possible out-
comes can be anywhere between zero and the number of employees in
the company. A sample space is the set of all possible outcomes in an
experiment.

4.1 Discrete Probability Distributions

A probability distribution shows the possible events and the associated
probability for each of these events to occur. Table 4.1 is a distribu-
tion that shows the weight of a part produced by a machine and the
probability of the part meeting quality requirements.

TABLE 4.1

Weight (g) Probability

5.00 0.99
5.05 0.97
5.10 0.95
5.15 0.94
5.20 0.92
5.25 0.90
5.30 0.88
5.35 0.85

A distribution is said to be discrete if it is built on discrete random
variables. All the possible outcomes when pulling a card from a stack
are finite because we know in advance how many cards are in the stack
and how many are being pulled. A random variable is said to be discrete
when all the possible outcomes are countable.

The four most used discrete probability distributions in business op-
erations are the binomial, the Poisson, the geometric, and the hyper-
geometric distributions.

4.1.1 Binomial distribution

The binomial distribution assumes an experiment with n identical tri-
als, each trial having only two possible outcomes considered as suc-
cess or failure and each trial independent of the previous ones. For the
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remainder of this section, p will be considered as the probability for a
success and q as the probability for a failure.

q = (
1 − p

)
The formula for a binomial distribution is as follows:

P (x) = nCx (p)x (q)n−x

where P(x) is the probability for the event x to happen. The variable x
may take any value from zero to n and nCx represents the number of
possible outcomes that can be obtained.

nCx = n!
x! (n − x)!

The mean, variance, and standard deviation for a binomial distribution
are

µ = np

σ 2 = npq

σ =
√

σ 2 = √
npq

Example A machine produces soda bottles, and 98.5 percent of all bottles
produced pass an audit. What is the probability of having only 2 bottles that
pass audit in a randomly selected sample of 7 bottles?

98.5% = 0.985

p = 0.985

q = 1 − 0.985 = 0.015

7C2
(
0.985

)2 (
0.015

)5 = 0

In other words, the probability of having only two good bottles out of 7 is zero.
This result can also be found using the binomial table found in Appendix
section.

Using Minitab. Minitab has the capabilities to calculate the probabili-
ties for more than just one event to take place. So in Column C1, we
want the probabilities of finding 0 to 10 bottles that pass audit out of
the 7 bottles that we selected. Fill in the selected column C1 as shown in
Figure 4.1. From the Calc menu, select “Probability Distributions,” then
select “Binomial,” and the “Binomial Distribution” dialog box appears.

We are looking for the probability of an event to take place, not for
the cumulative probabilities or their inverse. The number of trials is 7,
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Figure 4.1

and the probability for a success is 0.985. The Input column is the one
that contains the data that we are looking for and the Output column
is the column where we want to store the results; in this case, it is C3.
After making these entries, click “OK.”

The results obtained are shown in Figure 4.2.

Figure 4.2
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If we want to know the probability of having between 3 and 6 bottles
that pass audit, all we would need to do is add the probabilities of having
3, 4, 5, and 6, and we would obtain 0.100391.

Using Excel. After having inserted the values of p, n, and x in selected
cells, select the cell where the result should be output and click the
“Insert Function” ( fx) shortcut button.

When the “Insert Function” dialog box appears, select “Statistical” in
the Or select a category: textbox and select “BINOMDIST” from the
Select a function: list. Then, select “OK.”
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In the “Function Arguments” dialog box, fill the fields as shown in
Figure 4.3.

Figure 4.3
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The result that appears in Formula result shows that it is infinitesimal.
We use zero in the Cumulative field because we are not looking for a
cumulative result.

Exercise. A machine produces ceramic pots, and 68.9 percent of all pots
weigh 5 pounds. What is the probability of selecting 3 pots that weigh
5 pounds in a randomly selected sample of 8 pots?

4.1.2 Poisson distribution

The Poisson distribution focuses on the probability for a number of
events occurring over some interval or continuum where µ, the average
of such an event occurring, is known. For instance, a Quality Control
manager may want to know the probability of finding a defective part
on a manufactured circuit board.

The following example deals with an event that occurs over a contin-
uum, and therefore can be solved using the Poisson distribution. The
formula for the Poisson distribution is

P (x) = µxe−µ

x!

where P(x) is the probability of the event x to occur, µ is the arithmetic
mean number of occurrences in a particular interval, and e is the con-
stant 2.718282. The mean and the variance of the Poisson distribution
are the same, and the standard deviation is the square root of the mean,

µ = σ 2

σ = √
µ =

√
σ 2

Binomial problems can be approximated by the Poisson distribution
when the sample sizes are large (n > 20) and p is small (p ≤ 7). In this
case, µ = np.

Example A product failure has historically averaged 3.84 occurrences per
day. What is the probability of 5 failures in a randomly selected day?

µ = 3.84
x = 5

P
(
5
) = 3.845e−3.84

5!
= 0.149549

The same result can be found in the Poisson table on Appendix 2.

Using Minitab. The process of finding the probability for a Poisson dis-
tribution in Minitab is the same as that for the Binomial distribution.
The output is shown in Figure 4.4.
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Figure 4.4

Using Excel. The same process can be found for Excel. The Excel output
is shown in Figure 4.5.

Exercise. A machine has averaged a 97 percent pass rate per day. What
is the probability of having more than 7 defective products in one day?

4.1.3 Poisson distribution, rolled
throughput yield, and DPMO

Because it seeks to improve business performance, Six Sigma, when-
ever possible should use traditional business metrics. But because it is

Figure 4.5
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deeply rooted in statistical analysis, some of the techniques it uses are
not commonly applied in business. The Defect Per Million Opportunity
(DPMO) and the rolled throughput yield (RTY) are just a few examples.

Defects per unit (DPU) and yield. Consider a company that manufactures
circuit boards. A circuit board is composed of multiple elements such
as switches, resistors, capacitors, computer chips, and so on. Having
every part of a board within specification is critical to the quality of
each manufactured unit. Any time an element of a unit (a switch, for
this example) is outside its specified limits, it is considered as a defect
—in other words, a defect is a nonconforming element on a defective
unit.

To measure the quality of his throughput, the manufacturer will want
to know how many defects are found per unit. Because there are mul-
tiple parts per unit, it is conceivable to have more than one defect on
one unit. If we call the number of defects D and the number of units U,
then the defects per unit (DPU) is

DPU = D
U

Consider 15 units with defects spread as shown in Table 4.2:

TABLE 4.2

Units 2 3 9 1
Defects 3 2 0 1
Total number of defects 2 × 3 = 6 3 × 2 = 6 9 × 0 = 0 1 6 + 6 + 1 = 13

DPU = 13
15

= 0.86667

In this case, the probability of finding defects on a unit follows a Pois-
son distribution because the defects can occur randomly throughout an
interval that can be subdivided into independent subintervals.

P (x) = µxe−µ

x!

where P(x) is the probability for a unit to contain x defects, and µ is
the mean defect per unit. This equation can be rewritten if the DPU is
known,

P (x) = DPUxe−DPU

x!
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Example If the DPU is known to be 0.5, what is the probability of having
two defects on a unit?

P(2) = (0.5)2e−0.5

2!
= 0.25e−0.5

2
= 0.606531 × 0.25

2

= 0.151633
2

= 0.0758165

The probability of having two defects is 0.0758165. What is the probability
of having one defect?

P (1) = 0.51e−0.5

1!
= 0.5e−0.5

1
= 0.303265

The probability of having one defect on a unit will be 0.303265.
The objective of a manufacturer is to produce defect-free products. The

probability to produce defect-free (zero defect) units will be

P (0) = DPU 0e−DPU

0!

Because DPU 0 = 1 and 0! = 1,

P (0) = e−DPU

Manufacturing processes are made up of several operations with several
linked steps. The probability for a unit to pass a step defect-free will be

P (0) = e−DPU

If we call the yield (y) the probability of a unit passing a step the first time
defect-free, then

y = e−DPU

If y is known, DPU can be found by simply rearranging the previous formula,

ln ( y) = −DPU ln e

Because ln e = 1,

DPU = − ln (y)

Example If a process has a first pass yield of 0.759,

DPU = − ln (0.759) = 0.27575

Rolled throughput yield (RTY). A yield measures the probability of a unit
passing a step defect-free, and the rolled throughput yield (RTY) mea-
sures the probability of a unit passing a set of processes defect-free.
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TABLE 4.3

Process 1 Process 2 Process 3 Process 4

0.78 0.86 0.88 0.83

The RTY is obtained by multiplying the individual yields of the differ-
ent processes,

RTY =
n∏

i=1

yi

What is the RTY for a product that goes through four processes with
the respective yields shown in Table 4.3 for each process? What is
the DPU?

RTY = 0.78 × 0.86 × 0.88 × 0.83 = 0.489952

The probability of a unit passing all the processes defect-free is
0.489952. The probability of a defect will be 1 − 0.489952 = 0.510048.

DPU = − ln (y)

DPU = − ln (0.489952) = 0.71345

An opportunity is defined as any step in the production process where a
defect can occur. The Defect Per Opportunity –DPO would be the ratio
of the defects actually found to the number of opportunities.

DPO = D
O

Example The products at a Memphis distribution center have to go through a
cycle made up of 12 processes. The products have to be pulled from the trucks
by transfer associates, they are systemically received by another associate
before being transferred again from the receiving dock to the setup stations,
and from there they are taken to the packaging area where they are packaged
before being transferred to their stocking locations.

On the outbound side, orders are dropped into the system and allocated to
the different areas of the warehouse, and then they are assigned to the pick-
ing associates who pick the products and take them to the packing stations
where another associate packs them. After the products are packed, they are
taken to the shipping dock where they are processed and moved to the trucks
that will ship them to the customers.

Each one of the processes presents an average of five opportunities for
making a mistake and causing defects. So the number of opportunities for a
part that goes through the 12 processes to be defective will be 60. Each part
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has 60 opportunities to be defective. A total of 15 Parts XY1122AB have been
audited and two defects have been found. What is the DPMO?

Solution Find the Defects Per Opportunity (DPO) first:

DPMO = DPO × 106

Total opportunity for defects = 15 × 60 = 900

DPO = 2
900

DPMO = 106 × 2
900

= 2222.222

4.1.4 Geometric distribution

When we studied the binomial distribution, we were only interested in
the probability of a success or a failure to occur and the outcomes had
an equal opportunity to occur because the trials were independent. The
geometric distribution addresses the number of trials necessary before
the first success. If the trials are repeated k times until the first success,
we would have k−1 failures. If p is the probability for a success and q
the probability for a failure, the probability of the first success to occur
at the kth trial will be

P (k, p) = pqk−1

The probability that more than n trials are needed before the first suc-
cess will be

P (k > n) = qn

The mean and standard deviation for the geometric distribution are

µ = 1
p

σ =
√

q
p

Example The probability for finding an error by an auditor in a production
line is 0.01. What is the probability that the first error is found at the 70th
part audited?

Solution

P(k, p) = pqk−1

P (70, 0.01) = 0.01 × 0.9970−1 = 0.004998

The probability that the first error is found at the 70th part audited will be
0.004998.
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Example What is the probability that more than 50 parts must be audited
before the first error is found?

Solution

P (k > n) = qn

P (k > 50) = 0.9950 = 0.605

4.1.5 Hyper-geometric distribution

One of the conditions of a binomial distribution was the independence
of the trials; the probability of a success is the same for every trial.
If successive trials are performed without replacement and the sample
size or population is small, the probability for each observation will vary.

If a sample has 10 stones, the probability of taking a particular stone
out of the 10 will be 1/10. If that stone is not replaced into the sam-
ple, the probability of taking another one will be 1/9. But if the stones
are replaced each time, the probability of taking a particular one will
remain the same, 1/10.

When the sampling is finite (relatively small and known) and the
outcome changes from trial to trial, the hyper-geometric distribution is
used instead of the binomial distribution. The formula for the hyper-
geometric distribution is as follows,

P (x) = Ck
xCN−k

n−x

CN
n

where x is an integer whose value is between zero and n.

x ≤ k

µ = n
(

k
N

)

σ 2 = n
(

k
N

) (
1 − k

N

) (
N − n
N − 1

)

Example A total of 75 parts are received from the suppliers. We are informed
that 8 defective parts were shipped by mistake, and 5 parts have already been
installed on machines. What is the probability that exactly 1 defective part
was installed on a machine? What is the probability of finding less than 2
defective parts?

Solution The probability that exactly 1 defective was installed on a machine
is

P
(
1
) = C8

1C67
4

C75
5

= 6131840
17259390

= 0.355275592
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Figure 4.6

Using Minitab. Here the process of the hyper-geometric distribution is
the same as for the Poisson and binomial distributions. From the Calc
menu, select “Probability Distributions” and then select “Hypergeomet-
ric.” In the “Hypergeometric Distribution” dialog box, enter the data as
shown in Figure 4.6.

The results appear as shown in Figure 4.7.

Figure 4.7
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Figure 4.8



88 Chapter Four

Using Excel. The process of finding the probability for the hyper-
geometric distribution is the same as for the previous distributions.
Click on the “Insert function” ( fx) shortcut button, then in the “In-
sert Function” dialog box, select “Statistical” from the Or select a
category: drop-down list. In the Select a Function textbox, select
“HYPERGEOMDIST” and then select “OK.” Enter the data as indi-
cated in Figure 4.8.

The result appears in Formula result.

Exercise. A sample of 7 items is taken from a population of 19 items
containing 11 blue items. What is the probability of obtaining exactly
3 blue items?

4.2 Continuous Distributions

Most experiments in business operations have sample spaces that do
not contain a finite, countable number of simple events. A distribution
is said to be continuous when it is built on continuous random variables,
which are variables that can assume the infinitely many values corre-
sponding to points on a line interval. An example of a random variable
would be the time it takes a production line to produce one item. In
contrast to discrete variables, which have values that are countable,
the continuous variables’ values are measurements.

The main continuous distributions used in quality operations are the
normal, the exponential, the log-normal, and the Weibull distributions.

4.2.1 Exponential distribution

The exponential distribution closely resembles the Poisson distribution.
The Poisson distribution is built on discrete random variables and de-
scribes random occurrences over some intervals, whereas the exponen-
tial distribution is continuous and describes the time between random
occurrences. Examples of an exponential distribution are the time be-
tween machine breakdowns and the waiting time in a line at a super-
market.

The exponential distribution is determined by the following formula,

P (x) = λe−λx

The mean and the standard deviation are

µ = 1
λ

σ = 1
λ
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The shape of the exponential distribution is determined by only one
parameter, λ. Each value of λ determines a different shape of the curve.
Figure 4.9 shows the graph of the exponential distribution:

X Figure 4.9

The area under the curve between any two points determines the
probabilities for the exponential distribution. The formula used to
calculate that probability is

P (x ≥ a) = e−λa

with a ≥ 0. If the number of events taking place in a unit time has a
Poisson distribution with a mean λ, then the interval between these
events are exponentially distributed with the mean interval time equal
to 1/λ.

Example If the number of items arriving at inspection at the end of a pro-
duction line follows a Poisson distribution with a mean of 10 items an hour,
then the time between arrivals follows an exponential distribution with a
mean between arrival times of µ = 6 munites because

1/λ = 1/10 = 0.1

0.1 × 60 mn = 6 munites

Example Suppose that the time in months between line stoppages on a pro-
duction line follows an exponential distribution with λ = 5

a. What is the probability that the time until the line stops again will be
more than 15 months?

b. What is the probability that the time until the line stops again will be
less than 20 months?

c. What is the probability that the time until the line stops again will be
between 10 and 15 months?

d. Find µ and σ . Find the probability that the time until the line stops will
be between (µ − 3σ ) and (µ + 3σ ).
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Solution

a.

P (x > 15) = e−15λ = e(−15 · 0.5) = e−7.5 = 0.000553

The probability that the time until the line stops again will be more than
15 months is 0.000553.

b.

P (x < 20) = 1 − P (x > 20) = 1 − e−(20 · 0.5) = 1 − e−10

= 1 − 0.0000454 = 0.9999

The probability that the time until the line stops again will be less than
20 months is 0.9999.

c. We have already found that

P (x > 15) = 0.000553

We need to find the probability that the time until the line stops again
will be more than 10 months,

P (x > 10) = e−10 · 0.5 = e−2 = 0.135335

The probability that the time until the line stops again will be between
10 and 15 months is the difference between 0.13533 and 0.000553,

P (10 ≤ x ≤ 15) = 0.13533 − 0.000553 = 0.1348

d. The mean and the standard deviation are given by µ = σ = 1/λ, therefore:

µ = σ = 1
0.5

= 2

(µ − 3σ ) = 2 − 6 = −4
(µ + 3σ ) = 2 + 6 = 8

So we need to find P (−4 ≤ x ≤ 8) which is equal to P
(
0 ≤ x ≤ 8

)
P (0 ≤ x ≤ 8) = 1 − P

(
x ≥ 8

)
Therefore:

P (−4 ≤ x ≤ 8) = 1 − e−8 · 0.5 = 1 − e−4 = 1 − 0.018315638 = 0.9817

The probability that the time until the line stops again will be between
(µ − 3σ ) and (µ + 3σ ) is 0.9817.

4.2.2 Normal distribution

The normal distribution is certainly one of the most widely used prob-
ability distributions. Most of nature and human characteristics are
normally distributed, and so are most production outputs for well-
calibrated machines. Six Sigma derives its statistical definition from
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it. When a population is normally distributed, most of the observations
are clustered around the mean. The mean, the mode, and the median
become good measures of estimates.

The average height of an adult male is 5 feet and 8 inches. This does
not mean all adult males are of that height but more than 80 percent
of them are very close. The weight and shape of apples are very close to
their mean.

The normal probability is given by

f (x) = 1

σ
√

2π
e− (x−µ)2

2σ2

Where
e = 2.7182828

π = 3.1416

The equation of the distribution depends on µ and σ . The curve associ-
ated with that function is bell-shaped and has an apex at the center. It
is symmetrical about the mean, and the two tails of the curve extend in-
definitely without ever touching the horizontal axis. The area between
the curve and the horizontal line is estimated to be equal to one.∫

f (x) dx = 1

σ
√

2π

∫
e− (x−µ)2

2σ2 dx = 1

Mean

0.5

0.5

0.5
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Remember that the total area under the curve is equal to 1, and half of
that area is equal to 0.5. The area on the left side of any point on the
horizontal represents the probability of an event being “less than” that
point of estimate, and the area on the right represents the probability
of an event being “more than” the point of estimate, and the point it-
self represents the probability of an event being “equal to” the point of
estimate.

Mean a b Figure 4.10

In Figure 4.10, the shaded area under the curve between a and b
represents the probability that a random variable assumes a certain
value in that interval.

For a sigma-scaled normal distribution, the area under the curve has
been determined. Approximately 68.26 percent of the area lies between
µ − σ and µ + σ .

68.26%

95.46%

99.73%

µ - 3σ µ - 2σ µ + 2σ µ + 3σµ − σ µ µ + σ

Z-transformation. The shape of the normal distribution depends on two
factors, the mean and the standard deviation. Every combination of
µ and σ represent a unique shape of a normal distribution. Based on
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the mean and the standard deviation, the complexity involved in the
normal distribution can be simplified and it can be converted into the
simpler z-distribution. This process leads to the standardized normal
distribution,

Z = X − µ

σ

Because of the complexity of the normal distribution, the standardized
normal distribution is often used instead.

Consider the following example. The weekly profits of a large group of
stores are normally distributed with a mean of µ = 1200 and a standard
deviation of σ = 200. What is the Z value for a profit for x = 1300? For
x = 1400?

For x = 1300 For x = 1400

Z = 1300 − 1200
200

= 0.5 Z = 1400 − 1200
200

= 1

Example In the example above, what is the percentage of the stores that
make $1500 or more a week?

Solution

Z = 1500 − 1200
200

= 300
200

= 1.5

On the Z score table (Appendix 3), 1.5 corresponds to 0.4332. This represents
the area between $1200 and $1500. The area beyond $1500 is found by de-
ducting 0.4332 from 0.5 (0.5 is half of the area under the curve). This area
is 0.0668; in other words, 6.68 percent of the stores make more than $1500
week.

0.4332

Using Minitab. Open a Minitab worksheet and enter “1500” in the first
cell of column C1. Then from the Calc menu, select the “Probability
distributions” option and then select “Normal.” Fill in the fields in the
“Normal Distribution” dialog box as indicated in Figure 4.11 and then
select “OK.”
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Figure 4.11

The result appears in C2, the column we chose to store the result.

The question that was asked was, “What is the percentage of the
stores that make $1500 or more a week?” A total of 0.933192, or 93.3192
percent, is the percentage of the stores that make less than $1500. The
percentage of stores that make more than $1500 will be 100 − 93.3192
= 0.066807, or 6.6807 percent.

6.6807%

93.319%

Figure 4.12
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Figure 4.13

The darkened tail of the area under the curve in Figure 4.12 repre-
sents the stores that make more than $1500, and the area on the left
of this area represents the stores that make less than that amount.

Using Excel. We can use Excel to come to the same result. Click on
the “Insert Function” ( fx) button, then select “Statistical” from the Or
select a category: drop-down list, select “NORMDIST” from the Select
a function list, and the “Function Argument” dialog box appears. Fill
in the fields as indicated in Figure 4.13. Notice that for Cumulative we
entered “true” — this is because the question was asking for the stores
that make more. Had the question been asked for the stores that make
exactly $1500, then we would have entered “false.”

Example A manufacturer wants to set a minimum life expectancy on a newly
manufactured light bulb. A test has revealed a mean of µ = 250 hours and
a standard deviation of σ = 15. The production of light bulbs is normally
distributed. The manufacturer wants to set the minimum life expectancy of
the light bulbs so that less than 5 percent of the bulbs will have to be replaced.
What minimum life expectancy should be put on the light bulb labels?

Solution

The shaded area in Figure 4.14 under the curve between x and the end of the
tail represents the 5 percent (or 0.0500) of the light bulbs that might need
to be replaced. The area between x and µ (250) represents the 95 percent of
good light bulbs.
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250X

Figure 4.14

To find Z, we must deduct 0.0500 from 0.500 (0.500 represents half of the
area under the curve)

0.5 − 0.05 = 0.45

The result 0.4500 corresponds to 1.645 on the Z table (Appendix 3). Because
the value is to the left of µ,

Z = −1.645

Z = X − 250
15

= −1.645

x = 225.325

The minimum life expectancy for the light bulb will be 225.325 hours.

Example The mean number of defective parts that come from a production
line is µ = 10.5 with a standard deviation of σ = 2.5. What is the probability
that the number of defective parts for a randomly selected sample will be
less than 15?

Solution

Z = 15 − 10.5
2.5

= 1.8

The result 1.8 corresponds to 0.4641 on the Z table (Appendix 3). So the
probability that the number of defective parts will be less than 15 is 0.9641
(0.5 + 0.4641).

0.4641
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4.2.3 The log-normal distribution

Along with the Weibull distribution, the log-normal distribution is fre-
quently used in risk assessment, in reliability, and in material strength
and fatigue analysis. A random variable is said to be log-normally dis-
tributed if its logarithm is normally distributed. Because the lognormal
distribution is derived from the normal distribution, the two share most
of the same properties. The formula of the log-normal distribution is

f (x) = 1

xσ
√

2π
e− 1

2

(
ln z−µ

σ

)
, x > 0

where µ represents the log of the mean and σ , the scale parameter,
represents the log of the standard deviation.

The log-normal cumulative distribution is

F (x) = θ

(
ln x − µ

σ

)

and the reliability function is

R(x) = 1 − F (x)

Reliability is defined as the probability that the products will be func-
tional throughout their engineered specified life-time. where θ (x) rep-
resents the standard cumulative distribution function.

σ = 0.5

σ = 2

σ = 4
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The shape of the log-normal distribution depends on the scale param-
eter, σ
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Chapter

5
How to Determine, Analyze, and

Interpret Your Samples

Learning Objectives:

� Understand the importance of sampling in manufacturing and services
� Understand how sample sizes are determined
� Understand the Central Limit Theorem
� Estimate population parameters based on sample statistics

Sampling consists of taking a subset of a population for analysis to
make an inference about the population from which the samples were
taken. It is a method very often used in quality control. In a large
scale production environment, testing every single product is not cost-
effective because it would require a plethora of manpower and a great
deal of time and space.

Consider a company that produces 100,000 tires a day. If the company
is open 16 hours a day (two shifts) and it takes an employee 10 min-
utes to test a tire, the testing of all the tires would require one million
minutes, or 16,667 hours, and the company would need at least 2084
employees in the quality control department to test every single tire
that comes out of production, as well as a tremendous amount of space
for the QA department and the outbound inventory.

Machine productions are generally normally distributed when the
machines are well-calibrated. For a normally distributed production
output, taking a sample of the output and testing it can help determine
the quality level of the whole production. Under some specific condi-
tions, even if the production output is not normally distributed, sam-
pling can be used as a method for estimating population parameters.

99
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5.1 How to Collect a Sample

Sampling consists of testing a subset of the population to derive a con-
clusion for the whole population. Depending on the type of data being
analyzed and the purpose of the analysis, several methods can be used
to collect samples. The way the samples are collected and their sizes
are crucial for the statistics derived from their analysis to be reflective
of the population parameters.

First of all, it is necessary to distinguish between random and nonran-
dom sampling. In a random sampling, all the items in the population are
presumed identical and they have the same probability of being selected
for testing. For instance, the products that come from a manufacturing
line are presumed identical and the auditor can select any one of them
for testing. Albeit sampling is more often random, nonrandom sampling
is also used in production. For example, if the production occurs over 24
hours and the auditor only works 4 hours a day, the samples he or she
takes cannot be considered random because they can only have been
produced by the people who work on the same shift as the auditor.

5.1.1 Stratified sampling

Stratified sampling begins with subdividing the population being stud-
ied into groups and selecting the samples from each group. In so doing,
the opportunities for errors are significantly reduced. For instance, if
we are testing the performance of a machine based on its output and
it produces several different products, when sampling the products it
would be more effective to subgroup the products by similarities.

5.1.2 Cluster sampling

In stratified sampling, the groupings are homogeneous—all the items
in a group are identical. In cluster sampling, every grouping is repre-
sentative of the population; the items it contains are diverse.

5.1.3 Systematic sampling

In a systematic sampling, the auditor examines the pattern of the pop-
ulation and determines the size of the sample he or she wants to take,
decides the appropriate intervals between the items he or she would
select, and then takes every ith item from the population.

5.2 Sampling Distribution of Means

If the means of all possible samples are obtained and organized, we
could derive the sampling distribution of the means.
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Consider the following example. We have five items labeled 5, 6, 7, 8
and 9 and we want to create a sampling distribution of the means for
all the items. The size of the samples is two, so the number of samples
will be

5C2 = 5!
2!(5 − 2)!

= 5 × 4 × 3 × 2 × 1
(2 × 1)(3 × 2 × 1)

= 10

Because the number of samples is 10, the number of means will also
be 10. The samples and their means will be distributed as shown in
Table 5.1.

TABLE 5.1

Combinations Means

(6, 5) 5.5
(6, 7) 6.5
(6, 8) 7.0
(6, 9) 7.5
(5, 7) 6.0
(5, 8) 6.5
(5, 9) 7.0
(7, 8) 7.5
(7, 9) 8.0
(8, 9) 6.5

Exercise. How many samples of five items can we obtain from a popu-
lation of 30?

Exercise. Based on the data in Table 5.2, build a distribution of the
means for samples of two items.

TABLE 5.2

9 12 14 13 12 16 15

5.3 Sampling Error

The sample statistics may not always be exactly the same as their cor-
responding population parameters. The difference is known as the sam-
pling error.

Suppose a population of 10 bolts has diameter measurements of 9,
11, 12, 12, 14, 10, 9, 8, 7, and 9 mm. The mean µ for that population
would be 10.1 mm. If a sample of only three measurements—9, 14, and
10 mm—is taken from the population, the mean of the sample would
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be (9 + 14 + 10)/3 = 11 mm and the sampling error (E) would be

E = X − µ = 11 − 10.1 = 0.9

Take another sample of three measurements — 7, 12, and 11 mm. This
time, the mean will be 10 mm and the sampling error will be

E = X − µ = 10 − 10.1 = −0.1

If another sample is taken and estimated, its sampling error might be
different. These differences are said to be due to chance.

We have seen in the example of the bolt diameters that the mean of
the first sample was 11 mm and the mean of the second was 10 mm. In
that example, we had 10 bolts, and if all possible samples of three were
computed, there would have been 120 samples and means.

N Cn = N!
n! (N − n)!

= 10!
3!(10 − 3)!

= 120

Exercise. Based on the population given in Table 5.3, what is the
sampling error for the following samples: (9, 15), (12, 16), (14, 15), and
(13, 15).

TABLE 5.3

9 12 14 13 12 16 15

So if it is possible to make mistakes while estimating the population’s
parameters from a sample, how can we be sure that sampling can help
get a good estimate? Why use sampling as a means of estimating the
population parameters?

The Central Limit Theorem can help us answer these questions.

5.4 Central Limit Theorem

The Central Limit Theorem states that for sufficiently large sample
sizes (n ≥ 30), regardless of the shape of the population distribution, if
samples of size nare randomly drawn from a population that has a mean
µ and a standard deviation σ , the samples’ means X are approximately
normally distributed. If the populations are normally distributed, the
samples’ means are normally distributed regardless of the sample sizes.
The implication of this theorem is that for sufficiently large populations,
the normal distribution can be used to analyze samples drawn from
populations that are not normally distributed, or whose distribution
characteristics are unknown.

When means are used as estimators to make inferences about a pop-
ulation’s parameters and n ≥ 30, the estimator will be approximately
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normally distributed in repeated sampling. The mean and standard
deviation of that sampling distribution are given as

µx = µ

σx = σ√
n

where µX is the mean of the samples and σX is the standard deviation
of the samples. If we know the mean and the standard deviation for the
population, we can easily derive the mean and the standard deviation
for the sample distribution,

µ = µX

σ = σX
√

n

Example Gajaga Electronics is a company that manufactures circuit boards.
The average imperfection on a board is µ = 5 with a standard deviation of
σ = 2.34 when the production process is under statistical control. A random
sample of n = 36 circuit boards has been taken for inspection and a mean of
x = 6 defects per board was found. What is the probability of getting a value
of x ≤ 6 if the process is under control?

Solution Because the sample size is greater than 30, the Central Limit The-
orem can be used in this case even though the number of defects per board
follows a Poisson distribution. Therefore, the distribution of the sample mean
x is approximately normal with the standard deviation

σx = σ√
n

= 2.34√
36

0.39

z = x − µ

σ/
√

n
= 6 − 5

0.39
= 1

0.39
= 2.56

The result Z = 2.56 corresponds to 0.4948 on the table of normal curve areas
(Appendix 3).

0.5

0.5

0.4948

1–0.9948 = 0.0052

Remember from our normal distribution discussion that the total area under
the curve is equal to one and half of that area is equal to 0.5. The area on the
left side of any point on the horizontal line represents the probability of an
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event being “less than” that point of estimate, the area on the right represents
the probability of an event being “more than” that point of estimate, and that
the point itself represents the probability of an event being “equal to” that
point of estimate. Therefore, the probability of getting a value of x ≤ 6 is
0.5 + 0.4948 = 0.9948.

P
(
x ≤ 6

) = 0.9948

We can use Minitab to come to the same result. From the Stat menu, select
“Basic Statistics” and then select “1-Sample Z. . . ”

In the “1-Sample Z” dialog box, fill in the fields as indicated in Figure 5.1,
then select “OK.”

Figure 5.1
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Example The average number of parts that reach the end of a production line
defect-free at any given hour of the first shift is 372 parts with a standard
deviation of 7. What is the probability that a random sample of 34 different
productions’ first-shift hours would yield a sample mean between 369 and
371 parts that reach the end of the line defect-free?

Solution In this case, µ = 372, σ = 7, and n = 34. We must determine the
probability of having the mean between 369 and 371. We will first find the
probability that the mean would be equal to 369 and then for it to be equal
to 371.

z = 369 − 372
7√
34

= −3
1.2

= −2.5

In the Z score table in Appendix 3, a value of 2.5 corresponds to 0.4938.

z = 371 − 372
7√
34

= −1
1.2

= −0.8333

In the Z score table in Appendix 3, a value of 0.833 corresponds to 0.2967.

0.2967 0.4938
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The probability for the mean to be within the interval [369, 371] will be the
difference between 0.4938 and 0.2967, which is equal to 0.1971.

5.5 Sampling from a Finite Population

The previous example is valid for an extremely large population. Sam-
pling from a finite population will require some adjustment called the
finite correction factor:

f c =
√

N − n
N − 1

The variable Z will therefore become

Z = x − µ

σ√
n

√
N−n
N−1

Example A city’s 450 restaurant employees average $35 in tips per day with
a standard deviation of $9. If a sample of 50 employees is taken, what is the
probability that the sample will have an average of less than $37 tips a day?

Solution

N = 450

n = 50

µ = 35

σ = 9

x = 37

z = 37 − 35

9√
50

√
400
449

= 2
1.27 ∗ 0.89

= 2
1.13

= 1.77

On the Z score table (Appendix 3), a value of 1.77 corresponds to 0.4616;
therefore the probability of getting an average daily tip of less than $37 will
be 0.4616 + 0.5 = 0.9616.

If the finite correction factor were not taken into account, Z would have
been 1.57, which corresponds to 0.4418 on the Z score table, and therefore
the probability of having a daily tip of less than $37 would have been 0.9418.

5.6 Sampling Distribution of p

When the data being analyzed are measurable, as is the case of the
two previous examples or in the case of distance or income, the sample
mean is often privileged. However, when the data are countable—as in
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the case of people in a group, or defective items on a production line—
the sample proportion is the statistic of choice.

The sample proportion p applies to situations that would have re-
quired a binomial distribution where p is the probability for a success
and q the probability for a failure, with q = 1 − p. When a random
sample of n trials is selected from a binomial population (that is, an
experiment with n identical trials with each trial having only two pos-
sible outcomes considered as success or failure) with parameter p, the
sampling distribution p of the sample proportion will be

p = x
n

where x is the number of success. The mean and standard deviation
will be

µp = p

σp =
√

pq
n

If 0 ≤ µp ± 2σp ≤ 1, then the sampling distribution of p can be approx-
imated using the normal distribution.

Example In a sample of 100 workers, 25 might be coming late once a week.
The sample proportion p of the latecomers will be 25/100 = 0.25. In this
example,

µp = 0.25

σp =
√

0.25 × 0.75
100

= 0.0433

If np > 5 and nq > 5, the Central limit Theorem applies to the sample pro-
portion. The Z formula for the sample proportion is given as

Z = p − p
σp

= p − p√
pq
n

where p is the sample proportion, p is the population proportion, n is the
sample size, and q = 1 − p.

Example If 40 percent of the parts that come off a production line are defec-
tive, what is the probability of taking a random sample of size 75 from the
line and finding that 70 percent or less are defective?
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Solution

p = 0.4
p = 0.7
n = 75

Z = 0.7 − 0.4√
0.4 × 0.6

75

= 0.2
0.057

= 3.54

In the standard normal distribution table (Appendix 3), a value of 3.54 cor-
respond to 0.4998. So the probability of finding 70 percent or less defective
parts is 0.5 + 0.4998 = 0.9998.

Example Forty percent of all the employees have signed up for the stock
option plan. An HR specialist believes that this ratio is too high. She takes
a sample of 450 employees and finds that 200 have signed up. What is the
probability of getting a sample proportion larger than this if the population
proportion is really 0.4?

Solution

p = 0.4
q = 0.6
n = 450
p = 0.44

Z = 0.44 − 0.4√
0.4 × 0.6

450

= 0.04
0.0231

= 1.73

This corresponds to 0.4582 on the standard normal distribution table. The
probability of getting a sample proportion larger than 0.4 will be

0.5 − 0.4582 = 0.0418.

5.7 Estimating the Population Mean with
Large Sample Sizes

Suppose a company has just developed a new process for prolonging
the life of a light bulb. The engineers want to be able to date each light
bulb to determine its longevity, yet it is not possible to test each light
bulb in a production process that generates hundreds of thousands of
light bulbs a day. But they can take a random sample and determine
its average longevity, and from there they can estimate the longevity of
the whole population.

Using the Central Limit Theorem, we have determined that the Z
value for sample means can be used for large samples.

z = X − µ

σ/
√

n
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By rearranging this formula, we can derive the value of µ,

µ = X − Z
σ√
n

Because Z can be positive or negative, a more accurate formula
would be

µ = X ± Z
σ√
n

In other words, µ will be within the following interval:

X − Z
σ√
n

≤ µ ≤ X + Z
σ√
n

where

X − Z
σ√
n

is the lower confidence limit (LCL) and

X + Z
σ√
n

is the upper confidence limit (UCL).

But a confidence interval presented as such does not take into account
α, the area under the normal curve that is outside the confidence inter-
val. α measures the confidence level. We estimate with some confidence
that the mean µ is within the interval

X − Z
σ√
n

≤ µ ≤ X + Z
σ√
n

But in this case, we cannot be absolutely certain that it is within this
interval unless the confidence level is 100 percent. For a two-tailed
normal curve, if we want to be 95 percent sure that µ is within that
interval, the confidence level will be equal to 0.95, (1 − α) or (1 − 0.05),
and the areas under the tails will be

α/2 = 0.05/2 = 0.025

Therefore

Zα/2 = Z0.025
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TABLE 5.4

Confidence
interval (1 − α) α Zα/2

0.90 0.10 1.645
0.95 0.05 1.960
0.99 0.01 2.580

which corresponds to a value of 1.96 on the Z score table (Appendix 3).
The confidence interval should be rewritten as

X − Zα/2
σ√
n

≤ µ ≤ X + Zα/2
σ√
n

or

X − Z.025
σ√
n

≤ µ ≤ X + Z.025
σ√
n

Table 5.4 shows the most commonly used confidence coefficients and
their Z-score values.

Example A survey was conducted of companies that use solar panels as a
primary source of electricity. The question that was asked was this: How
much of the electricity used in your company comes from the solar panels? A
random sample of 55 responses produced a mean of 45 megawatts. Suppose
the population standard deviation for this question is 15.5 megawatts. Find
the 95 percent confidence interval for the mean.

Solution

n = 55

X = 45

σ = 15.5

Zα/2 = 1.96

45 − 1.96
15.5√

55
≤ µ ≤ 45 + 1.96

15.5√
55

40.90 ≤ µ ≤ 49.1

We can be 95 percent sure that the mean will be between 40.9 and 49.1
megawatts. In other words, the probability for the mean to be between 40.9
and 49.1 will be 0.95.

P (40.9 ≤ µ ≤ 49.1) = 0.95

Using Minitab. From the Stat menu, select “Basic Statistics” and then
select “1-Sample Z. . . ” In the “1-Sample Z” dialog box, fill in the fields
as indicated in Figure 5.2 and then select “OK.”



How to Determine, Analyze, and Interpret Your Samples 111

Figure 5.2

The results appear as shown in Figure 5.3.

One-Sample Z

The assumed standard deviation = 15.5

N
55

Mean
45.0000

SE Mean 
2.0900

95% CI 
(40.9036, 49.0964)

Figure 5.3

Example A sample of 200 circuit boards was taken from a production line,
and it revealed the number of average defects to be 7 with a standard devia-
tion of 2. What is the 95 percent confidence interval for the population mean
µ?

Solution When the sample size is large (n ≥ 30), the sample standard devia-
tion can be used as an estimate of the population standard deviation.

X = 7
s = 2

7 − 1.96
2√
200

≤ µ ≤ 7 + 1.96
2√
200

6.723 ≤ µ ≤ 7.277
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The Minitab output is shown in Figure 5.4.

One-Sample Z

The assumed standard deviation = 2

N
200

Mean
7.00000

SE Mean 
0.14142

95% CI 
(6.72282, 7.27718)

Figure 5.4

In repeated sampling, 95 percent of the confidence intervals will enclose
the average defects per circuit board for the whole population µ.

Example From the previous example, what would the interval have been
like if the confidence interval were 90 percent?

Solution

7 − 1.645
2√
200

≤ µ ≤ 7 + 1.645
2√
200

6.77 ≤ µ ≤ 7.233

The Minitab output is shown in Figure 5.5.

One-Sample Z

The assumed standard deviation = 2

N
200

Mean
7.00000

SE Mean 
0.14142

90% CI 
(6.76738, 7.23262)

Figure 5.5

Exercise. The mean number of phone calls received at a call center per
day is 189 calls with a standard deviation of 12. A sample of 35 days
has been taken for analysis, what would be the probability for the mean
to be between 180 and 193 at a confidence level of 99 percent?

In repeated sampling, 90 percent of the confidence intervals will en-
close the average defects per circuit board for the whole population µ.
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5.8 Estimating the Population Mean with
Small Sample Sizes and � Unknown:
t-Distribution

We have seen that when the population is normally distributed and
the standard deviation is known, µ can be estimated to be within the
interval X ± Zα/2

σ√
n. But as in the case of the previous example, σ is not

known; in these cases, it can be replaced by S, the sample’s standard
deviation, and µ is found within the interval X ± Zα/2

s√
n. Replacing σ

with S can only be a good approximation if the sample sizes are large
(n > 30). In fact, the Z formula has been determined not to always gen-
erate normal distributions for small sizes if the population is not nor-
mally distributed. So in the case of small samples and when σ is not
known, the t-distribution is used instead.

The formula for the t-distribution is given as

t = X − µ

s/
√

n

This equation is identical to the one for the Z formula but the tables
used to determine the values are different from the ones used for the Z
values.

Just as in the case of the Z formula, the t formula can also be ma-
nipulated to estimate µ, but because the sample sizes are small, to not
produce a biased result we must convert of them to degrees of freedom
(df ),

df = n − 1

So the mean µ will be found within the interval

tα/2,n−1 ± X − µ

s/
√

n

Therefore,

X ± tα/2,n−1
s√
n

or

X − tα/2,n−1
S√
n

≤ µ ≤ X + tα/2,n−1
S√
n

Example A manager of a car rental company wants to estimate the average
number of times luxury cars would be rented a month. She takes a random
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sample of 19 cars that produces the following number of times the cars are
rented in a month. result:

3, 7, 12, 5, 9, 13, 2, 8, 6, 14, 6, 1, 2, 3, 2, 5, 11, 13, 5

She wants to use these data to construct a 95 percent confidence interval to
estimate the average.

Solution

3 + 7 + 12 + 5 + 9 + 13 + 2 + 8 + 6 + 14 + 6 + 1 + 2 + 3 + 2
+ 5 + 11 + 13 + 5 = 127

X = 127
19

= 6.68

s = 4.23

n = 19

df = n − 1 = 18

From the t table in Appendix 4,

t.005·25 = 2.101

6.68 − 2.101
4.23√

19
≤ µ ≤ 6.68 + 2.101

4.23√
19

4.641 ≤ µ ≤ 8.72

P(4.641 ≤ µ ≤ 8.72) = 0.99

The probability for µ to be between 4.64 and 8.72 is 0.95.

Using Minitab. Open the file Car rental.mpj on the included CD and
from the Stat menu, select “Basic Statistics” and then select “1-Sample
t. . . ” Select “Samples in Columns” and insert the column title (C1) into
the textbox. Select “Options,” and the default for the confidence interval
should be 95.0 percent. Select the Alternative from the drop-down list
and select Not equal, then select “OK” and “OK” once again.

The Minitab output will be

5.9 Chi Square (�2) Distribution

In quality control, in most cases the objective of the auditor is not to
find the mean of a population but rather to determine the level of vari-
ation of the output. For instance, they would want to know how much
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variation the production process exhibits about the target to see what
adjustments are needed to reach a defect-free process.

We have seen that if the means of all possible samples are obtained
and organized we can derive the sampling distribution of the means.
The same principle applies to the variances, and we would obtain the
sampling distribution of the variances. Whereas the distribution of the
means follows a normal distribution when the population is normally
distributed or when the samples are greater than 30, the distribution
of the variance follows a chi square (χ2) distribution.

We have already seen that the sample variance is determined as

S2 =
∑

(X − X )2

n − 1

The χ2 formula for single variance is given as

χ2 = (n − 1)S2

σ 2

The shape of the χ2 distribution resembles the normal curve but it is
not symmetrical, and its shape depends on the degrees of freedom.

The χ2 formula can be rearranged to find σ 2. The value σ 2 will be
within the interval

(n − 1)S2

χ2
α/2

≤ σ 2 ≤ (n − 1)S2

χ2
1−α/2

with a degree of freedom of n−1.

Example A sample of 9 screws was taken out of a production line and the
sizes of the diameters are shown in Table 5.5.
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TABLE 5.5

13.00 mm
13.00 mm
12.00 mm
12.55 mm
12.99 mm
12.89 mm
12.88 mm
12.97 mm
12.99 mm

Estimate the population variance σ 2 with 95 percent confidence.

Solution We need to determine the point of estimate, which is the sample’s
variance.

S2 = 0.1122

with a degree of freedom (df ) of n − 1 = 8. Because we want to estimate σ with
a confidence level of 95 percent,

α = 1 − 0.95 = 0.05

α/2 = .025

1 − α/2 = 0.975

So σ 2 will be within the interval

8 × 0.1122
χ2

0.025

≤ σ 2 ≤ 8 × 0.1122
χ2

0.975

From the χ2 table in Appendix 5, the values of χ2
0.025 and χ2

0.975 for a degree
of freedom of 8 are 17.5346 and 2.17973, respectively.

So the confidence interval becomes

0.8976
17.5346

≤ σ 2 ≤ 0.8976
2.17973

0.0512 ≤ σ 2 ≤ 0.412

and

P (0.0512 ≤ σ 2 ≤ 0.412) = 0.95

The probability for σ 2 to be between 0.0512 and 0.412 is 0.95.

Exercise. From the data in Table 5.6, find the population’s variance at
a confidence level of 99 percent.
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TABLE 5.6

23 25 26 24 28 39 31 38 37 36

5.10 Estimating Sample Sizes

In most cases, sampling is used in quality control to make an inference
for a whole population because of the cost associated in actually study-
ing every individual part of that population. But again, the question of
the sample size arises. What size of a sample best reflects the condition
of the whole population being estimated? Should we consider a sam-
ple of 150 or 1000 of products from a production line to determine the
quality level of the output?

5.10.1 Sample size when estimating
the mean

At the beginning of this chapter, we defined the sampling error E as
being the difference between the sampling mean X and the population
mean µ.

E = X − µ

We also have seen when studying the sampling distribution of X that
when µ is being determined, we can use the Z formula for sampling
means,

Zα/2 = X − µ

σ/
√

n

We can clearly see that the numerator is nothing but the sampling error,
E. We can therefore replace X − µ by E in the Z formula and come up
with

Zα/2 = E
σ/

√
n

We can determine n from this equation,

√
n = Zα/2σ

E

n =
Z 2

α/2σ
2

E2
=

(
Zα/2σ

E

)2
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Example A production manager at a call center wants to know how much
time on average an employee should spend on the phone with a customer.
She wants to be within two minutes of the actual length of time, and the
standard deviation of the average time spent is known to be three minutes.
What sample size of calls should she consider if she wants to be 95 percent
confident of her result?

Solution

Z = 1.96

E = 2

σ = 3

n = (1.96 × 3)2

22
= 34.5744

4
= 8.6436

Because we cannot have 8.6436 calls, we can round up the result to 9 calls.
The manager can be 95 percent confident that with a sample of 9 calls, she
can determine the average length of time an employee must spend on the
phone with a customer.

5.10.2 Sample size when estimating the
population proportion

To determine the sample size needed when estimating p, we can use
the same procedure as the one we used when determining the sample
size for µ.

We have already seen that the Z formula for the sample proportion
is given as

Z = p − p
σp

= p − p√
pq
n

The error of estimation (or sampling error) in this case will be E =
p − p. We can replace the numerator p − p by its value in the Z formula
and obtain

Zα = E√
pq
n

We can then derive n from this equation,

n = Zα pq
E2

Example A study is conducted to determine the extent to which companies
promote Open Book Management. The question asked to employees is, “Do
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your managers provide you with enough information about the company?”
It was previously estimated that only 30 percent of companies did actually
provide the information needed to their employees. If the researcher wants to
be 95 percent confident in the results and be within 0.05 of the true population
proportion, what size of sample should be taken?

E = 0.05
p = 0.3
q = 0.7
Z0.05 = 1.96

n = (1.96)2(0.3)(0.7)
(0.05)2

= 322.69

The sample must include 323 companies.
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Chapter

6
Hypothesis Testing

Learning Objectives:

� Understand how to use samples to make an inference about a popu-
lation

� Understand what sample size should be used to make an inference
about a population

� How to test the normality of data

The confidence interval can help estimate the range within which we
can, with a certain level of confidence, estimate the values of a popu-
lation mean or the population variance after analyzing a sample. An-
other method of determining the significance or the characteristics of
a magnitude is the hypothesis testing. The hypothesis testing is about
assessing the validity of a hypothesis made about a population.

A hypothesis is a value judgment, a statement based on an opinion
about a population. It is developed to make an inference about that pop-
ulation. Based on experience, a design engineer can make a hypothesis
about the performance or qualities of the products she is about to pro-
duce, but the validity of that hypothesis must be ascertained to confirm
that the products are produced to the customer’s specifications. A test
must be conducted to determine if the empirical evidence does support
the hypothesis. Some examples of hypotheses are:

1. The average number of defects per circuit board produced on a given
line is 3.

2. The lifetime of a given light bulb is 350 hours.

3. It will take less than 10 minutes for a given drug to start taking
effect.

121
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Most of the time, the population being studied is so large that examining
every single item would not be cost effective. Therefore, a sample will
be taken and an inference will be made for the whole population.

6.1 How to Conduct a Hypothesis Testing

Suppose that Sikasso, a company that produces computer circuit
boards, wants to test a hypothesis made by an engineer that exactly
20 percent of the defects found on the boards are traceable to the CPU
socket. Because the company produces thousands of boards a day, it
would not be cost effective to test every single board to validate or re-
ject that statement, so a sample of boards is analyzed and statistics
computed. Based on the results found and some decision rules, the hy-
pothesis is or is not rejected. (Note that we did not say that the hy-
pothesis is accepted, because not finding enough evidence to reject the
hypothesis does not necessarily mean that it must be accepted.)

If exactly 10 percent or 29 percent of the defects on the sample taken
are actually traced to the CPU socket, the hypothesis will certainly be
rejected, but what if 19.95 percent or 20.05 percent of the defects are
actually traced to the CPU socket? Should the 0.05 percent difference be
attributed to a sampling error? Should we reject the statement in this
case? To answer these questions, we must understand how a hypothesis
testing is conducted. There are six steps in the process of testing a
hypothesis to determine if it is to be rejected or not beyond a reasonable
doubt. The following six steps are usually followed to test a hypothesis.

6.1.1 Null hypothesis

The first step consists in stating the hypothesis. In the case of the circuit
boards at Sikasso, the hypothesis would be: “On average, exactly 20
percent of the defects on the circuit board are traceable to the CPU
socket.” This statement is called the null hypothesis, denoted H0, and
is read “H sub zero.” The statement will be written as:

H0 : µ = 20%

6.1.2 Alternate hypothesis

If the hypothesis is not rejected, exactly 20 percent of the defects will
actually be traced to the CPU socket. But if enough evidence is statisti-
cally provided that the null hypothesis is untrue, an alternate hypoth-
esis should be assumed to be true. That alternate hypothesis, denoted
H1, tells what should be concluded if H0 is rejected.

H1 : µ �= 20%
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6.1.3 Test statistic

The decision made on whether to reject H0 or fail to reject it depends
on the information provided by the sample taken from the population
being studied. The objective here is to generate a single number that
will be compared to H0 for rejection. That number is called the test
statistic.

To test the mean µ, the Z formula is used when the sample sizes are
greater than 30,

Z = X − µ

σ/
√

n

and the t formula is used when the samples are smaller,

t = X − µ

s/
√

n

These two equations look alike but, remember that the tables that are
used to compute the Z-statistic and t-statistic are different.

6.1.4 Level of significance or level of risk

The level of risk addresses the risk of failing to reject a hypothesis when
it is actually false, or rejecting a hypothesis when it is actually true.
Suppose that in the case of the defects on the circuit boards, a sample
of 40 boards was randomly taken for analysis and 45 percent of the
defects were actually found to be traceable to the CPU sockets. In that
case, we would have rejected the null hypothesis as false. But what if
the sample were taken from a substandard population? We would have
rejected a null hypothesis that might be true. We therefore would have
committed what is called the Type I or Alpha error.

However, if we actually find that 20 percent of the defects are trace-
able to the CPU socket from a sample and only the boards on that
sample out of the whole population happened to have those defects, we
would have made the Type II or Beta error. We would have assumed the
null hypothesis to be true when it actually is false.

The probability of making a Type I error is referred to as α, and the
probability of making a Type II error is referred to as β. There is an
inverse relationship between α and β.

6.1.5 Decision rule determination

The decision rule determines the conditions under which the null
hypothesis is rejected or not. The one-tailed (right-tailed) graph in
Figure 6.1 shows the region of rejection, the location of all the values for
which the probability of the null hypothesis being true is infinitesimal.
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Rejection region

Critical point

Non-rejection region

Figure 6.1

The critical value is the dividing point between the area where H0 is
rejected and the area where it is assumed to be true.

6.1.6 Decision making

Only two decisions are considered, either the null hypothesis is rejected
or it is not. The decision to reject a null hypothesis or not depends on
the level of significance. This level often varies between 0.01 and 0.10.
Even when we fail to reject the null hypothesis, we never say “we accept
the null hypothesis” because failing to reject the null hypothesis that
was assumed true does not equate proving its validity.

6.2 Testing for a Population Mean

6.2.1 Large sample with known �

When the sample size is greater than 30 and σ is known, the Z formula
can be used to test a null hypothesis about the mean.

Example An old survey had found that the average income of operations
managers for Fortune 500 companies was $80,000 a year. A pollster wants
to test that figure to determine if it is still valid. She takes a random sample
of 150 operations managers to determine if their average income is $80,000.
The mean of the sample is found to be $78,000 with a standard deviation
assumed to be $15,000. The level of significance is set at 5 percent. Should
she reject $80,000 as the average income or not?

Solution The null hypothesis will be $80,000 and the alternate hypothesis
will be anything other than $80,000,

H0 : µ = $80, 000

H1 : µ �= $80, 000
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Because the sample size n is larger than 30, we can use the Z formula to test
the hypothesis. Because the significance level is set at 5 percent (in other
words, α = 0.05) and we are dealing with a two-tailed test, the area under
each tail of the distribution will be α/2 = 0.025. The area between the mean
µ and the critical value on each side will be 0.4750 (or 0.05 − 0.025). The
critical Z-value is obtained from the Z score table by using the 0.4750 area
under the curve. A value of Zα/2 = ±1.96 corresponds to 0.4750. The null
hypothesis will not be rejected if −1.96 ≤ Z ≤ +1.96 and rejected otherwise.

Z = X − µ

σ/
√

n
= 78000 − 80000

15000√
150

= −2000
1224 .745

= −1.633

Because Z is within the interval ±1.96, the statistical decision should be to
not reject the null hypothesis. A salary of $78,000 is just the sample mean; if a
confidence interval were determined, $80,000 would have been the estimate
point.

Another way to solve it. Because we already know that

Zα/2 = X − µ

σ/
√

n

we can transform this equation to find the interval within which µ is
located,

X − Zα/2
σ√
n

≤ µ ≤ X + Zα/2
σ√
n

X = 78, 000
σ = 15, 000
n = 150
Zα/2 = 1.96

Therefore,

78, 000 − 1.96
15, 000√

150
≤ µ ≤ 78, 000 + 1.96

15, 000√
150

75, 599.4998 ≤ µ ≤ 80, 400.5002

Because $78,000 is within that interval, we cannot reject the null hy-
pothesis.

Using Minitab. Open Minitab and from the Stat menu, select “Basic
Statistics” and then select “1-Sample Z. . . ” The “1-Sample Z” dialog
box appears, and values are entered as shown in Figure 6.2.
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Figure 6.2

After selecting “OK,” the Minitab output should show as shown in
Figure 6.3.

The Minitab output suggests that for a 95 percent confidence level,
the mean is expected to fall within the interval 75,599.5 and 80,400.5.
Because the mean obtained from the sample is 78,000, we cannot reject
the null hypothesis.

One-Sample Z 

Test of mu = 80000 vs not = 80000 
The assumed standard deviation = 15000

N
150

Mean Z P
78000.0

SE Mean
1224.7 −1.63 0.102

95% CI 
(75599.5, 80400.5)

Figure 6.3

6.2.2 What is the p-value and how is it
interpreted?

In the previous example, we did not reject the null hypothesis because
the value of the test statistic Z was within the interval [−1.96, +1.96].
Had it been outside that interval, we would have rejected the null hy-
pothesis and concluded that $80,000 is not the average income for the
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managers. The reason why ±1.96 was chosen is that the confidence
level α was set at 95 percent. If α were set at another level, the in-
terval would have been different. The results obtained do not allow a
comparison with a single value to make an assessment; any value of X
that falls within that interval would lead to a non-rejection of the null
hypothesis.

The use of the p-value method enables the value of α not to be preset.
The null hypothesis is assumed to be true, and the p-value sets the
smallest value of α for which the null hypothesis must be rejected.
For instance, in the example above the p-value is 0.102 and α = 0.05;
therefore, α is smaller than the p-value and 0.102 is the smallest value
for which the null hypothesis must be rejected. We cannot reject the
null hypothesis in this case.

Example The diameter of the shafts produced by a machine has historically
been 5.02 mm with a standard deviation of 0.008 mm. The old machine has
been discarded and replaced with a new one. The reliability engineer wants
to make sure that the new machine performs as well as the old one. He takes
a sample of 35 shafts just produced by the new machine and measures their
diameter, and obtains the results in file Diameter.mpj on the included CD.

We want to test the validity of the null hypothesis,

H0 : µ = 5.02

H1 : µ �= 5.02

Solution Open the file Diameter.mpj on the included CD. From the Stat menu,
select “Basic Statistics.” From the drop-down list, select “1-Sample Z.” Select
“Diameter” for the Samples in Columns option. Enter “0.08” into the Stan-
dard Deviation field. Check the option Perform hypothesis test. Enter “5.02”
into the Hypothesized mean field. Select “Options” and make sure that “Not
equal” is selected from the Alternative drop-down list and that the Confidence
level is 95 percent. Select “OK” to get the output shown in Figure 6.4.

One-Sample Z: Diameter 

Test of mu = 5.02 vs not = 5.02
The assumed standard deviation = 0.08

Variable
Diameter

N
35

Mean
5.04609

Z P
1.93 0.054

StDev
0.06949

SE Mean 
0.01352

95% CI 
(5.01958, 5.07259)

Figure 6.4

Interpretation of the results. The mean of the sample is 5.04609, and the
sample size is 35 with a standard deviation of 0.06949. The confidence
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interval is therefore [5.01958, 5.07259]. If the value of the sample mean
falls within this interval, we cannot reject the null hypothesis. The
value of the sample mean (5.04609) is indeed within that interval. The
p-value, 0.054, is greater than α, which is 0.05; therefore, we cannot
reject the null hypothesis.

6.2.3 Small samples with unknown �

The Z test statistic is used when the population is normally distributed
or when the sample sizes are greater than 30. This is because when the
population is normally distributed and σ is known, the sample means
will be normally distributed, and when the sample sizes are greater
than 30, the sample means will be normally distributed based on the
Central Limit Theorem.

If the sample being analyzed is small (n ≤ 30), the Z test statistic
would not be appropriate; the t test should be used instead. The formula
for the t test resembles the one for the Z test but the tables used to
compute the values for Z and t are different. Because σ is unknown, it
will be replaced by s, the sample standard deviation.

t = X − µ

s/
√

n

df = n − 1

Example A machine used to produce gaskets has been stable and operating
under control for many years, but lately the thickness of the gaskets seems to
be smaller than they once were. The mean thickness was historically 0.070
inches. A Quality Assurance manager wants to determine if the age of the
machine is causing it to produce poorer quality gaskets. He takes a sample
of 10 gaskets for testing and finds a mean of 0.074 inches and a standard
deviation of 0.008 inches. Test the hypothesis that the machine is working
properly with a significance level of 0.05.

Solution The null hypothesis should state that the population mean is still
0.070 inches—in other words, the machine is still working properly—and the
alternate hypothesis should state that the mean is different from 0.070.

H0 : µ = 0.070
H1 : µ �= 0.070

We have an equality, therefore we are faced with a two-tailed test and we
will have α/2 = 0.025 on each side. The degree of freedom (n − 1) is equal to
9. The value of t that we will be looking for is t0.025,9 = 2.26. If the computed
value t falls within the interval [−2.26, +2.26], we will not reject the null
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hypothesis; otherwise, we will.

t = X − µ

s/
√

n
= 0.074 − 0.07

0.008/
√

10
= 1.012

The computed value of t is 1.012, therefore it falls within the interval
[−2.262, +2.262]. We conclude that we cannot reject the null hypothe-
sis.

Another way to solve it. We already know that

tα/2 = X − µ

s/
√

n

We can rearrange this equation to find the interval within which µ

resides,

X − tα/2
s√
n

≤ µ ≤ X + tα/2
s√
n

We can now plug in the numbers:

0.074 − 2.26
0.008√

10
≤ µ ≤ 0.074 + 2.26

0.008√
10

0.074 − 0.00571739 ≤ µ ≤ 0.074 + 0.00571739
0.06828 ≤ µ ≤ 0.07972

Using Minitab. From the Stat menu, select “Basic Statistics” and from
the drop-down list, select “1-Sample t. . . ”

Fill out the “1-Sample t” dialog box as shown in Figure 6.5.
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Figure 6.5

Select “OK” to get the result shown in Figure 6.6.

One-Sample T

N
10

Mean
0.074000

Test of mu = 0.07 vs not = 0.07

T
1.58

P
0.148

StDev
0.008000

SE Mean 
0.002530

95% CI 
(0.068277, 0.079723)

Figure 6.6

Interpretation of the results. The p-value of 0.148 is greater than the
value α = 0.05. The confidence interval is [0.068277, 0.079723] and the
sample mean is 0.074. The mean falls within the confidence interval,
therefore we cannot reject the null hypothesis.

6.3 Hypothesis Testing about Proportions

Hypothesis testing can also be applied to sample proportions. In this
situation, the Central Limit Theorem can be used, as in the case of the
distribution of the mean:

Z = p̂ − p√
pq
n
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where p̂ is the sample proportion, p is the population proportion, n is
the sample size, and q = 1 − p.

Example A design engineer claims that 90 percent of the of alloy bars he
created become 120 PSI (pound per square inch) strong 12 hours after they
are produced. In a sample of 10 bars, 8 were 120 PSI strong after 12 hours.
Determine whether the engineer’s claim is legitimate at a confidence level of
95 percent.

Solution In this case, the null and alternate hypotheses will be

H0 : p = 0.90

H1 : p �= 0.90

The sample proportion is

p̂ = 8
10

= 0.8

q = 1 − 0.90 = 0.10

Therefore

Z = 0.8 − 0.9√
0.1 × 0.9

10

= −0.1
0.09487

= −1.054

For a confidence level of 95 percent, the rejection area would be anywhere
outside the interval [−1.96, +1.96]. The value −1.054 is within that interval,
and therefore we cannot reject the null hypothesis.

6.4 Hypothesis Testing about the Variance

We saw in Chapter 5 that the distribution of the variance follows a
chi-square distribution, with the χ2 formula for single variance being

χ2 = (n − 1)s2

σ 2

where σ 2 is the population variance, s2 is the sample variance, and n is
the sample size.

Example Kanel Incorporated’s Days Sales Outstanding (DSO) have histori-
cally had a standard deviation of 2.78 days. The last 17 days, the standard
deviation has been 3.01 days. At an α level of 0.05, test the hypothesis that
the variance has increased.



132 Chapter Six

Solution The null and alternate hypotheses will be:

H0 : σ > 2.78

H1 : σ < 2.78

with

n = 17

s2 = 3.01 × 3.01 = 9.0601

σ 2 = 2.78 × 2.78 = 7.7284

χ2 = (n − 1)s2

σ 2
= (17 − 1)(9.0601)

7.7284
= 18.757

We are faced with a one-tailed graph with a degree of freedom of 16 and
α = 0.05. From the chi-square table, this corresponds to χ2

0.05,16 = 26.2962.
The calculated χ2(18.757) is lower than the critical value χ2

0.05,16, therefore
the decision should not be rejected.

Doing it another way. The same result can be obtained another way.
Instead of looking for the calculated χ2, we can look for the critical S
value,

Sc
2 = σ 2χ2

0.05,16

17 − 1
= 7.7284 × 26.2962

16
= 12.702

In this case again, the Sc
2 critical value is greater than the sample vari-

ance (which was 9.0601); therefore, we do not reject the null hypothesis.

6.5 Statistical Inference about Two
Populations

So far, all our discussion has been focused on samples taken from one
population. We have learned how to determine sample sizes, how to
determine confidence intervals for χ2, for proportions and for µ, and
how to test a hypothesis about these statistics.

Very often, it is not enough to be able to make statistical inference
about one population. We sometimes want to compare two populations.
A quality controller might want to compare data from a production line
to see what effect the aging machines are having on the production pro-
cess over a certain period of time. A manager might want to know how
the productivity of her employees compares to the average productivity
in the industry. In this section, we will learn how to test and estimate
the difference between two population means, proportions, and vari-
ances.
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6.5.1 Inference about the difference
between two means

Just as in the analysis of a single population, to estimate the difference
between two populations the researcher would draw samples from each
population. The best estimator for the population mean µ was the sam-
ple mean X, so the best estimator of the difference between the popula-
tion means (µ1 − µ0) will be the difference between the samples’ means
(X1 − X0).

The Central Limit Theorem applies in this case, too. When the two
populations are normal, (X1 − X0) will be normally distributed and it
will be approximately normal if the samples sizes are large (n ≥ 30).
The standard deviation for (X1 − X0) will be

√
σ 2

1

n1
+ σ 2

0

n0

and its expected value

E (X1 − X0) = (µ1 − µ0)

Therefore,

Z = (X1 − X0) − (µ1 − µ0)√
σ 2

1

n1
+ σ 2

0

n0

This equation can be transformed to obtain the confidence interval

(X1 − X0) − Zα/2

√
σ 2

1

n1
+ σ 2

0

n0
≤ (µ1 − µ0)

≤ (X1 − X0) + Zα/2

√
σ 2

1

n1
+ σ 2

0

n0

Example In December, the average productivity per employee at Senegal-
Electric was 150 machines per hour with a standard deviation of 15 machines.
For the same month, the average productivity per employee at Cazamance
Electromotive was 135 machines per hour with a standard deviation of 9
machines. If 45 employees at Senegal-Electric and 39 at Cazamance Electro-
motive were randomly sampled, what is the probability that the difference
in sample averages would be greater than 20 machines?
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Solution

µ1 = 150, σ1 = 15 n1 = 45
µ0 = 135, σ0 = 9 n0 = 39

X1 − X0 = 20

Z = (X1 − X0) − (µ1 − µ0)√
σ 2

1

n1
+ σ 2

0

n0

= 20 − (150 − 135)√
152

45
+ 92

39

= 5
2.66

= 1.88

From the Z score table, the probability of getting a value between zero and
1.88 is 0.4699, and the probability for Z to be larger than 1.88 will be 0.5 −
0.4699 = 0.0301. Therefore, the probability that the difference in the sam-
ple averages will be greater than 20 machines is 0.0301. In other words,
there exists a 3.01 percent chance that the difference would be at least 20
machines.

Because the populations’ standard deviations are seldom known, the previ-
ous formula is rarely used; therefore, the standard error of the sampling dis-
tribution must be estimated. At least two conditions must be considered—the
approach we take when making an inference about the two means depends
on whether their variances are equal or not.

6.5.2 Small independent samples with
equal variances

In the previous example, the sample sizes were both greater than
30, so the Z test was used to determine the confidence interval. If
one or both samples are smaller than 30, the t statistic must be
used.

If the population variances σ 2
1 and σ 2

0 are unknown and we assume
that they are equal, they can be estimated using the sample variances
S1

2 and S0
2. The estimate Sp

2 based on the two sample variances is called
the pooled sample variance. Its formula is given as

Sp
2 = (n2 − 1)S1

2 + (n0 − 1)S0
2

n1 + n0 − 2

where (n1 − 1) is the degree of freedom for Sample 1, and (n0 − 1) is the
degree of freedom for Sample 0. The denominator is just the sum of the
two degrees of freedom,

n1 + n0 − 2 = (n1 − 1) + (n0 − 1)
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Example The variances of two populations are assumed to be equal. A sample
of 15 items was taken from Population 1 with a standard deviation of 3, and
a sample of 19 items was taken from Population 0 with a standard deviation
of 2. Find the pooled sample variance.

Solution

Sp
2 = (n1 − 1)S1

2 + (n0 − 1)S0
2

n1 + n0 − 2

Sp
2 = (15 − 1)3 + (19 − 1)2

19 + 15 − 2
= 78

32
= 2.4375

Note that

S0
2 ≤ Sp

2 ≤ S1
2

If

n1 = n0 = n

then Sp
2 can be simplified:

Sp
2 = n S1

2 − S1
2 + nS0

2 − S0
2

n + n − 2

Sp
2 = n (S1

2 + S0
2) − (S1

2 + S0
2)

2(n − 1)

Sp
2 = (S1

2 + S0
2)(n − 1)

2(n − 1)

Therefore,

Sp
2 = S1

2 + S0
2

2

For sample sizes smaller than 30, the t statistic will be used,

t = (x1 − x0) − (µ1 − µ0)√
σ 2

1

n1
+ σ 2

0

n0

But because σ 2
1 and σ 2

0 are unknown and they can be estimated based on the
samples’ standard deviation, the denominator will be changed:

√
σ 2

1

n1
+ σ 2

0

n0
≈

√
Sp

2

n1
+ Sp

2

n0
=

√
Sp

2

(
1
n1

+ 1
n0

)
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and therefore,

t =
(

x1 − x0

)
−

(
µ1 − µ0

)
√

Sp
2

(
1
n1

+ 1
n0

)

This equation can be transformed to obtain the confidence interval for the
populations’ means,

(x1 − x0) ± tα/2

√
Sp

2

(
1
n1

+ 1
n0

)

Example The general manager of Jolof-Semiconductors oversees two produc-
tion plants and has decided to raise the customer satisfaction index (CSI) to
at least 98. To determine if there is a difference in the mean of the CSI in
the two plants, random samples are taken over several weeks. For the Kayor
plant, a sample of 17 weeks has yielded a mean of 96 CSI and a standard
deviation of 3, and for the Matam plant, a sample of 19 weeks has generated
a mean of 98 CSI and a standard deviation of 4. At the 0.05 level, determine
if a difference exists in the mean level of CSI for the two plants, assuming
that the CSIs are normal and have the same variance.

Solution

α = 0.05

H0 = (µ1 − µ0) = 0

H1 = (µ1 − µ0) �= 0

n1 = 17

x1 = 96

S1 = 3

n0 = 19

x0 = 98

s0 = 4

Estimate the common variance with the pooled sample variance, Sp
2.

Sp
2 = (n1 − 1)S1

2 + (n0 − 1)S0
2

n1 + n0 − 2

Sp
2 = 16(3)2 + 18(4)2

34
= 432

34
= 12.71
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The value of the test statistic is

t = (x1 − x0) − (µ1 − µ0)√
Sp

2

(
1
n1

+ 1
n0

)

Therefore

t = (96 − 98) − 0√
12.71

(
1

17
+ 1

19

) = − 2
1.19

= −1.68

Because the alternate hypothesis does not involve “greater than” or “less
than” but rather “is different from,” we are faced with a two-tailed rejection
region with

α/2 = 0.05/2 = 0.025

at the end of each tail with a degree of freedom of 34. From the t table, we
obtain t0.025 = 2.03 and H0 is not rejected when −2.03 < t < +2.03.
t = −1.68 is well within the interval, we therefore cannot reject the null
hypothesis.

Using Minitab. From the Stat menu, select “Basic Statistics” and from
the drop-down list, select “2-Sample t. . . ” When the “2-Sample t” dialog
box pops up, select the Summarized data option and fill out the fields
as shown in Figure 6.7.

Then select “OK” to get the output shown in Figure 6.8.
Because we are faced with a two-tailed graph, the graph that illus-

trates the results obtained in the previous example should look like
that in Figure 6.9.

Because t0.025 = −1.68 is not in the rejected region, we cannot reject
the null hypothesis. There is not enough evidence at a significance level

Figure 6.7



138 Chapter Six

Two-Sample T-Test and CI

Sample

Difference = mu (1) − mu (2)

Both use Pooled stDev = 3.5645
T-Test of difference = 0 (vs not=):

Estimate for difference: −2.0000
95% CI for difference: (−4.41840, 0.41840)

N
1 17

19
96.00
98.00

3.00 0.73
0.924.002

Mean StDev SE Mean

T-Value = −1.68 T-Value = 0.102 DF = 34

Figure 6.8

of 0.05 to conclude that there is a difference in the mean level of the
CSIs for the two plants.

Example The amount of water that flows through between two points of
equal distance of pipes X and Y are given in Table 6.1 in liters per minute
(found on the included CD under files Waterflow.xl and Waterflow.mpj). An
engineer wants to determine if there is a statistical significance between the
speed of the water flow through the two pipes at a significance level of 95
percent.

Solution The null and alternate hypotheses in this case would be:

H0 : The speed of the water flow inside the two pipes is the same.
H1 : There is a difference in the speed of the water flow inside the two pipes.

Using Minitab. Open the file Waterflow.mpj on the included CD. From
the Stat menu, select “Basic Statistics.” From the drop-down list, se-
lect “2-t 2-Sample t. . . ” Select the second option, “Samples in different
columns.” Select “X” for First and “Y” for Second. Select the Assume

Rejection area
Rejection area

2.03−2.03 −1.68

Figure 6.9
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TABLE 6.1

X Y

163 167
150 157
171 149
155 145
186 135
145 157
154 135
173 167
152 154
150 165
143 170
138 165
166 154
193 176
158 155
175 157
167 134
150 156
158 147

equal variances option. Select “OK” to get the output shown in Figure
6.10.

Using Excel. Open the file Waterflow.xl from the included CD. From the
Tools menu, select “Data Analysis.” The “Data Analysis” dialog box ap-
pears and select “t-test: two samples assuming equal variances,” then
select “OK.” Select the range for X for the field of Variable 1 Range.
Select the range for Y for the field of Variable 2 Range. For Hypothe-
sized mean difference, insert “0.” If the titles “X” and “Y” were selected
with their respective ranges, select the Labels option; otherwise, do not.
Alpha should be “0.05.”

Two-Sample T-Test and CI: X, Y

Two-sample T for X vs Y

Difference = mu (X) − mu (Y)

N
19
19

Mean StDev SE Mean
160.4 14.5 3.3

2.812.0155.0
X
Y

Estimate for difference: 5.36842
95% CI for difference: (−3.41343, 14.15027)
T-Test of dfference = 0 (vs not =):
Both use Pooled StDev = 13.3463

T-Value = 1.24 P-Value = 0.223 DF = 36

Figure 6.10
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Select “OK” to get the output shown in Figure 6.11.

Figure 6.11

The p-value of 0.223 suggests that at a confidence level of 95 percent,
there is not a statistically significant difference between the speed of
the water flow in the two pipes.

6.5.3 Testing the hypothesis about two
variances

Very often in quality management, the statistic of interest is the stan-
dard deviation or the variance instead of the measures of central ten-
dency. In those cases, the tests of hypothesis are more often about the
variance. Most statistical tests for the mean require the equality of the
variances for the populations. The hypothesis test for the variance can
help assess the equality of the populations’ variances.

The hypothesis testing of two population variances is done using sam-
ples taken from those populations. The F distribution is used in this
case. The calculated F statistic is given as

F = S2
1

S2
2

The values of interest besides the sample sizes are the degrees of free-
dom. The graph for an F distribution is shown in Figure 6.12.

Here again, what must be compared are the calculated F and the
critical F obtained from the table. Two values are of interest: the critical
value of F at the lower tail and the value at the upper tail. The critical
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Figure 6.12

value of the upper tail is F1−α,n1,n2 . The critical value for the lower tail
is given as the inverse of the value for the upper tail,

F1−α,n1,n2 = 1
Fα,n1,n2

For the null hypothesis not to be rejected, the value of the calculated
F should be between the value for the upper tail and the value for the
lower tail.

Example Kolda Automotive receives gaskets for its engines from two sup-
pliers. The QA manager wants to compare the variance in thickness of the
gaskets with α = 0.05. He takes a sample of 10 gaskets from supplier A and
12 from supplier B and obtains a standard deviation of 0.087 from A and
0.092 from B.

Solution The null and alternate hypotheses will be:

H0 : σ 2
A = σ 2

B

H1 : σ 2
A �= σ 2

B

Therefore,

F = S 2
A

S 2
B

= 0.087 × 0.087
0.092 × 0.092

= 0.007569
0.008464

= 0.894

Now we must find the critical F from the table (Appendix 6). Because α =
0.05 and we are faced with a two-tailed test, the critical F must be found at
α/2 = 0.025 with degrees of freedom of 9 and 11. The critical F for the upper
tail is F0.025,9,11 = 3.59. The critical F for the lower tail is the inverse of this
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value,

F0.975,11,9 = 1
3.59

= 0.279

The value of the calculated F (0.894) is well within the interval [0.279, 3.59];
therefore, we cannot reject the null hypothesis.

Rejection area Rejection area

0.279 0.894 3.59

6.6 Testing for Normality of Data

The normality or non-normality of data is extremely important in qual-
ity control and Six Sigma, as we will see in the coming chapters. Several
options are given by Minitab to test the normality of data. The data con-
tained in the Minitab worksheet of the file O Ring.mpj (reproduced in
Table 6.2) represents the diameters in inches of rings produced by a ma-
chine, and we want to know if the diameters are normally distributed. If
the data are normally distributed, they all should be close to the mean
and when we plot them on a graph, they should cluster closely about
each other.

The null hypothesis for normality will be

H0 : The data are normally distributed.

and the alternate hypothesis will be

H1 : The data are not normally distributed.

To run the normality test, Minitab offers several options. We can run the
Anderson-Darling, the Kolmogorov-Smirnov, or the Ryan-Joyner test.
For this example, we will run the Anderson-Darling Test.
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TABLE 6.2

O-Ring

1.69977
1.70001
1.69956
1.70007
1.70021

1.69969
1.69973
1.69990
1.70004
1.69999

From the Minitab’s Stat menu, select “Basic Statistics” and then “Nor-
mality Test.” The “Normality Test” dialog box pops up and it should be
filled out as shown in Figure 6.13.

Figure 6.13

Then, select “OK.”
Notice that all the dots in Figure 6.14 are closely clustered about the

regression line. The p-value of 0.705 suggests that at a confidence level
of 95 percent, we should not reject the null hypothesis; therefore, we
must conclude that the data are normally distributed.

Example Open the file Circuit boards.mpj and run a normality test using
the Anderson-Darling method. The output we obtain should look like Figure
6.15.

It is clear that the dots are not all closely clustered about the regression
line, and they follow a certain pattern that does not suggest normality. The
p-value of 0.023 indicates that the null hypothesis of normality should be
rejected at a confidence level of 95 percent.



144 Chapter Six

Figure 6.14

Figure 6.15



Chapter

7
Statistical Process Control

Learning Objectives:

� Know what a control chart is
� Understand how control charts are used to monitor a production pro-

cess
� Be able to differentiate between variable and attribute control charts
� Understand the WECO rules

The ultimate objective of quality improvement is not just to provide good
quality products to customers; it is also to improve productivity while
improving customers’ satisfaction. In fact, improving productivity and
enhancing customer satisfaction must go together because productivity
improvement enables companies to lower the cost of quality improve-
ment. One way of improving productivity is through the reduction of
defects and rework. The reduction of rework and defects is not achieved
through inspection at the end of production lines; it is done by instill-
ing quality in the production processes themselves and by inspecting
and monitoring the processes in progress before defective products or
services are generated.

The prerequisites for improving customer satisfaction while improv-
ing productivity address two aspects of operations: the definition of the
optimal level of the quality of the products delivered to customers and
the stability and predictability of the processes that generate the prod-
ucts. Once those optimal levels (that will be referred to as targets) are
defined, tolerances are set around them to address the inevitable vari-
ations in the quality of the product and in the production processes.

Variations are nothing but deviations from the preset targets, and no
matter how well controlled a process is, variations will always be present.
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For instance, if a manufacturer of gaskets sets the length of the products
to 15 inches, chances are that when a sample of 10 gaskets is ran-
domly taken from the end of the production line under normal produc-
tion conditions, there would still be differences in length between them.

The causes of the variations are divided into two categories:

� They are said to be common (E. Deming) or random (W. Shewhart)
when they are inherent to the production process. Machine tune-ups
are an example of common causes of variation.

� They are said to be special (E. Deming) or assignable (W. Shewhart)
when they can be traced to a source that is not part of the produc-
tion process. A sleepy machine operator would be an example of an
assignable cause of variation

To be able to predict the quality level of the products or services, the
processes used to generate them must be stable. The stability refers to
the absence of special causes of variation.

Statistical Process Control (SPC) is a technique that enables the qual-
ity controller to monitor, analyze, predict, control, and improve a pro-
duction process through control charts. Control charts were developed
as a monitoring tool for SPC by Shewhart; they are among the most
important tools in the analysis of production process variations.

A typical control chart plots sample statistics and is made up of at
least four lines: a vertical line that measures the levels of the samples’
means; the two outmost horizontal lines that represent the UCL and
the LCL; and the center line, which represents the mean of the process.
If all the points plot between the UCL and the LCL in a random manner,
the process is considered to be “in control.”

What is meant by an “in control” process is not a total absence of
variation but instead, when the variations are present, they exhibit a
random pattern. They are not outside the control limits and based on
their pattern, the process trends can be predicted because the variations
are strictly due to common causes. The control chart shown in Figure
7.1 exhibits variability around the mean but all the observations are

10.2
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Sample

UCL=10,1902

X=9,9882

LCL=9,7862

10.0

9.9

9.8

1 3 5 7 9 11 13 15 17 19

Figure 7.1
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within the control limits and close to the center line. The process can be
said to be “stable” because the variations follow a pattern that is fairly
predictable.

The purpose of using control charts is:

� To help prevent the process from going out of control. The control
charts help detect the assignable causes of variation in time so that
appropriate actions can be taken to bring the process back in control.

� To keep from making adjustments when they are not needed. Most
production processes allow operators a certain level of leeway to make
adjustments on the machines that they are using when it is necessary.
Yet over-adjusting machines can have a negative impact on the out-
put. Control charts can indicate when the adjustments are necessary
and when they are not.

� To determine the natural range (control limits) of a process and to
compare this range to its specified limits. If the range of the control
limits is wider than the one of the specified limits, the process will be
generating defective products and will need to be adjusted.

� To inform about the process capabilities and stability. The process
capability refers to its ability to constantly deliver products that are
within the specified limits, and the stability refers to the quality au-
ditor’s ability to predict the process trends based on past experience.
A long-term analysis of the control charts can help monitor the ma-
chine’s long-term capabilities. Machine wear-out will reflect on the
production output.

� To fulfill the need of a constant process monitoring. If the production
process is not monitored, defective products will be produced resulting
in extra rework or defects sent to customers.

� To facilitate the planning of production resources allocation. Being
able to predict the variation of the quality level of a production process
is very important because the variations determine the quantity of
defects and the amount of work or rework that might be required to
deliver customer orders on time.

7.1 How to Build a Control Chart

The control charts that we are addressing are created for a production
process in progress. Samples must be taken at preset intervals and
tested to make sure that the quality of the products sent to customers
meets their expectations. If the tested samples are within specification,
they are put back into production and sent to the customers; otherwise,
they are either discarded or sent back for rework. If the products are
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found to be defective, the reasons for the defects are investigated and
adjustments are made to prevent future defects. Making adjustments
to the production process does not necessarily lead to a total elimination
of variations; in some cases, it may even lead to further defects if done
improperly or done when not warranted.

While the production process is in progress, whether adjustments are
made or not, the process continues to be monitored, samples continue to
be taken, and their statistics plotted and trends observed. Ultimately,
what is being monitored using the control charts is not really how much
of the production output meets engineered specification but rather how
the production process is performing, how much variability it exhibits,
and therefore how stable and predictable it is. The expected amount
of defects that the process produces is measured by a method called
Process Capability Analysis, which will be dealt with in the next chapter.

Consider y, a sample statistic that measures a CTQ characteristic of
a product (length, color, and thickness), with a mean µy and a standard
deviation σy. The UCL, the center line (CL), and the LCL for the control
chart will be given as

UCL = µy + kσy

CL = µy

LCL = µy − kσy

where kσy is the distance between the center line and the control limits,
k is a constant, µy is the mean of the samples’ mean, and σy is the
standard deviation.

Consider the length as being the critical characteristic of manufac-
tured bolts. The mean length of the bolts is 17 inches with a known
standard deviation of 0.01. A sample of five bolts is taken every half
hour for testing, and the mean of the sample is computed and plotted
on the control chart. That control chart will be called the X (read “X
bar”) control chart because it plots the means of the samples.

Based on the Central Limit Theorem, we can determine the sample
standard deviation and the mean,

σy = σ√
n

= 0.01√
5

= 0.0045

The mean will still be the same as the population’s mean, 17. For 3σ

control limits, we will have

UCL = 17 + 3(0.0045) = 17.013

CL = 17

LCL = 17 − 3(0.0045) = 16.99
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Control limits on a control chart are readjusted every time a significant
shift in the process occurs.

Control charts are an effective tool for detecting the special causes of
variation. One of the most visible signs of assignable causes of variation
is the presence of an outlier on a control chart. If some points are outside
the control limits, this will indicate that the process is out of control and
corrective actions must be taken.

The chart in Figure 7.2 plots sample means of a given product at
the end of a production line. The process seems to be stable with only
common variations until Sample 25 was plotted. That sample is way
outside the control limits. Because the process had been stable until
that sample was taken, something unique must have happened to cause
it to be outside the limits. The causes of that special variation must be
investigated so that the process can be brought back under control.

Figure 7.2

The chart in Figure 7.3 depicts a process in control and within the
specified limits. The USL and LSL represent the engineered standards,
whereas the right side is the control chart. The specification limits de-
termine whether the products meet the customers’ expectations and
the control limits determine whether the process is under statistical
control. These two charts are completely separate entities. There is no
statistical relationship between the specification limits and the control
limits.
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UCL

Process Average

LCLLSL

USL

Figure 7.3

Note that a process with all the points between the control limits is
not necessarily synonymous with an acceptable process. A process can
be within the control limits with a high variability, or too many of the
plotted points are too close to one control limit and away from the target.

The chart in Figure 7.4 is a good example of an out-of-control process
with all the points plotted within the control limits.

In this example, all the plots are well within the limits but the circled
groupings do not behave randomly—they exhibit a run-up pattern. In
other words, they follow a steady (increasing) trend. The causes of this
run-up pattern must be investigated because it might be the result of
a problem with the process.

7.2 TheWestern Electric (WECO) Rules

The interpretation of the control charts patterns is not easy and re-
quires experience and know-how. Western Electric (WECO) published
a handbook in 1956 to determine the rules for interpreting the process
patterns. These rules are based on the probability for the points to plot
at specified areas of the control charts.

A process is said to be out-of-control if one the following occur:

� A single point falls outside the 3σ limit
� Two out of three successive points fall beyond the 2σ limits

Figure 7.4
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� Four out of five successive points fall beyond 1σ from the mean
� Eight successive points fall on one side of the center line

The WECO rules are very good guidelines for interpreting the charts,
but they must be used with caution because they add sensitivity to the
trends of the mean.

When the process is out-of-control, production is stopped and correc-
tive actions are taken. The corrective actions start with the determi-
nation of the category of the variation. The causes of variation can be
random or assignable. If the causes of variation are solely due to chance,
they are called chance causes (Shewhart) or common causes (Deming).
Not all variations are due to chance; some of them can be traced to
specific causes that are not part of the process. In this case, the vari-
ations are said to be due to assignable causes (Shewhart) or special
causes (Deming). Finding and correcting special causes of variation are
easier than correcting common causes because the common causes are
inherent to the process.

7.3 Types of Control Charts

Control charts are generally classified into two groups: they are said
to be univariate when they monitor a single CTQ characteristic of a
product or service, and they are said to be multivariate when they mon-
itor more than one CTQ. The univariate control charts are classified
according to whether they monitor attribute data or variable data.

7.3.1 Attribute control charts

Attribute characteristics resemble binary data — they can only take one
of two given forms. In quality control, the most common attribute char-
acteristics used are “conforming” or “not conforming,” or “good” or “bad.”
Attribute data must be transformed into discrete data to be meaningful.

The types of charts used for attribute data are:

� The p-chart
� The np-chart
� The c-chart
� The u-chart

The p–chart. The p-chart is used when dealing with ratios, proportions,
or percentages of conforming or nonconforming parts in a given sample.
A good example for a p-chart is the inspection of products on a produc-
tion line. They are either conforming or nonconforming. The probability
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distribution used in this context is the binomial distribution with p rep-
resenting the nonconforming proportion and q (which is equal to 1 − p)
representing the proportion of conforming items. Because the products
are only inspected once, the experiments are independent from one an-
other.

The first step when creating a p-chart is to calculate the proportion
of nonconformity for each sample.

p = m
b

where m represents the number of nonconforming items, b is the num-
ber of items in the sample, and p is the proportion of nonconformity.

p = p1 + p2 + · · · pk

k

where p is the mean proportion, k is the number of samples audited,
and pk is the kth proportion obtained. The control limits of a p-chart
are

LCL = p − 3

√
p (1 − p)

n
CL = p

UCL = p + 3

√
p (1 − p)

n

and p represents the center line.

Example Table 7.1 represents defects found on 45 lots taken from a produc-
tion line over a period of time at Podor Tires. We want to build a control chart
that monitors the proportions of defects found on each sample taken.

TABLE 7.1

Defects Lots Defects Lots Defects Lots
Found Inspected Found Inspected Found Inspected

1 25 1 28 0 24
2 21 2 24 2 29
2 19 1 29 2 20
2 25 2 23 2 17
2 24 3 23 2 20
3 26 3 23
3 19 1 32
3 24 2 19
1 21 3 20
1 27 3 20
2 26 2 20
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Open the file Podor tire.mpj on the included CD. From the Stat menu,
select “Control charts,” then select “Attributes charts” and select “P.” Fill out
the p-chart dialog box as indicated in Figure 7.5.

Figure 7.5

Select “OK” to obtain the chart shown in Figure 7.6.

Figure 7.6
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What are plotted on the chart are not the defects or the sample sizes but
rather the proportions of defects found on the samples taken. In this case,
we can say that the process is stable and under control because all the plots
are within the control limits and the variation exhibits a random pattern
around the mean.

One of the advantages of using the p-chart is that the variations of the
process change with the sizes of the samples or the defects found on each
sample.

The np-chart. The np-chart is one of the easiest to build. While the
p-chart tracks the proportion of nonconformities per sample, the np-
chart plots the number of nonconforming items per sample. The audit
process of the samples follows a binomial distribution—in other words,
the expected outcome is “good” or “bad,” and therefore the mean number
of successes is np.

The control limits for an np-chart are

UCL = np + 3
√

np (1 − p )

CL = np

LCL = np − 3
√

np (1 − p )

Using the same data on the file Podor Tires.mpj on the included CD
and the same process that was used to build the p-chart previously, we
can construct the np-control chart shown in Figure 7.7.

Figure 7.7
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Figure 7.8

Note that the pattern of the chart does not take into account the
sample sizes; it just shows how many defects there are on a sample.
Sample 2 was of size 21 and had 2 defects, and Sample 34 was of size
31 and had 2 defects, and they are both plotted at the same level on
the chart. The chart does not plot the defects relative to the sizes of the
samples from which they are taken. For that reason, the p-chart has
superiority over the np-chart.

Consider the same data used to build the chart in Figure 7.7 with all
the samples being equal to 5. We obtain the chart shown in Figure 7.8.

These two charts are patterned the same way, with two minor differ-
ences being the UCL and the CL. If the sample size for the p-chart is a
constant, the trends for the p-chart and the np-chart would be identical
but the control limits would be different.

The p-chart in Figure 7.9 depicts the same data used previously with
all the sample sizes being equal to 5.

The c-chart. The c-chart monitors the process variations due to the
fluctuations of defects per item or group of items. The c-chart is useful
for the process engineer to know not just how many items are not con-
forming but how many defects there are per item. Knowing how many
defects there are on a given part produced on a line might in some cases
be as important as knowing how many parts are defective. Here, non-
conformance must be distinguished from defective items because there
can be several nonconformities on a single defective item.
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Figure 7.9

The probability for a nonconformity to be found on an item in this case
follows a Poisson distribution. If the sample size does not change and
the defects on the items are fairly easy to count, the c-chart becomes
an effective tool to monitor the quality of the production process.

If c is the average nonconformity on a sample, the UCL and the LCL
limits will be given similar to those for a kσ control chart:

UCL = c + 3
√

c

CL = c

LCL = c − 3
√

c

with

c = c1 + c2 + · · · ck

k

Example Saloum Electrical makes circuit boards for television sets. Each
board has 3542 parts, and the engineered specification is to have no more
than five cosmetic defects per board. The table on the worksheet on the file
Saloum Electrical.mpj on the included CD contains samples of boards taken
for inspection and the number of defects found on them. We want to build a
control chart to monitor the production process and determine if it is stable
and under control.

Solution Open the file Saloum Electrical.mpj on the included CD. From the
Stat menu, select “Control Charts,” from the drop-down list, select “Attributes
Charts,” then select “C.” For the variable field, select Defects and then select
“OK” to obtain the graph shown in Figure 7.10.
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Figure 7.10

Figure 7.10 shows a stable and in-control process up to Sample 65. Sample
65 is beyond three standard deviations from the mean. Something special
must have happened that caused it to be so far out of the control limits. The
process must be investigated to determine the causes of that deviation and
corrective actions taken to bring the process back under control.

The u-chart. One of the premises for a c-chart is that the sample sizes
had to be the same. The sample sizes can vary when a u-chart is being
used to monitor the quality of the production process, and the u-chart
does not require any limit to the number of potential defects. Further-
more, for a p-chart or an np-chart the number of nonconformities cannot
exceed the number of items on a sample, but for a u-chart it is conceiv-
able because what is being addressed is not the number of defective
items but the number of defects on the sample.

The first step in creating a u-chart is to calculate the number of defects
per unit for each sample.

u = c
n

where u represents the average defect per sample, c is the total number
of defects, and n is the sample size. Once all the averages are deter-
mined, a distribution of the means is created and the next step is to
find the mean of the distribution—in other words, the grand mean,

u = u1 + u2 + · · · uk

k
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where k is the number of samples. The control limits are determined
based on u and the mean of the samples, n:

UCL = u + 3

√
u
n

CL = u

LCL = u − 3

√
u
n

Example Medina P&L manufactures pistons and liners for diesel engines.
The products are assembled in kits of 70 per unit before they are sent to the
customers. The quality manager wants to create a control chart to monitor
the quality level of the products. He audits 35 units and summarizes the
results on the file Medina.mpj on the included CD.

Solution Open the file Medina.mpj from the included CD. From the Stat menu,
select “Control Charts,” from the drop-down list, select “Attributes charts,”
and then select “U.” Select “Defect” for the Variables field and for Subgroup
sizes, select “Samples,” and then select “OK.” The graph should show similar
to Figure 7.11.

Notice that the UCL is not a straight line. This is because the sample sizes
are not equal and every time a sample statistic is plotted, adjustments are
made to the control limits. The process has shown stability until Sample 27
is plotted. That sample is out of control.

Figure 7.11
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7.3.2 Variable control charts

Control charts monitor not only the means of the samples for CTQ
characteristics but also the variability of those characteristics. When
the characteristics are measured as variable data (length, weight, di-
ameter, and so on), the X-charts, S-charts, and R-charts are used.

These control charts are used more often and they are more efficient
in providing feedback about the process performance. The principle un-
derlying the building of the control charts for variables is the same as
that of the attribute control charts. The whole idea is to determine the
mean, the standard deviation, and the distance between the mean and
the control limits based on the standard deviation.

UCL = X + 3
√

σ

n

CL = X

LCL = X − 3
√

σ

n

But because we do not know what the process population mean and
standard deviation are, we cannot just plug numbers into these formu-
las to obtain a control chart. The standard deviation and the mean must
be determined from sample statistics. The first chart that we will use
will be the R-chart to determine whether the process is stable or not.

X-charts and R-charts. The building of an X-chart follows the same prin-
ciple as for that of attribute control charts, with the difference that
quantitative measurements are considered for the CTQ characteristics
instead of qualitative attributes. X-and R-charts are used together to
monitor both the sample means and the variations within the sam-
ples through their spread. Samples are taken and measurements of the
means X and the ranges R for each sample derived and plotted on two
separate charts.

The CL is determined by averaging the Xs,

CL = X = X1 + X2 · · · Xn

n

where n represents the number of samples. The next step will be to
determine the UCL and the LCL,

UCL = X + 3σ

CL = X

LCL = X − 3σ
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We must determine the value of standard deviation σ for the population,
which can be determined in several ways. One way to do this would be
through the use of the standard error estimate σ/

√
n, and another would

be the use of the mean range.
There is a special relationship between the mean range and the stan-

dard deviation for normally distributed data:

σ = R
d2

where the constant d2 is function of n. (see Table 7.3)

Standard error-based X-chart The standard error-based X-chart is
straightforward. Based on the Central Limit Theorem, the standard
deviation used for the control limits is nothing but the standard devia-
tion of the process divided by the square root of the sample’s size. Thus,
we obtain

UCL = X + 3
(

σ√
n

)

CL = X

LCL = X − 3
(

σ√
n

)

Because the process standard deviation is not known, in theory these
formulas make sense, but in actuality they are impractical. The alter-
native to this is the use of the mean range.

Mean range-based X-chart. When the sample sizes are relatively small
(n ≤ 10), the variations within samples are likely to be small, so the
range (the difference between the highest and the lowest observed val-
ues) can be used in lieu of the standard deviation when constructing a
control chart.

σ = R
d2

or R = d2σ

where R is called the relative range. The mean range is

R = R1 + R2 · · · Rk

k

where Rk is the range of the kth sample. Therefore, the estimator of σ

is

σ = R
d2
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and the estimator of σ/
√

n is

σ√
n

= R
d2

√
n

Therefore,

UCL = X
3R

d2
√

n

CL = X

LCL = X − 3R
d2

√
n

These equations can be simplified:

A2 = 3
d2

√
n

The formulas for the control limits become

UCL = X + A2 R

CL = X

LCL = X − A2 R

R-chart. For an R-chart, the center line will be R and the estimator of
sigma is given as σR = d3σ . Because

σ = R
d2

we can replace σ with its value and therefore obtain

σR = d3 R
d2

Let

D3 =
(

1 − 3
d3

d2

)

and

D4 =
(

1 + 3
d3

d2

)
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Therefore, the control limits become

UCL = D4 R

CL = R

LCL = D3 R

Example Bamako Lightening is a company that manufactures chandeliers.
The weight of each chandelier is critical to the quality of the product. The
Quality Auditor monitors the production process using X-and R-charts. Sam-
ples are taken of six chandeliers every hour and their means and ranges
plotted on control charts. The data in Figure 7.12 represents samples taken
over a period of 25 hours of production.

Figure 7.12
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TABLE 7.2

n A2 A3 D3 D4

2 1.88 2.657 — 3.269
3 1.023 1.954 — 2.575
4 0.729 1.628 — 2.282
5 0.577 1.427 — 2.115
6 0.483 1.287 — 2.004
7 0.419 1.182 0.076 1.924
8 0.373 1.099 0.136 1.864
9 0.337 1.032 0.184 1.816

10 0.308 0.975 0.223 1.777

Therefore,

R = 9.994

X = 0.10464

From the control chart constant table (Table 7.2), we obtain the values of A2,
D3, and D4.

Because n is equal to 6,

A2 = 0.483

D3 = 0

D2 = 2.004

Based on these results, we can find the values of the UCL and the LCL for
both the X-and R-charts. For the X-chart,

UCL = X + A2 R = 9.994021 + 0.10464 × 0.483 = 10.04

CL = X = 9.994

LCL = X − A2 R = 9.943

For the R-chart,

UCL = D4 R = 2.004 × 0.10464 = 2.09

CL = R = 0.10464

LCL = D3 R = 0 × 0.10464 = 0

Using Minitab. Open the file Bamako.mpj on the included CD. The first
thing that must be done is to stack the data. From the Data menu,
select “Stack” and then select “Columns.” A “Stack Columns” dialog
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box appears. Select columns C2 through C7 for the Stack the follow-
ing columns text box before selecting “OK.” A new worksheet appears
with two columns. From the Stat menu, select “Quality Tools,” from the
drop-down list, select “Variable charts for subgroups,” and then select
“Xbar-R.” Select “C2” for the text box under “All observations for a chart
are in one column.” In the Subgroup sizes field, enter “6.” Select “OK”
to see the graph in Figure 7.13.

Figure 7.13

The results that we obtain prove our algebraic demonstration. On
both charts, all the observations are within the control limits and the
variations exhibit a random pattern, so we can conclude that the process
is stable and under control.

X -and S-control charts. The S-chart is used to determine if there is a
significant level of variability in the process, so it plots the standard
deviations of the samples taken at regular intervals. A strong variation
in the data plots will indicate that the process is very unstable.

Because σ 2, the population’s variance, is unknown it must be esti-
mated using the samples’ variance, S2,

S2 =

2∑
i=1

(xi − x)2

n − 1
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Therefore,

S =

√√√√√ 2∑
i=1

(xi − x)2

n − 1

S = 1
k

k∑
i=1

Si

for a number of k samples. But using S as an estimator for σ would
lead to a biased result. Instead, c4σ is used, where c4 is a constant that
depends only on the sample size, n. If S = c4σ , then

σ = S
c4

The mean expected of the standard deviation (which is also the CL)

will be E(S) = c4σ , and the standard deviation of S is σ

√
1 − c2

4. So the
control limits will be as follows:

UCL = c4σ + 3σ

√
1 − c2

4

CL = c4σ

LCL = c4σ − 3σ

√
1 − c2

4

These equations can be simplified using B5 and B6,

B6 = c4 + 3
√

1 − c2
4

B5 = c4 − 3
√

1 − c2
4

Therefore,

UCL = B6σ

CL = c4σ

LCL = B5σ

Similarly,

UCL = S+ 3
S
c4

√
1 − c2

4

CL = S

LCL = S− 3
S
c4

√
1 − c2

4
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These equations can be simplified:

B3 = 1 − 3
c4

√
1 − c2

4

B4 = 1 + 3
c4

√
1 − c2

4

Therefore,

UCL = B4S

CL = S

LCL = B3S

The values of B3 and B4 are found in Table 7.3.

TABLE 7.3

Sample Size A2 A3 B3 B4 d2 d3

2 1.88 2.659 3.267 1.128 0.853
3 1.023 1.954 2.568 1.693 0.888
4 0.729 1.628 2.266 2.059 0.88
5 0.577 1.427 2.089 2.326 0.864
6 0.483 1.287 0.030 1.970 2.534 0.848
7 0.419 1.182 0.118 1.882 2.704 0.833
8 0.373 1.099 0.185 1.815 2.847 0.820
9 0.337 1.032 0.239 1.761 2.970 0.808

10 0.308 0.975 0.284 1.716 3.078 0.797
11 0.285 0.927 0.321 1.679 3.173 0.787
12 0.266 0.886 0.354 1.646 3.258 0.778
13 0.249 0.850 0.382 1.618 3.336 0.770
14 0.235 0.817 0.406 1.594 3.407 0.763
15 0.223 0.789 0.428 1.572 3.472 0.756
16 0.212 0.763 0.448 1.552 3.532 0.750
17 0.203 0.739 0.466 1.534 3.588 0.744
18 0.194 0.718 0.482 1.518 3.640 0.739
19 0.187 0.698 0.497 1.503 3.689 0.734
20 0.18 0.68 0.51 1.49 3.735 0.729
21 0.173 0.663 0.523 1.477 3.778 0.724
22 0.167 0.647 0.534 1.466 3.819 0.72
23 0.162 0.633 0.545 1.455 3.858 0.716
24 0.157 0.619 0.555 1.455 3.895 0.712
25 0.153 0.606 0.565 1.435 3.031 0.708

Example Rufisque Housing manufactures plaster boards. The thickness of
the boards is critical to quality, so samples of six boards are taken every hour
to monitor the mean and standard deviation of the production process. The
table in Figure 7.14 shows the measurements taken every hour.
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Figure 7.14

Using Minitab. The way the data are laid out on the worksheet does not
lend itself to easy manipulation using Minitab. We will have to stack
the data first before creating the control charts.
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After opening the file Rufisque.mpj on the included CD,from the Data
menu, select “Stack” and then select “Columns.” In the “Stack Columns”
dialog box, select the columns C1, C2, C3, C4, C5, and C7 for the Stack
the following columns text box before selecting “OK.” A new worksheet
will appear with the data stacked in two columns. Now from the Stat
menu, select “Control Charts,” from the drop-down list, select “Variable
charts for subgroups,” and then select “Xbar-S.” Select “C2” for the text
box under All observations for a chart are in one column. Enter “6” in
the field Subgroup size. Select “OK” and the control charts appear.

All the data plots for the two charts are well within the control limits
and exhibit a random pattern, so we conclude that the process is table
and under control.

Using Excel. We can find the mean and the standard deviations for
the samples and construct the charts. We know that n = 6, so once we
obtain the values of X and S we look up the values of B3 and B4 on the
control charts constant table (Table 7.3):

B4 = 1.94

B3 = 0.03

UCL = 1.97 × 0.049 = 0.097

LCL = 0.03 × 0.049 = 0.0015



Statistical Process Control 169

Excel does not provide an easy way to generate control charts without
adding macros, but because we know what the UCL and the LCL are,
we can use the Chart Wizard to see the trends of the process.

Moving Range. When individual (samples composed of a single item)
CTQ characteristics are collected, moving range control charts can be
used to monitor production processes. The variability of the process
is measured in terms of the distribution of the absolute values of the
difference of every two successive observations.

Let xi be the ith observation, and the moving average range MR will
be

MR = ∣∣xi − xi−1
∣∣

and the mean MR will be

MR =

n∑
i=1

∣∣xi − xi−1
∣∣

n

The standard deviation S is obtained by dividing MR by the constant
d2. Because the moving range only involves two observations, n will be
equal to 2 and therefore, for this case, d2 will always be equal to 1.128.

UCL = x + 3
d2

MR

CL = x

LCL = x − 3
d2

MR

Because d2 is 1.128, these equations can be simplified:

UCL = x + 2.66MR

CL = x

LCL = x − 2.66MR

Example The data in Table 7.4 represents diameter measurements of sam-
ples of bolts taken from a production line. Find the control limits.
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TABLE 7.4

Sample Number Measurements Moving Range

1
2
3
4
5
6
7
8
9

10

9
7

11
8
8
7

10
9

12
11

—
2
4
3
0
1
3
1
3
1

Total 92 18
Mean 9.2 2

x = 9.2
MR = 2

Therefore, the control limits will be

UCL = 9.2 + (2.66 × 2) = 14.52

CL = 9.2

LCL = 9.2 − (2.66 × 2) = 3.88
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8
Process Capability Analysis

Are Your Processes Yielding Products
or Services That Meet Your
Customers’ Expectations?

Learning Objectives:

� Determine the difference between the purpose of a Statistical Process
Control and the one of a process capability analysis

� Know how the process capability indices are generated
� Understand the difference between Taguchi’s indices and the Cpk and

Cp

� Analyze the capability of a process with normal and non-normal data

Two factors determine a company’s ability to respond to market de-
mand: the operating resources it has at its disposal, and the organiza-
tional structure it has elected to use. The operating resources establish
the company’s leverage and the maximum amount of products or ser-
vices it is able to produce.

The organizational structure that is determined by the short- or
long-term strategies of a company is composed of the multitude of pro-
cesses that are used to generate the goods or services. How effective a
company is in satisfying its customers’ demand is measured in terms of
the processes’ capabilities, which are defined as the processes’ abilities
to generate products or services that meet or exceed customers’ require-
ments.

Customer requirements are the significant features that the cus-
tomers expect to find in a product or a service; the design engineers
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translate those requirements into CTQ characteristics of the products
or services that they are about to produce. Those CTQs are fully in-
tegrated into the product design as measurable or attribute variables,
and they are used as metrics to ensure that the production processes
conform to customer requirements. Once the CTQs are assessed and
quality targets are determined, the engineers specify the upper and
lower limits within which those variables must fall.

While the production is in progress, the performance of the production
process is monitored to detect and prevent possible variations. The tool
frequently used to monitor a process performance while the production
is in progress is the control chart. It helps detect assignable causes of
variations and facilitate corrective actions.

But a control chart is not the correct tool to determine if the cus-
tomers’ requirements are met because it is only used to monitor the per-
formance of production processes in progress, and an in-control process
does not necessarily mean that all the products meet the customers’ (or
engineered) requirements. In other words, a process can be contained
within the upper and lower control limits and still generate products
that are outside the specified limits.

Suppose that we are monitoring a machine that produces rotor shafts,
and that the length of the shaft is critical to quality. The X - R-charts of
Figure 8.1 plot the measurements that were obtained while monitoring
the production process. Remember that control charts are constructed

Figure 8.1
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by taking samples from the production line at preset intervals and plot-
ting the means of the samples on a chart. If the parts from the samples
taken are considered defective, the measurements are still plotted and
adjustments made on the machine to prevent further defects. But mak-
ing adjustments on the machines does not mean that no more defects
will be generated.

From the observation we make of the process that generated the
graph of Figure 8.1, we can conclude that the process is acceptably
stable and that the variations are within the control limits.

Yet we cannot conclude that all the output meets the customers’ ex-
pectations. The output in this case is within the UCL (9.00681) and the
LCL (8.99986). If the specified engineered limits were 9.01 for the lower
specified limit (LSL) and 10.02 for the upper specified limit (USL), none
of the parts produced by the machine would have met the customers’
expectations. In other words, all the parts would have been considered
as defective. So a stable and in-control production process does not nec-
essarily mean that all the output meets customers’ requirements. To
dissipate any confusion, it is customary to relate the specified limits to
the “voice of the customer,” whereas the control limits are related to the
“voice of the process.”

The control charts do not relate the process performance to the cus-
tomers’ requirements because there is not any statistical or mathemati-
cal relationship between the engineered specified limits and the process
control limits. The process capability analysis is the bridge between the
two; it compares the variability of an in-control and stable production
process with its engineered specifications and capability indices are
generated to measure the level of the process performance as it relates
to the customers’ requirements.

A process is said to be capable if the process mean is centered to the
specified target and the range of the specified limits is wider than the
one of the actual production process variations (Control Limits), as in
the graph in Figure 8.2. The Upper and Lower specified limits represent

Figure 8.2
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the engineered standards (or customer requirements) and the control
chart on the right side depicts the production process performance. Be-
cause the control chart depicts the actual production process and all the
output is within the control limits and the range of the control limits
is smaller than that of the specified limits, we conclude that the output
generated by the production process meets or exceeds the customers’
expectations.

If the spread of the natural variations (control limits) is larger than
the one of the specified limits, as in the example of Figure 8.3, the
process is considered incapable because some of the parts produced are
outside the engineered standards.

Figure 8.3

Process capability analysis assumptions. Process capability analysis as-
sumes that the production process is in-control and stable. Because
what are being compared are the specified limits and the control lim-
its, if the process is out of control, some of the measurements might be
outside the control limits and would not be taken into account.

The stability of the process refers to the ability of the process auditor
to predict the process trends based on past experience. A process is said
to be stable if all the variables used to measure the process’ performance
have a constant mean and a constant variance over a sufficiently long
period of time.

Process capabilities in a Six Sigma project are usually assessed at the
“Measure” phase of the project to determine the level of conformance to
customer requirements before changes are made, and at the “Improve”
phase to measure the quality level after changes are made.

8.1 Process Capability with Normal Data

The outputs of most production processes are normally distributed.
When a probability distribution is normal, most of the data being
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analyzed are concentrated around the mean. For a sigma-scaled nor-
mal graph, 99.73 percent of the observations would be concentrated
between ±3σ from the mean.

Testing your data for normality. Minitab offers several ways to test the
normality of data. That test can be done through the “Individual Distri-
bution Identification” option under the “Quality tools” or through the
“Normality test” under “Basic Statistics.” Because the normality test
has already been used in the previous chapters, we will only concern
ourselves with the Individual Distribution Identification. The purpose
of this option is to help the experimenter determine the type of distri-
bution the data at hand follow. The experimenter can a priori select
several types of distributions and test the data for all of them at the
same time. Based on the p-values that the test generates, one can assess
the nature of the distribution.

Open the file normalitytest.mpj on the included CD. From the Stat
menu, select “Quality tools,” and from the drop-down list, select “In-
dividual Distribution Identification.” Select “C1” for Single Column.
Select Use all distributions and then select “OK.” A probability plot for
each distribution should appear. An observation of the plots and the
p-values shows that the distribution is fairly normal. The Anderson-
Darling normality test shows a p-value of 0.415, which indicates that
the data are normally distributed for an α-level of 0.05.
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The process capability analysis compares the spread of the specified
limits to the spread of the natural variations of the process (control
chart). The most commonly used process capability indices are: Cp, Cpk,
Cr, Pp, and Ppk. The process capability indices are unitless; that is,
they are not expressed in terms of a predetermined unit of measure-
ment.

8.1.1 Potential capabilities vs. actual
capabilities

Process capability indices can be divided into two groups: the in-
dices that measure the processes potential capabilities, and the ones
that measure their actual capabilities. The potential capability indices
determine how capable a process is if certain conditions are met—
essentially, if the mean of the process’ natural variability is centered to
the target of the engineered specifications. The actual capability indices
do not require the process to be centered to be accurate.

Short-termpotential capabilities, Cp andCr . A process is said to be capable
if the spread of the natural variations fits in the spread of the specified
limits. This is so when the ratio of the specified range to the control
limits is greater than one. In other words, the following ratio should be
greater than 1:

Cp = USL − LSL
UCL − LCL

For a sample statistic y, the equations of interest for a control chart are

UCL = Xy + kσy

CL = Xy

LCL = Xy − kσy

with Xy being the mean of the process, σy being the standard deviation,
and k equal to 3. The range of the control chart is the difference between
the UCL and the LCL and is given as

UCL − LCL = (Xy + 3σy) − (Xy − 3σy)

UCL − LCL = Xy + 3σy − Xy + 3σy = 6σy
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Therefore,

Cp = USL − LSL
UCL − LCL

= USL − LSL
6σ

The value of Cp = 1 if the specified range equals the range of the
natural variations of the process, in which case the process is said to be
barely capable; it has the potential to only produce nondefective prod-
ucts if the process mean is centered to the specified target. Approxi-
mately 0.27 percent, or 2700 parts per million, are defective.

The value of Cp > 1 if the specified range is greater than the range of
the control limits, in which case the process is potentially capable—if
the process mean is centered to the engineered specified target—and
is (probably) producing products that meet or exceed the customers’
requirements.

The value of Cp < 1 if the specified range is smaller than the range of
the control limits. The process is said to be incapable; in other words, the
company is producing junk.

Example The specified limits for a product are 75 for the upper limits and
69 for the lower limit with a standard deviation of 1.79. Find Cp. What can
we say about the process’ capabilities?

Solution

Cp = USL − LSL
6σ

= 75 − 69
6 × 1.79

= 6
10.74

= 0.56

Because Cp is less than 1, we have to conclude that the process will generate
nonconforming products.

Capability ratios. Another way of expressing the short-term potential
capability would be the use of the capability ratio, Cr. It determines
the proportion or percentage of the specified spread that is needed to
contain the process range. Note that it is not the proportion that is
necessarily occupied. If the process mean is not centered to the target,
the range of the control chart may not be contained within the specified
limits.

Cr = 1
Cp

= UCL − LCL
USL − LSL

= 6σ

USL − LSL

Example What is the capability ratio for the previous example? How do we
interpret it?
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Solution Because

Cp = 0.56

Cr = 1
Cp

= 1
0.56

= 1.79

The proportion of the specified spread needed to accommodate the spread of
the process range is 1.79. It is greater than 1, and therefore the production
process is not capable.

Process performance, long-term potential process capabilities. Control
charts are built using samples taken while the production is in progress.
The process mean is the mean of the samples’ means. Because of the
common (and also special) causes of variation, both the process mean
and the process variance will tend to drift from their original positions
in the long term. A long-term process performance takes into account
the possibility of a shift of the process mean and variance.

Pp and Pr are the indices used to measure the long-term process
capabilities. They are computed the same way the Cp and the Cr are
computed,

Pp = USL − LSL
6σLT

Pr = 6σLT

USL − LSL

where σ LT is the long-term standard deviation. The interpretation of
these equations is also the same as in the case of the short-term capa-
bilities.

8.1.2 Actual process capability indices

The reason why Cp > 1 does not necessarily mean that the process is
not producing defects is that the range of the control limits might be
smaller than the one of the specified limits, but if the process mean is
not centered to the specified target, one side of the control chart might
exceed the specified limits, as in the case of the graph of Figure 8.4, and
defects are being produced.

If the process mean is not centered to the specified target, Cp would
not be very informative because it would only tell which of the two
ranges (process control limits and engineered specified limits) is wider,
but it would not be able to inform on whether the process is generating
defects or not. In that case, another capability index is used to determine
a process’ ability to respond to customers’ requirements.
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Figure 8.4

The Cpk measures how much of the production process really conforms
to the engineered specifications. The k in Cpk is called the k-factor; it
measures the level of deviation of the process mean from the specified
target.

Cpk = (1 − k)Cp

To find out how to derive Cp from this formula, see Appendix C. With

k =

∣∣∣(USL + LSL) /2 − X
∣∣∣

(USL − LSL) /2

(USL − LSL)/2 is nothing but the target T, so k becomes

k =

∣∣∣T − X
∣∣∣

(USL − LSL)/2

k = |((USL + LSL)/2) − X |
(USL − LST)/2

Therefore, if
USL + LSL

2
> X in other words, if T > X

then k = ((USL + LSL)/2) − X
(USL − LSL)/2

if
USL + LSL

2
< X then k = X − (USL + LSL)/2

(USL − LSL)/2
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A little algebraic manipulation can help demonstrate that Cpk =
(1 − k)Cp

if k = ((USL + LSL)/2) − X
(USL − LSL)/2

= USL + LSL
USL − LSL

− 2X
USL − LSL

Since

Cp = USL − LSL
6σ

, (1 − k)Cp =
(

1 −
(

USL + LSL
USL − LSL

− 2X
USL − LSL

))

×
(

USL − LSL
6σ

)

We can develop this equation a little further

Cpk = (1 − k)Cp =
⎛
⎝USL − LSL

USL − LSL
− USL + LSL

USL − LSL
+ 2X

USL − LSL

⎞
⎠

×
(

USL − LSL
6σ

)

Cpk = (1 − k)Cp =
⎛
⎝USL − LSL

6σ
− USL − LSL

6σ
+ 2X

6σ

⎞
⎠

= 2X − 2LSL
6σ

= X − LSL
3σ

k =
(
(USL + LSL) /2

) − X

(USL − LSL) /2

if USL+ LSL
2 < X, then k = X−(USL+ LSL)/2)

(USL− LSL)/2

Cpk = (1 − k)Cp, therefore Cpk =
⎛
⎝1 −

⎛
⎝ 2X

USL − LSL
− USL + LSL

USL − LSL

⎞
⎠

⎞
⎠

×
(

USL − LSL
6σ

)

Cpk = (1 − k)Cp =
⎛
⎝USL − LSL

6σ
− 2X

6σ
+ USL − LSL

6σ

⎞
⎠

= 2(USL − X )
6σ

= USL − X
3σ



Process Capability Analysis 181

A result of k = 0 means that the process is perfectly centered, and
therefore Cpk = Cp.

Cpk = (1 − k)Cp

1 − k = Cpk

Cp

If Cpk = Cp,
1 − k = 1

k = 0
If k �= 0, then

3Cpk = min{Zul, Zll} or Cpk = min
{

1
3

Zul,
1
3

Zll

}

with

Zul = USL − X
σ

and

Zll = X − LSL
σ

Call T the engineering specified target:

T = USL + LSL
2

If T < X, then

Cpk = 1
3

Zul = USL − X
3σ

If T > X, then

Cpk = 1
3

Zll = X − LSL
3σ



182 Chapter Eight

Just as in the case of the short-term capability indices, the actual long-
term process capability takes into account the possibility of a drift in
both the mean and the variance of the production process.

Ppk is the index used to measure the long-term process capability:

Ppk = min
{

1
3

ZULT,
1
3

ZLLT

}

ZLLT = XLT − LSL
σLT

ZULT = USL − XLT

σLT

Consider the Minitab process capability analysis output of Figure 8.5:

Figure 8.5

The histogram and the normal curves represent in this case the pro-
cess output, and the specified limits specify the engineered standards.
The spread of the engineered specified limits is a lot wider than that
of the process control limits; that’s why Cp is greater than one. But
because the process is not centered to the engineered specified target,
more than half the output is outside (to the left) the specified limits.
The Cpk is extremely small: −0.16 indicates that there is a great deal
of opportunities for process improvement.
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Because Cpk is a better measure of capability than Cp, why not just
use Cpk instead of Cp? The variable Cpk only shows the spread between
the process mean and the closest specified limit; therefore, it will not
reveal the spread of the process controls.

Example The average call time at a call center is 7.27 minutes. No lower
specification is set, and the upper specification is set at 9.9 minutes. What is
the maximum standard deviation if a Cpk greater than 1.67 is required?

Solution We already know the formula for calculating the Cpk:

Cpk = USL − X
3σ

= 9.9 − 7.27
3σ

Therefore,

σ ≤ 9.9 − 7.4
3 × 1.67

σ ≤ 0.499

So the maximum standard deviation must be 0.499.

8.2 Taguchi’s Capability Indices CPM and PPM

So far all the indices that were used (Cp, Cpk, Pp, Ppk, and Cr) only con-
sidered the specified limits, the standard deviation, and—in the case
of Cpk and Ppk—the production process mean. None of these indices
take into account the variations within tolerance, the variations when
the process mean fails to meet the specified target but is still within
the engineered specified limits. Because of Taguchi’s approach to tol-
erance around the engineered target (see Chapter 12), the definition
and approach to capability measures differ from that of the traditional
process capability analysis.

Taguchi’s approach suggests that any variation from the engineered
target, be it within or outside the specified limits, is a source of de-
fects and a loss to society. That loss is proportional to the distance be-
tween the production process mean and the specified target. Taguchi’s
loss function measures the loss that society incurs as a result of not
producing products that match the engineered targets. It quantifies
the deviation from the target and assigns a financial cost to the devia-
tions:

l (y) = k (y − T)2
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with

k = �

m2

where � is the cost of a defective product, m is the difference between
the specified limit and the target T, and y is the process mean.

Because Taguchi considers both the process standard deviation and
the position of the process mean, both Cpm and Ppm will take into ac-
count these variables. The formulas for the capability indices therefore
become

Cpm = USL − LSL
6τST

and

Ppm = USL − LSL
6τLT

where τ depends on the variance and the deviation of the process mean
from the engineered standards.

τ =
√

σ 2 + (T − M)2

where T is the target and M is the process mean.

Example A machine produces parts with the following specified limits: USL
= 16, LSL = 12, and specified target = 14. The standard deviation is deter-
mined to be 0.55 and the process mean 15. Find the value of Cpm. Compare
the Cpm with Cpk.

Solution

Cpm = USL − LSL

6
√

σ 2 + (T − M)2
= 16 − 12

6
√

0.552 + (15 − 14)2

= 4
6 × 1.141271

= 4
6.85

= 0.584

Cu = 16 − 15
3 × 0.55

= 1
1.65

= 0.61

Cl = 15 − 12
3 × 0.55

= 3
1.65

= 1.82
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So Cpk = 0.61. Even though both the Cpm and the Cpk show that the production
process is incapable, Cpk > Cpm.

Example The amount of inventory kept at Touba’s warehouse is critical to
the performance of that plant. The objective is to have an average of 15.5 DSI
with a tolerance of an USL of 16.5 and a LSL of 14.5. The data on the file
Touba warehouse.mpj on the included CD represent a sample of the DSI.

a. Run a capability analysis to determine if the production process used so
far has been capable.

b. Is there a difference between Cpm and Cpk? Why?

c. The tolerance limits have been changed to USL = 16 and LSL = 14 and
the target set at 15 DSI. What effect did that change have on the Cpm and
the Cpk?

Solution Open the file Touba warehousei.mpj on the included CD. From the
Stat menu, select “Quality Tools,” then select “Capability Analysis,” and then
select “Normal.” Fill out the dialog box as indicated in Figure 8.6.

Select “Options. . . ” and in the “Capability Analysis Options” dialog box,
enter “15.5” into the Target (add Cpm totable) field. Leave the value “6” in the
K field and select the option Include confidence intervals. Select “OK” and
then select “OK” again to get the output shown in Figure 8.7.

Interpretation. The data plot shows that all the observations are well
within the specified limits and not a single one comes anywhere close
to any one of the limits, yet all of them are concentrated between the
LSL and the target. The fact that not a single observation is outside the
specified limits generated a PPM (defective Parts Per Million) equal to
zero for the observed performance. A result of Cpk = 1.07 suggests that
the process is barely capable.

But from Taguchi’s approach, the process with a Cpm = 0.64 is abso-
lutely not capable because even though all the observations are within
the specified limits, very few (outliers) of them meet the target.

After the specified limits and the target have been changed, we obtain
the output shown in Figure 8.8. Note that the production process is now
centered and the observations are closely clustered around the target.
The PPM is still equal to zero but Cpm = 2.13 and Cpk = 2.08 are closer
than before the changes were made.

8.3 Process Capability and PPM

The process capability indices enable an accurate assessment of the
production process’ ability to meet customer expectations, but because
they are unitless, it is not always easy to interpret changes that re-
sult from improvement on the production processes based solely on the
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Figure 8.7

Figure 8.8



188 Chapter Eight

process capability indices. For instance, if at the “Measure” phase of
a Six Sigma project the Cpk is found to be 0.89 and at the end of the
project, after improvement, the Cpk becomes 1.32, all that can be said is
that there has been improvement in the production process. But based
only on these two numbers, one cannot easily explain to a non-statistics-
savvy audience the amount of reduction of defects from the process.

The quantification of the parts per million that fall outside the speci-
fied limits can help alleviate that shortcoming. Parts per million (PPM)
measures how many parts out of every million produced are defective.
Estimating the number of defective parts out of every million produced
makes it easier for anyone to visualize and understand the quality level
of a production process. Here again, the normal distribution theory is
used to estimate the probability of producing defects and to quantify
those defects out of every million parts produced.

Recall the Z formula from the normal distribution:

Z = X − µ

σ

If

Cpk = X − LSL
3σ

then

Cpk = Zmin

3

and

Zmin = 3Cpk

This formula enables us to calculate the probability for an event to
happen and also the cumulative probability for the event to take place
if the data being considered are normally distributed.

The same formula (with minute changes) is used to calculate the
PPM. The total PPM is obtained by adding the PPM on each side of the
specified limits,

PPMLL = (ZLL) × 106 = 

(
X − LSL

σ

)
× 106

for the lower specified limit and

PPMUL = (ZUL) × 106 = 

(
USL − X

σ

)
× 106
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for the upper specified limit. The quantities (ZLL) and (ZUL) repre-
sent the values of ZLL and ZUL obtained from the normal probability
table.

PPM = PPMLL + PPMUL

There is a constant relationship between Cpk, Zmin, and PPM when the
process is centered.

Cpk Zmin PPM

0.50 1.50 133,600
0.52 1.56 118,760
0.55 1.64 100,000
0.78 2.33 20,000
0.83 2.50 12,400
1.00 3.00 2,700
1.10 3.29 1,000
1.20 3.60 318
1.24 3.72 200
1.27 3.80 145
1.30 3.89 100
1.33 4.00 63
1.40 4.20 27
1.47 4.42 10
1.50 4.40 7.00
1.58 4.75 2.00
1.63 4.89 1.00
1.67 5.00 0.600
1.73 5.20 0.200
2.00 6.00 0.002

Example The data on the worksheet in the file Tirethread.mpj on the in-
cluded CD measures the depth of the threads of manufactured tires. The
USL and LSL are given as 5.011 mm and 4.92 mm, respectively.

a. Find the value of Cp.

b. Find the values of Cu and Cl.

c. Find the value of Cpk.

d. Find the number of defective parts generated for every million parts pro-
duced.

e. What is the value of the k-factor?

Solution

X = 5.00008

LSL = 4.92 USL = 5.011

σ = 0.0046196
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a. The value of Cp:

Cp = USL − LSL
6σ

= 5.011 − 4.92
6 × 0.0046196

= 0.091
0.0277

= 3.2852

b. The values of Cu and Cl:

Cu = USL − X
3σ

= 5.011 − 5.00008
3 × 0.0046196

= 0.01092
0.0.138588

= 0.79

Cl = X − LSL
3σ

= 5.00008 − 4.92
3 × 0.0046196

= 0.08008
0.0.138588

= 5.7782

c. The value of Cpk:
The values of ZUL and ZLL are obtained using the same method as the
z-transformation for the normal distribution,

ZUL = USL − X
σ

= 5.011 − 5.00008
0.0046196

= 2.364

and

ZLL = X − LSL
σ

= 5.00008 − 4.92
0.0046196

= 17.335

ZUL > ZLL, therefore

Cpk = 1
3

ZUL = 2.364
3

= 0.79

d. Defective parts produced per million (PPM): From the normal distribution
table, we obtain

(ZLL) = (17.335) ≈ 0.5

The value 0.5 represents half the area under the normal curve. The
equation (ZLL) = (17.335) ≈ 0.5 represents the area under the nor-
mal curve that is within the specified limits on the left side. So the area
outside the specified limits on the left side should be 0.5 − 0.5 = 0. On the
right side of the specified limits, (ZUL) = (2.364) ≈ 0.491 represents
the area under the curve; the area outside the curve is approximately
0.5 − 0.491 = 0.009. So the number of PPM on the right side should be
approximately 0.009 × 106 ≈ 9000.
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The total PPM ≈ PPMLL + PPMUL ≈ 0 + 9000 ≈ 9000. The Minitab out-
put for the analysis of this example is given in Figure 8.9. Note that there
is a slight difference of 34.7. This difference is due to the rounding of the
results.

e. The k-factor:

Cpk = (
1 − k

)
Cp

k = 1 − Cpk

Cp
= 1 − 0.79

3.28
= 1 − 0.241 = 0.759

Figure 8.9

Example Using the data in the file Fuel pump.mpj on the included CD, find
the Cpk given that the USL is 81.3 and the LSL is 73.9. The data are already
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subgrouped. Is the process capable? Is the process centered? What can we say
about the long-term process capability? How many parts out of every million
are defective?

Solution Using Minitab, open the file Fuel pump.mpj on the included CD.From
the Stat menu, select “Quality Tools,” select “Capability Analysis,” and then
select “Normal.” Fill out the dialog box as shown in Figure 8.10.

Figure 8.10

Then select “OK” to obtain the output shown in Figure 8.11.

Figure 8.11
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Is the process capable? The histogram represents the data being an-
alyzed; its shape indicates that the data are normally distributed. A
process is said to be capable if all the parts it produces are within the
specified limits. In this case, even though Cp = 1.03 is greater than 1,
Cpk = 0.88 is lower than 1. This result suggests that not only is the
process not centered but it is also incapable. The graph shows that part
of the histogram is outside the USL.

A result of Ppk = 0.78 indicates that the process must be adjusted and
centered. PPM indicates how many parts are outside the specified limits
for every million produced. For every one million parts produced for the
Overall Performance, 890.83 parts will be outside the specified limits
on the LSL side and 9364.21 will be outside the specified limits on the
USL. The total overall PPM is the sum of the two values, which in this
case is equal to 10,255.04.

8.4 Capability Sixpack for Normally
Distributed Data

Two essential conditions among others were set for a process capabil-
ity analysis to be valid: the production process must be in-control and
stable. In addition, when selecting the type of analysis to conduct we
must determine the probability distribution that the data follows. If
we think that the data are normally distributed and we run a capa-
bility analysis and, unfortunately, it happens not to follow the normal
distribution, the results obtained would be wrong.

Minitab’s Capability Sixpack offers a way to run the test and verify
if the data are normally distributed, and if the production process is
stable and in-control. As its name indicates, it generates six graphs that
help assess if the predetermined conditions are met. It shows the Xbar
Chart, the Normal Probability Plot, the R-Chart, the last 25 subgroups,
and a summary of the analysis.

Example The weight of a rotor is critical to the quality of an electric gen-
erator. Samples of rotors have been taken and their weight tracked on the
worksheet in the file Rotor weight.mpj. Open the file Rotor weight.mpj on the
included CD. From the Stat menu, select “Quality Tools,” from the drop-down
list, select “Capability Sixpack,” and then select “Normal.” A dialog box iden-
tical to the “Capability Analysis” dialog box pops up. For Data are arranged
as, select “Single column” and select “Rotor weight.” In the Subgroup field,
enter “3.” For Lower spec, enter “4.90” and enter “5.10” for Upper spec. Then
select “OK” and the output box of Figure 8.12 pops up.

The Xbar and the Rbar control charts show that the production process
is stable and under control. The Normal Probability Plot shows that the
data are normally distributed, and the Capability Histogram shows that the
process is capable, almost centered and well within specification.
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Figure 8.12

The Capability Plot summary shows that Cpk = 3.78 and Cp = 3.81. These
two numbers and fairly close, which suggests that the process is almost cen-
tered.

8.5 Process Capability Analysis
with Non-Normal Data

So far, one of the assumptions for a process capability analysis has
been the normality of the data. The values of Cpk, Ppk, and PPM were
calculated using the z-transformation, therefore assuming that the data
being analyzed were normally distributed. If we elect to use normal
option for process capability analysis and the normality assumption
is violated because the data are skewed in one way or another, the
resulting values of Cpk, Cp, Pp, Ppk, and PPM would not reflect the
actual process capability.

Not all process outputs are normally distributed. For instance, the
daily number of calls or the call times at a call center are generally not
normally distributed unless a special event makes it so. In a distribution
center where dozens of employees pick, pack, and ship products, the
overall error rate at inspection is not normally distributed because it
depends on a lot of factors, such as training, the mood of the pickers,
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the SOPs, and so on. It is advised to test the normality of the data being
assessed before conducting a capability analysis.

There are several ways process capabilities can be assessed when the
data are not normal:

� If the subsets that compose the data can are normal, the capabilities
of the subsets can be assessed and their PPM aggregated.

� If the subsets are not normal and the data can be transformed using
the Box-Cox, natural log for parametric data, or Logit transformations
for binary data, transform the data before conducting the analysis.

� Use other distributions to calculate the PPM.

8.5.1 Normality assumption and
Box-Cox transformation

One way to overcome the non-normal nature of the data is to through
the use of the Box-Cox transformation. The Box-Cox transformation
converts the observations into an approximately normal set of data.

The formula for the transformation is given as

T(y) = yλ − 1
λ

If λ = 0, the denominator would equal zero, and to avoid that hurdle,
the natural log will be used instead.

Example Transform the data included in the file Boxcoxtrans.mpj.

Solution Open the file Boxcoxtrans.mpj on the included CD. From the Stat
menu, select “Control Charts” and then select “Box-Cox Transformation.” In
the “Box-Cox Transformation” dialog box, leave All observations for the chart
are in one column in the first field. Select “C1” for the second textbox. Enter
“1” into the Subgroup size field. Select “Options” and enter “C2” in Store
transformed data in:. Select “OK” and select “OK” again.

The system should generate a second column that contains the data yielded
by the transformation process. The normality of the data in column C2 can
be tested using the probability plot. The graph shown in Figure 8.13 plots
the data before and after transformation.

The Anderson-Darling hypothesis testing for normality shows an infinites-
imal p-value of less than 0.005 for C1 (before transformation), which indi-
cates that the data are not normally distributed. The same hypothesis testing
for C2 (after transformation) shows a p-value of 0.819 and the graph clearly
shows normality.
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Figure 8.13

8.5.2 Process capability using
Box-Cox transformation

The data in the file Downtime.mpj measure the time between machine
breakdowns. A normality test has revealed that the data are far from
being normally distributed; in fact, they follow an exponential distri-
bution. Yet if the engineered specified limits for the downtimes are set
at zero for the LSL and 25 for the USL and if we run a capability test
assuming normality, we would end up with the results shown in Figure
8.14.

It is clear that no matter what type of unit of measurement is being
used, the time between machine breakdowns cannot be negative. Set
the LSL at zero but the PPM for the lower specification is 34,399.27
for the Within Performance and 74,581.98 for the Overall Performance.
This result suggests that some machines might break down at negative
units of time measurements. This is because the normal probability z-
transformation was used to calculate the probability for the machine
breakdowns to occur even though the distribution is exponential.

One way to correct this problem is through the transformation, the
normalization of the data. For this example, we will use the Box-Cox
transformation and instead of setting the lower limit at zero, we in-
crease it to one unit of time measurement. The process of estimating
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Figure 8.14

the process capabilities using Minitab is the same as the one we per-
formed previously with the exception that we:

� Select the “Box-Cox . . . ” option
� Select the “Box-Cox Power Transformation (W = Y∗∗Lambda)” option
� Leave the option checked at Use Optimal Lambda and select “OK”

button to obtain the output shown in Figure 8.15.

The process is still incapable, but in this case the transformation has
yielded a PPM equal to zero for the lower specification. In other words,
the probability for the process to generate machine breakdowns at less
than zero units of measurements is zero.

Example WuroSogui Stream is a call center that processes customer com-
plaints over the phone. The longer the customer services associates stay on
the phone with the customers, the more associates will be needed to cater
to the customers’ needs, which would result in extra operating cost for the
center. The quality control department set the specifications for the time that
the associates are required to stay on the phone with the customers. They
are expected to expedite the customers concerns in 10 minutes or less. So in
this case, there is no lower specification and the USL is 10 minutes with a
target of 5 minutes.
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Figure 8.15

The file Wurossogui.mpj on the included CD contains data used to create
a control chart to monitor production process at the call center.

a. What can be said about the normality of the distribution?

b. What happens if a normal process capability analysis is conducted?

c. If the data are not normally distributed, run a process capability analysis
with a Box-Cox transformation.

d. Is the process capable?

e. If the organization operates under Taguchi’s principles, what could we say
about the process capabilities?

f. Compare Cpk with Cpm.

g. What percentage (not PPM) of the parts produced is likely to be defective
for the overall performance?

Solution

a. The normality of the data can be tested in several ways. The easiest way
would be through the probability plot.

From the Graph menu, select “Probability plot.” The Single option
should be selected, so just select “OK.” The “Probability Plot — Single”
dialog box pops up, select “C1” for the Graph Variable textbox before se-
lecting “OK.” The graph in Figure 8.16 pops up.

The graph itself shows that the data are not normally distributed for a
confidence interval of 95 percent. A lot of the dots are scattered outside
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Figure 8.16

confidence limits and the Anderson-Darling null hypothesis for normality
yielded an infinitesimal p-value of less than 0.005; therefore, we must
conclude that the data are not normally distributed.

b. If we conduct a process normal capability analysis, we will obtain a Cpk

and PPM that were calculated based on the normal z-transformation.
Because the z-transformation cannot be used to calculate a process ca-
pability for non-normal data unless the data have been normalized, the
results obtained would be misleading.

c. Open the file Wurossogui.mpj on the included CD. From the Stat menu,
select “Quality Tools,” then select “Capability Analysis” from the drop-
down list, and select “Normal.” Select the Single Column option and select
“C1” for that field. For Subgroup Size, enter “1.” Leave the Lower Spec
field empty and enter “10” in the Upper Spec field. Select the Box-Cox
option, and select the Box-Cox Power Transformation (W = Y**Lambda)
and then select “OK.” Select “Options” and enter “5” in the Target (adds
CPM to table) field. Select the Include Confidence Interval option and then
select “OK.” Select “OK” again to obtain the graph of Figure 8.17.

d. Based on the value of Cpk = 1.07, we can conclude that the process is barely
capable even though the results show opportunities for improvement.

e. If the organization operates under Taguchi’s principles, we would have to
conclude that the process is absolutely incapable because Cpm = 0.25, and
this is because while all the observations are within the specified limits,
most of them do not match the target value of 5.
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Figure 8.17

f. Cpk = 1.07 and Cpm = 0.25. The difference is explained by the fact that
Taguchi’s approach is very restrictive, and because most of the observa-
tions do not meet the target, the process is not considered capable.

g. For the overall performance PPM = 925.4, and the percentage of the part
that are expected to be defective will be

925.4 × 100
106

= 925.4 × 10−4 = 0.09254

A total of 0.09254 percent of the parts are expected to be defective.

8.5.3 Process capability using a
non-normal distribution

If the data being analyzed are not normally distributed, an alterna-
tive to using a transformation process to run a capability analysis as
if the data were normal would be to use the probability distribution
that the data actually follow. For instance, if the data being used to
assess capability follow a Weibull or log-normal distribution, it is pos-
sible to run a test with Minitab. In these cases, the analysis will not be
done using the z-transformation and therefore Cpk will not be provided
because it is based on the Z formula. The values of Pp and Ppk are not ob-
tained based on the mean and the standard deviation but rather on the
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parameters of the particular distributions that the observations follow.
For instance, in the case of the Weibull distribution the shape and the
scale of the observations are used to estimate the probability of the
event being considered to happen.

Example Futa-Toro Electronics manufactures circuit boards. The engi-
neered specification of the failure time of the embedded processors is no
less than 45 months. Samples of circuit boards have been taken for testing
and they have generated the data. The file Futa Toro.mpj on the included CD
gives the lifetime of the processors. The observations have proved to follow
a Weibull distribution. Without transforming the data, what is the expected
overall capability of the process that generated the processors? What is the
expected PPM?

Solution The process has only one specified limit because the lifetime of the
processors is expected to last more than 45 months, so there is no upper
specification. The capability analysis will be conducted using the Weibull
option.

Open the file Futa Toro.MPJ on the included CD. From the Stat menu,
select “Quality tools,” from the drop-down list, select “Capability Analysis,”
and then select “Nonnormal . . . ” In the “Capability Analysis (Nonnormal
Distribution)” dialog box, select “C1 Lifetime” for the Single Column field,
select “Weibull” from the Distribution: drop-down list, and enter “45” in the
Lower Spec field, leaving the Upper Spec field empty. Then select “OK.” The
graph in Figure 8.18 should pop up.

Figure 8.18
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Because there is only one specified limit and it is the LSL, the Ppk will
therefore be based solely on the PPL, which is equal to 0.72. The value of Ppk

is much lower than the threshold, 1.33. We must conclude that the process
is not capable. The expected overall PPM is 9056.2.

Example The purity level of a metal alloy produced at the Sabadola Gold
Mines is critical to the quality of the metal. The engineered specifications
have been set to 99.0715 percent or more. The data contained in the file
Sabadola.mpj on the included CD represent samples taken to monitor the
production process at Sabadola Gold Mines. The data have proved to have a
log-normal distribution. How capable is the production process and what is
the overall expected PPM?

Solution Open the file Sabadola.mpj on the included CD. From the Stat
menu, select “Quality tools,” from the drop-down list, select “Capabil-
ity Analysis,” and then select “Nonnormal. . . ” In the “Capability Analy-
sis (Nonnormal Distribution)” dialog box, select “C1” for the Single Col-
umn field, select “Lognormal” from the Distribution: drop-down list, and
enter “99.0715” into the Lower Spec field, leaving the Upper Spec field empty.
Then select “OK” and the graph of Figure 8.19 should pop up.

The overall capability is Ppk = PPL = 1.02, therefore the production
process is barely capable and shows opportunity for improvement. The
PPM yielded by such a process is 1128.17.

Figure 8.19
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9
Analysis of Variance

9.1 ANOVA and Hypothesis Testing

The standard error-based σ/√n t-test can be used to determine if there
is a difference between two population means. But what happens if we
want to make an inference about more than two population means, say
three or five means?

Suppose we have three methods of soldering chips on a circuit board
and we want to know which one will perform better with the CPUs
that we are using. We determine that the difference between the three
methods depends on the amount of solder they leave on the board. A
total of 21 circuit boards are used for the study, at the end of which we
will determine if the methods of soldering have an impact on the heat
generated by the CPU.

In this experiment, we are concerned with only one treatment (or
factor), which is the amount of solder left on the circuit boards with
three levels (the small quantity, medium quantity, or heavy quantity of
solder) and the response variable, which is the heat generated by the
CPU. The intensity of the factor (which values are under control and
are varied by the experimenter) determines the levels.

One way to determine the best method would be to use t-tests, com-
paring two methods at a time: Method I will be compared to Method II,
then to Method III, then Method II is compared to Method III. Not only
is this procedure too long but it is also prone to multiply the Type I
errors. We have seen that if α = 0.05 for a hypothesis testing, there is a
five percent chance that the null hypothesis is rejected when it is true.
If multiple tests are conducted, chances are that the Type I error will
be made several times.
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Another way of doing it would be the Analysis Of Variance (ANOVA).
This method is used to pinpoint the sources of variation from one
or more possible factors. It helps determine whether the variations
are due to variability between or within methods. The within-method
variations are variations due to individual variation within treat-
ment groups, whereas the between-method variations are due to dif-
ferences between the methods. In other words, it helps assess the
sources of variation that can be linked to the independent variables
and determine how those variables interact and affect the predicted
variable.

The ANOVA is based on the following assumptions:

� The treatment data must be normally distributed.
� The variance must be the same for all treatments.
� All samples are randomly selected.
� All the samples are independent.

But a violation of these prerequisites does not necessarily lead to false
conclusions. The probability of a Type I error will still be lower than if
the different methods were compared to one another using the standard
error-based σ/√n t-test.

Analysis of variance tests the null hypothesis that all the population
means are equal at a significance level α: The null hypothesis will be

H0 : µ1 = µ2 = µ3

where µ1 is the mean for Method I.

9.2 Completely Randomized Experimental
Design (One-Way ANOVA)

When performing the one-way ANOVA, a single input factor is varied
at different levels with the objective of comparing the means of replica-
tions of the experiments. This will enable us to determine the proportion
of the variations of the data that are due to the factor level and the vari-
ability due to random error (within-group variation). The within-group
variations are variations due to individual variation within treatment
groups. The null hypothesis is rejected when the variation in the re-
sponse variable is not due to random errors but to variation between
treatment levels.
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The variability of a set of data depends on the sum of square of the
deviations,

n∑
i=1

(x1 − x)2

In ANOVA, the total variance is subdivided into two independent vari-
ances: the variance due to the treatment and the variance due to ran-
dom error,

SSk =
k∑

j=1

nj(X j − X )2

SSE =
nij∑
i=1

k∑
j=1

(Xij − X j )2

TSS =
nij∑
i=1

k∑
j=1

(
Xij − X

)2

TSS = SSk + SSE

where i is a given part of a treatment level, j is a treatment level, k is
the number of treatment levels, nj is the number of observations in a
treatment level, X is the grand mean, X j is the mean of a treatment
group level, and Xij is a particular observation. So the computation of
the ANOVA is done through the sums of squares of the treatments, the
errors, and their total.

SSk measures the variations between factors; the SSE is the sum
of squares for errors and measures the within-treatment variations.
These two variations (the variation between mean and the variation
within samples) determine the difference between µ1 and µ2. A greater
SSk compared to SSE indicates evidence of a difference between µ1
and µ2.

The rejection or nonrejection of the null hypothesis depends on the F
statistic, which is based on the F probability distribution. If the calcu-
lated F value is greater than the critical F value, then the null hypothe-
sis is rejected. So the test statistic for the null hypothesis (H0 : µ2 = µ2)
will be based on F = MSk

MSE , where MSk represents the mean square for
the treatment and MSE represents the mean square for the error. The
variable F is equal to one when MSk and MSE have the same value
because both of them are estimates of the same quantity. This would
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TABLE 9.1

Source of Sum of Degrees of Mean
variation squares freedom square F-statistic

Between treatments SSk k − 1 MSk = SSk/(k − 1) F = MSk/MSE
Error SSE N − k MSE = SSE/(N − k)
Total TSS N − 1

SSk = sum of squares between treatments
SSE = sum of squares due to error
TSS = total sum of squares
MSk = mean square for treatments
MSE = mean square for error
t = number of treatment levels
n = number of runs at a particular level
N = total number of runs
F = the calculated F statistic with t − 1 and N − t are the degrees of freedom

imply that both the means and the variances are equal, therefore the
null hypothesis cannot be rejected.

These two mean squares are ratios of the sum of squares of the treat-
ment and the sum of squares of the error to their respective degrees of
freedom. The one-way ANOVA table is shown in Table 9.1.

If the calculated F value is significantly greater than the critical F
value, then the null hypothesis is rejected. The critical value of F for
α = 0.05 can be obtained from the F Table (Appendix 6), which is based
on the degrees of freedom between treatments and the error.

9.2.1 Degrees of freedom

The concept of degrees of freedom is better explained through an exam-
ple. Suppose that a person has $10 to spend on 10 different items that
cost $1 each. At first, his degree of freedom is 10 because he has the
freedom to spend the $10 however he wants, but after he has spent $9
his degree of freedom becomes 1 because he does not have more than
one choice.

The concept of degrees of freedom is widely used in statistics to derive
an unbiased estimator. The degrees of freedom between treatment is
k − 1; it is the number of treatments minus one. The degrees of freedom
for the error is N − k. The total degrees of freedom is N − 1.

Example Suppose that we have a soap manufacturing machine that is used
by employees grouped in three shifts composed of an equal number of em-
ployees. We want to know if there is a difference in productivity between the
three shifts.

Had it been two shifts, we would have used the t-based hypothesis testing
and determine if a difference exists, but because we have three shifts using
the t-based hypothesis testing would be prone to increase the probability
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for making mistakes. In either case, we will formulate a hypothesis about
the productivity of the three shifts before proceeding with the testing. The
hypothesis for this particular case will stipulate that there is no difference
between the productivity of the three groups.

The null hypothesis will be

H0 : Productivity of the first shift = productivity of second shift
= productivity of third shift

and the alternate hypothesis will be

H1 : There is a difference between the productivity of at least two shifts.

Some conditions must be met for the results derived from the test to be
valid:

� The treatment data must be normally distributed.
� The variance must be the same for all treatments.
� All samples are randomly selected.
� All the samples are independent.

Seven samples of data have been taken for every shift and summarized
in Table 9.2. What we are comparing is not the productivity by day
but the productivity by shift; the days are just levels. In this case, the
shifts are called treatments, the days are called levels, and the daily
productivities are the factors.

The objective is to determine if the differences are due to random
errors (individual variations within the groups) or to variations between
the groups.

If the differences are due to variations between the three shifts, we
reject the hypothesis. If it is due to variations within treatments, we
cannot reject the hypothesis. Note that statisticians do not accept the
null hypothesis—a hypothesis is either rejected or the experimenter
fails to reject it

There are several ways to build the table; we will use two of them.
First, we will use the previous formulas step by step.

TABLE 9.2

First shift Second shift Third shift

Monday 78 77 88
Tuesday 88 75 86
Wednesday 90 80 79
Thursday 77 83 93
Friday 85 87 79
Saturday 88 90 83
Sunday 79 85 79
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TABLE 9.3

First shift Second shift Third shift

Monday 78 77 88
Tuesday 88 75 86
Wednesday 90 80 79
Thursday 77 83 93
Friday 85 87 79
Saturday 88 90 83
Sunday 79 85 79

First method First, calculate SSk, the sum of squares between treat-
ments:

SSk =
k∑

j=1

nj
(
X j − X

)2

The table is presented under the form of

First shift Second shift Third shift

Monday aii ...... ai j
Tuesday — —
Wednesday — —
Thursday —
Friday —
Saturday —
Sunday ai j ai j

with i = 3 and j = 7. X is the mean of all the observed data. It is
equal to the sum of all the observations divided by 21. X j is the mean of
each treatment. For the first shift, it is equal to 83.571; for the second
shift, it is 82.429; and for the third shift, it is 83.857.

X j − X represents the difference between the mean for each treat-
ment and the mean of all the observations.

First shift Second shift Third shift

78 77 88
88 75 86
90 80 79
77 83 93 X = 83.28571
85 87 79
88 90 83
79 85 79
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meanX j 83.571 82.429 83.857

X j − X 0.286 −0.857 0.571(
X j − X

)2 = 0.081632653 0.73469388 0.326530612

k∑
j=1

(
X j − X

)2 = 1.142857 nj = 7

SSk =
k∑

j=1
nJ

(
X j − X

)2 = 7 × 1.142857 = 8

The sum of squares between treatments is therefore equal to 8.
Now we will find the SSE, the sum of squares for the error:

SSE =
nj∑

i=1

k∑
j=1

(
Xij − X j

)2

First shift Second shift Third shift

78 77 88
88 75 86
90 80 79
77 83 93
85 87 79
88 90 83
79 85 79

·X j = 83.5714 82.4286 83.8571

Now we find the difference between each observation and its treatment
mean:

(
Xij − X j

)

First shift Second shift Third shift

−5,5714 −5,4286 4,1429
4,4286 −7,4286 2,1429
6,4286 −2,4286 4,8571

−6,5714 0,5714 9,1429
1,4286 4,5714 4,8571
4,4286 7,5714 −0,8571

−4,5714 2,5714 −4,8571
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The next step will consist of finding the square of the data:

Now we can find the total sum of squares, TSS.

nj∑
i=1

k∑
j=1

(
Xij − X j

)2

First shift Second shift Third shift

78 77 88
88 75 86
90 80 79
77 83 93
85 87 79
88 90 83
79 85 79

X j 83.5714 82.4286 83.8571

Recall the value of X:

X = 83.28571

We then subtract the value of X from every observation:

(
Xij − X

)2
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First Second Third

−5.2857 −6.2857 4.7143
4.7143 −8.2857 2.7143
6.7143 −3.2857 −4.2857

−6.2857 −0.2857 9.7143
1.7143 3.7143 −4.2857

−4.7143 6.7143 −0.2857
−4.2857 1.7143 −4.2857

The next step will consist of squaring all the data. The TSS will be the
sum of all the following data:

Now that we have solved the most difficult problems, we can find the
degrees of freedom.

Because we have three treatments, the degrees of freedom between
treatments will be two (three minus one). We have 21 factors, so the
degrees of freedom for the error will be 18 (the number of factors minus
the number of treatments, 21 minus 3).

The mean square for the treatment will be the ratio of the sum of
squares to the degrees of freedom (8/2). The mean square for the er-
ror will be the ratio of the sum of squares for the error to its degrees
of freedom (530.2857/18). The F-statistic is the ratio of the “Between
Treatment” value of Table 9.4 to the error (4/29.4603 = 0.13578).

The F-statistic by itself does not provide grounds for rejection or non-
rejection of the null hypothesis. It must be compared with the critical
F-value, which is found on a separate F-table (Appendix 6). If the cal-
culated F value is greater than the critical F value on the F-table, then
the null hypothesis is rejected; if not, we cannot reject the hypothesis.
In our case, from the F-table the critical value of F for α = 0.05 with
the degrees of freedom ν1 = 2 and ν2 = 18 is 3.55. Because 3.55 is greater
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TABLE 9.4

Sum of Degrees of Mean
Source of variation squares freedom square F-statistic

Between treatments 8 2 4 0.13578
Error 530.2857 18 29.4603
Total 538.2857 20

than 0.13578, we cannot reject the null hypothesis. We conclude that
there is not a statistically significant difference between the means
of the three shifts.

UsingMinitab. Open the file Productivity.mpj on the included CD. From
the Stat menu, select “ANOVA” and then select “One-Way-Unstacked.”
Select “C2,” “C3,” and “C4” (in separate columns) for the Responses text
box. Select “OK” to obtain the Minitab output of Figure 9.1.

Figure 9.1
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Using Excel. Had we chosen to use Excel, we would have had the ta-
ble shown in Figure 9.2. To use Excel, we must have Data Analysis
installed. If it is not, follow these steps: Open the file Productivity.xls
on the included CD. From the Tools menu, select “Add- ins.” On the pop

Figure 9.2
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up window, select all the options and then go back to the Tools menu
and select “Data Analysis.” Select “Anova: Single factor” and then select
“OK.” The “ANOVA Single Factor” dialog box pops up. Select the rage
of data to be inserted in the Input range field. Then select “OK.”

Second method. The first method was very detailed and explicit but
also long and perhaps cumbersome. There should be a way to perform
the calculations faster and with less complications. Because the follow-
ing equation is true,

TSS = SSk + SSE

we may not need to calculate all the variables.
Suppose that we are comparing the effects of four different system

boards on the speed at which the model XYT printer prints out papers of
the same quality. The null hypothesis is that there is not any difference
in the speed of the printer, no matter what type of system board is used,
and the alternate hypothesis is that there is a difference. The speed is
measured in seconds and the samples shown in Table 9.5 were taken
at random for each system board:

TABLE 9.5

Sys I Sys II Sys III Sys IV

7 4 8 7
4 4 6 3
5 5 4 6
7 5 3 3
6 3 5 6
4 8 5 6
3 5 5 5

The sum of all the observations is 142 and the sum of the squares of
the 28 observations is 780, so the TSS will be

TSS = 780 − 1422

28
= 59.8571

The totals of the seven observations of the four different system boards
are respectively 36, 34, 36, and 36 The sum of squares between treat-
ments will be

SSk = 362

7
+ 342

7
+ 362

7
+ 362

7
− 1422

28
= 720.5714281 − 720.14286

= 0.428568143
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Now that we have the TSS and the SSK, we can find the SSE by just
subtracting the SSK from the TSS. Therefore,

SSE = TSS− SSk = 59.8571 − 0.428568143 = 59.4285

Now that we have the TSS, the sum of squares between treatments
(SSK), and the SSE, we must determine the degrees of freedom. Be-
cause we have four treatments, the degrees of freedom between treat-
ments will be 3. We have 28 observations, so the degrees of freedom for
the error will be 24–28 minus the number of treatments, which is 4.
The total degrees of freedom will be 27 (24 plus 3).

The next step will be the determination of the mean squares. The
mean square for treatment (MSK) will be the ratio of the SSK to its
degrees of freedom.

MSK = SSk
δ f

= 0.428
3

= 0.14286

The MSE will be the ratio of the SSE to its degree of freedom:

MSE = SSE
δ f

= 59.428
24

= 2.476

Now that we have the MSK and the MSE, we can easily determine the
calculated F-statistic:

F-Stat = 0.14286
2.476

= 0.05769

We can now put all the results into the ANOVA table, Table 9.6:

TABLE 9.6

Sum of Degrees of Mean
Source of variation squares freedom square F-statistic F-critical

Between treatments 0.4285 3 0.14286 0.05769 3.01
Error 59.4285 24 2.476
Total 59.8571 27

Based on the information, we cannot reject or not reject the null hy-
pothesis until we compare the calculated F-statistic with the critical
F-value found on the F table (Appendix 6). The critical F-value from
the table for df2 equal to 3 and df1 equal to 24 is 3.01, which is greater
than 0.05769, the calculated F-statistic. Therefore, we cannot reject the
null hypothesis. There is not a significant difference between the system
boards.
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Minitab would have given the output shown in Figure 9.3.

Figure 9.3

Had we used Excel, we would have had the table shown in Fig-
ure 9.4.

Example Consider the example of the solder on the circuit boards. The Table
9.7 summarizes the temperatures in degrees Celsius generated by the CPUs
after a half-hour of usage.

The sum of all the observations is 1607, and the sum of the squares of the
21 observations is 123,031, so the TSS will be

TSS = 123031 − 16072

21
= 57.24

The sums of the seven observations of the three different methods are respec-
tively 526, 536, and 545. The sum of squares between treatments will be

SSk = 5262

7
+ 5362

7
+ 5452

7
− 16072

21
= 122999.6 − 122973.8 = 25.8

Because SSE is nothing but the difference between TSS and SSk,

SSE = 57.24 − 25.8 = 31.44



Figure 9.4
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TABLE 9.7

Method I Method II Method III

75 76 78
74 76 79
76 75 78
75 79 76
77 75 77
76 78 78
73 77 79

We have three treatments, so the degree of freedom between treatments will
be 2(3 − 1) and the total number of observations is 21; therefore, the degree
of freedom for the errors will be 18(21 − 3).

MSk = 25.8
2

= 12.9

MSE = 31.44
18

= 1.746

F = 12.9
1.746

= 7.39

From the F table, the critical value of F for α = 0.05 with the degrees of
freedom ν1 = 2 and ν2 = 18 is 3.55.

We can now plot the statistics obtained in an ANOVA chart, as shown in
Table 9.8.

TABLE 9.8

Sum of Degrees of Mean
Source of variation squares freedom square F-statistic F-critical

Between treatments 25.80 2 12.9 7.39 3.55
Error 31.44 18 1.746
Total 57.24 20

Using Excel. Open the file CPU.xls from the included CD. From the
Tools menu, select “Data Analysis.” Select “ANOVA: Single factor” from
the listbox on the “Data Analysis” dialog screen and then select “OK.”
In the “ANOVA: Single factor” dialog box, select all the data including
the labels in the Input Range field. Select the Labels in First Row option
and leave Alpha at “0.05.” Select “OK” to get the Excel output shown in
Figure 9.5.

9.2.2 Multiple comparison tests

The reason we used ANOVA instead of conducting multiple pair testing
was to avoid wasting too much time and, above all, to avoid multiplying
the Type I errors. But after conducting the ANOVA and determining
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Figure 9.5

that there is a difference in the means, it becomes necessary to figure
out where the difference lies. To make that determination without re-
verting to the multiple pair analyses, we can use a technique known as
multiple comparison testing. The multiple comparisons are made after
the ANOVA has determined that there is a difference in the samples’
means.

Tukey’s Honestly significant difference (HSD) test. The T (Tukey) method
is a pair-wise a posteriori test that requires an equality of the sample
sizes. The purpose of the test is to determine the critical difference
necessary between any two treatment levels’ means to be significantly
different. The T method considers the number of treatment levels, the
mean square error, and the sample must be independent and be of the
same size.

The HSD (for the T method) is determined by the formula:

ω = qα,t,v

√
MSE

n
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where α is the protection level covering all possible comparisons, n is
the number of observation in each treatment, ν is the degree of freedom
of the MSE, and t is the number of treatments. The values are computed
from the q-table and two means are said to be significantly different if
they differ by ω or more.

In the previous example, the degrees of freedom was 18, the number
of treatments was 3 and α was equal to 0.05, which yields 3.61 from the
q - table.

For α = 0.05

Using the formula,

ω = 3.61

√
1.746

7
= 1.803

the treatment means are

For Method I 75.14286
For Method II 76.57143
For Method III 77.85714

The absolute values of the differences will be as follows:∣∣Method I − Method II
∣∣ = 1.42857∣∣Method I − Method III
∣∣ = 2.71428∣∣Method II − Method III
∣∣ = 1.28571

Only the absolute value of the difference between the means of Method
I and Method III is greater than 1.803, so only the means between these
two methods are significantly different.
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Using Minitab. Open the file CPU.mpj from the included CD. From the
Data menu, select “Stack” and then select “Columns.” Select “C1,” “C2,”
and “C3” for the field Stack the following columns and then select “OK.”
The data should be stacked on the new worksheet. From the Stat menu,
select “ANOVA” and then select “One-way.” In the “One-Way Analysis
of Variance” dialog box, select “C2” for Response. Select “Comparisons.”
Select the Tukey’s Family of Error Rate option. Select “OK” and then
select “OK” again. The output of Figure 9.6 should appear.

Because the computed value of F = 7.39 exceeds the critical value
F0.05,2.18 = 3.55, we reject the null hypothesis and conclude that there

Figure 9.6
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is a difference in the means and that one of the methods is likely to
cause the CPU to generate less heat than the other two.

9.3 Randomized Block Design

In the previous example, we only considered the three methods of solder-
ing and concluded their difference had an impact on the heat generated
by the CPU. But other factors that were not included in the analysis
(such as the power supply, the heat sink, the fan, and so on) could well
have influenced the results.

In randomized block design, these variables, referred to as blocking
variables, are included in the experiment. Because the experimental
units are not all homogeneous, homogeneous materials can be found
and grouped into blocks so that the means in each block related to the
treatment being considered may be compared. Because the comparisons
are made within blocks, the error variation does not contain the effects
of the blocks or the block-to-block variations.

If the randomized block design is to be used for the three methods
of soldering, we can subdivide the 21 units into three blocks (A, B, and
C), and each block will use all three methods. Each cell in Table 9.9
displays the average temperature generated by the associated method
for every block.

The variables that must be considered in this experiment are two:
the blocks and the treatments (the methods, in this case). So the TSS
of the deviations of the predicted variable is divided into three parts:

TABLE 9.9

Block A Block B Block C

Method I 75 76 73
Method II 76 77 75
Method III 77 79 79

� The sum of squares of the treatment (SST)
� The sum of squares of the blocks (SSB)
� The sum of squares of the errors (SSE)

TSS = SST + SSB + SSE
with

SST = n
t∑

j=1

(X j − X)2

SSB = T
n∑

t=1

(Xt − X)2
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SSE =
n∑

t=1

t∑
j=1

(Xij − X j − Xt + X)2

TSS =
n∑

t=1

t∑
j=1

(Xij − X)2

where i is the block group, j is the treatment level, T is the number
of treatment levels, n is the number of observations in each treatment
level, Xij is the individual observation, X j is the treatment mean, X is
the grand mean, and N is the total number of observations.

As in the case of the completely randomized experimental design,
the mean squares for the blocks, the treatments, and the errors are
obtained by dividing their sums of squares by their respective degrees
of freedom. The degrees of freedom for the treatments and the blocks
are fairly straightforward: they will be the total number of treatments
minus one and the total number of blocks minus one, respectively; the
error will be the product of these two degrees of freedom:

dfe = (T − 1)(n − 1) = N − n − T + 1

MST = SST
T − 1

MSB = SSB
n − 1

MSE = SSE
N − n − T + 1

FT = MST
MSE

FB = MSB
MSE

where FT is the F-value for the treatments and FB is the F-value for the
blocks. We can summarize this information in an ANOVA table, Table
9.10:

TABLE 9.10

Source of variation SS df MS (Mean square) F

Treatment SST T − 1 SST/(T − 1) MST/MSE
Block SSB n − 1 SSB/(n − 1) MSB/MSE
Error SSE N − n − T + 1 SSE/(N − n − T + 1)
Total TSS
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The null hypothesis for the randomized block design is

H0 : µA = µB = µC

The F-value for the treatment is compared to the critical F-value
from the table. If it is greater than the value on the table, the null
hypothesis is rejected for the set α value. Use Table 9.10 as an example.

Block A Block B Block C Treatment Means

Method I 75 76 73 74.667
Method II 76 77 75 76
Method III 77 79 79 78.3333
Block means 76 77.3333 75.6667 76.33333

X = 76.33333

T = 3; n = 3; N = 9

SST = n
t∑

j=1

(X j − X)2 = 3[(74.667 − 76.333)2 + (76 − 76.3333)2

+ (78.3333 − 76.3333)2] = 20.6667

SSB = T
n∑

i=1

(Xi − X)2 = 3[(76 − 76.3333)2 + (77.3333 − 76.3333)2

+ (75.6667 − 76.3333)2] = 4.66667

SSE =
n∑

i=1

T∑
j=1

(Xij − X j − Xi + X)2 = 4.6667

TSS =
n∑

i=1

t∑
j=1

(Xij − X)2 = 30

We can verify that

TSS = SSB + SSE + SST = 4.6667 + 4.6667 + 20.6667 = 30

Because the number of treatments and the number of blocks are
equal, the degrees of freedom for the blocks and the treatments will
be the same: 3 − 1 = 2. The degree of freedom for the SSE will be
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9 − 3 − 3 + 1 = 4.

MST = SST
T − 1

= 20.66667
2

= 10.333333

MSB = SSB
n − 1

= 4.66667
2

= 2.3333333

MSE = SSE
N − n − T + 1

= 4.66667
4

= 1.166667

FT = MST
MSE

= 10.3333333
1.1666667

= 8.86

FB = MSB
MSE

= 2.3333333
1.1666667

= 2

TABLE 9.11

Source of
variation SS df MS F

Treatment 20.66667 2 10.33333 8.86
Block 4.66667 2 2.3333 2
Error 4.66667 4 1.166667
Total 30 8

The critical value of F obtained from the F-table is 9.28, and that value
is greater than the observed value of F for treatment; therefore, the
null hypothesis should not be rejected. In other words, there is not a
significant difference between the means that would justify rejecting
the null hypothesis.

Using Minitab. Open the file CPUblocked.mpj from the included CD.
From the Stat menu, select ANOVA and then select “Two-Way.” In the
“Two-Way Analysis of Variance” dialog box, select “Response” for the
Response field, “Method” for the Row Factor, and “Block” for the Column
Factor. Then select “OK.”
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Using Excel. Open the file CPUblocked.xls from the included CD. From
the Tools menu, select “Data Analysis.” From the “Data Analysis” dialog
box, select “Anova: Two Factor without Replication” and then select
“OK.” Select all the cells for Input Range. Select the Labels option and
then select “OK.”

9.4 Analysis of Means (ANOM)

ANOVA is a good tool to determine if there is a difference between sev-
eral sample means, but it does not determine from where the difference
comes, if there is any difference. It does not show what samples are so
disparate that the null hypothesis must be rejected. To know where the
difference originates from, it is necessary to conduct further analyses
after rejecting the null hypothesis. Tukey, Fisher, and Dunnett are ex-
amples of comparisons that can help situate the sources of variations
between means.

A simpler way to determine if the sample means are equal and, at
the same time, visually determine where the difference is coming from
(if there is any) would be the analysis of means (ANOM). ANOM is
a lot simpler and easier to conduct than ANOVA, and it provides an
easy-to-interpret visual representation of the results.

When conducting ANOM, what we want to achieve is to determine the
upper and lower decision limits. If all the sample means fall within these
boundaries, we can say with confidence that there are no grounds to
reject the null hypothesis, i.e., there are no significant differences
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between the samples’ means. If at least one mean falls outside these
limits, we reject the null hypothesis.

The upper and lower decision limits depend on several factors:

� The samples’ means
� The mean of all the observed data (the mean of the samples’ means)
� The standard deviation
� The alpha level
� The number of samples
� The sample sizes (to determine the degrees of freedom)

ANOM compares the natural variability of every sample mean with the
mean of all the sample means.

If we have j samples and n treatment levels, then the sample means
are given as

x j =

n∑
i=1

xi

n

and the mean of all the sample means is

x =
∑

x j

j

Call N the number of all observed data and s the standard deviation.
Then the variance for the treatments would be

s2
i =

n∑
i=1

(xi − x)2

n − 1

the overall standard deviation would be

s =

√√√√√
n∑

i=1
s2
i

j

and the upper and lower decision limits would be

UDL = x + ho3

√
j − 1

N

LDL = x − ho3

√
j − 1

N

where α represents the significance level
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TABLE 9.12

First shift Second shift Third shift

Monday 78 77 88
Tuesday 88 75 86
Wednesday 90 80 79
Thursday 77 83 93
Friday 85 87 79
Saturday 88 90 83
Sunday 79 85 79

In our previous example for ANOVA, we wanted to know if there was
a difference between the productivity of the three shifts. After conduct-
ing the test, we concluded that there was not a significant difference
between them. Take the same example again and this time, use the
ANOM. Unfortunately, Excel does not have the capabilities to conduct
ANOM, so we will use only Minitab.

Using Minitab, we need to first stack the data. Open the file Produc-
tivity.mpj from the included CD. From the Data menu, select “Stack”
and then select “Columns.” Select “First shift,” “Second shift,” and
“Third shift” for the field Stack the Following Columns. Then select
“OK” and a new worksheet appears with the stacked data.

Now that we have the stacked data, we can conduct the ANOM.
From the Stat menu, select “ANOVA” and then “Analysis of Means.” For

Figure 9.7
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Response, select “C2” because that is where the data we are looking for
resides, and then double-click on “Subscripts” for Factor 1 if the Normal
option is selected. Remember that “Subscripts” is the default column
title for the treatments titles. The default for the Alpha level is “0.05.”
We can change this value, but for the sake of this example, leave it as
it is. When we select “OK,” the graph of Figure 9.7 pops up.

Because all the points are within the decision boundaries, we conclude
that there is not enough evidence to reject the null hypothesis. The
difference between the three means is insignificant at an alpha level of
0.05.

This is the same conclusion we reached when we conducted an Anal-
ysis Of Variance with the same data.

Exercise. Complete Table 9.13.

TABLE 9.13

ANOVA

Source of variation SS df MS F P-value F-critical

Between groups 4 0.465027 2.412682
Within groups 190.83532 0.867433

Total 193.95656 224

Exercise. Using the data in Table 9.14, show that the null hypothesis
should not be rejected at an alpha level equal to 0.05. The same data
are contained in the files Rooftile.xls and Rooftile.mpj on the included
CD. Compare the ANOM results to the one-way ANOVA.

TABLE 9.14

71.7923 70.5991 70.4748 68.2488
71.0687 70.7309 70.3751 68.5724
68.9859 69.0848 68.4265 68.2465
67.6239 68.6249 70.4857 68.9361
67.9830 70.1810 69.2576 72.0380
69.5726 71.6446 67.6044 72.2734
72.4664 68.9734 69.9449 67.1732
69.5111 68.2361 71.5813 71.5326
69.3777 71.5434 68.8229 72.1982
72.5865 71.9704 69.8774 68.4985

Exercise. Open the files Machineheat.xls and Machineheat.mpj from
the included CD and run a one-way ANOVA. Run an ANOM. Should
the null hypothesis be rejected? What can be said of the normality
of the data?
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Chapter

10
Regression Analysis

Learning Objectives:

� Build a mathematical model that shows the relationship between sev-
eral quantitative variables

� Identify and select significant variables for model building
� Determine the significance of the variables in the model
� Use the model to make predictions
� Measure the strength of the relationship between quantitative vari-

ables
� Determine what proportion in the change of one variable is explained

by changes in another variable

A good and reliable business decision-making process is always founded
on a clear understanding on how a change in one variable can affect all
the other variables that are in one way or another associated with it.

� How would the volume of sales react if the budget of the marketing
department is cut in half?

� How does the quality level of the products affect the volume of re-
turned goods?

� Does an increase in the R&D budget necessarily lead to an increase
the price the customers must pay for our products?

� How do changes in the attributes of a given product affect its sales?

Regression analysis is the part of statistics that analyzes the relation-
ship between quantitative variables. It helps predict the changes in a
response variable when the value of a related input variable changes.

231
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The objective here is to determine how the predicted or dependent
variable (the response variable, the variable to be estimated) reacts to
the variations of the predicator or independent variable (the variable
that explains the change). The first step should be to determine whether
there is any relationship between the independent and dependent vari-
ables, and if there is any, how important it is.

The covariance, the correlation coefficient, and the coefficient of de-
termination can determine that relationship and its level of importance.
But these alone cannot help make accurate predictions on how varia-
tions in the independent variables impact the response variables. The
objective of regression analysis is to build a mathematical model that
will help make predictions about the impact of variable variations.

It is obvious that in most cases, there is more than one independent
variable that can cause the variations of a dependent variable. For in-
stance, there is more than one factor that can explain the changes in
the volume of cars sold by a given car maker. Among other factors, we
can name the price of the cars, the gas mileage, the warranty, the com-
fort, the reliability, the population growth, the competing companies,
and so on. But the importance of all these factors in the variation of the
dependent variable (the number of cars sold) is disproportional. So in
some cases, it is more beneficial to concentrate on one important factor
instead of analyzing all the competing factors.

When building a regression model, if more than one independent
variable is being considered, we call it a multiple regression analysis,
if only one independent variable is being considered, the analysis is a
simple linear regression. In our quest for that model, we will start with
the model that enables us to find the relatedness between two variables.

10.1 Building a Model with Only Two
Variables: Simple Linear Regression

Simple regression analysis is a bivariate regression because it involves
only two variables: the independent and the dependent variables. The
model that we will attempt to build will be a simple linear equation that
will show the relationship between the two variables. We will attempt
to build a model that will enable us to predict the volume of defective
batteries returned by customers when the in-house quality failure rate
varies.

Six Sigma case study

Project background. For several years, the in-house failure rate (IHFR)
has been used by the Quality Control department of Dakar Automo-
tive to estimate the projected defective batteries sent to customers. For
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instance, if after auditing the batteries before they are shipped, two
percent of the samples taken (the samples taken are three percent of
the total shipment) fail to pass audit and 7000 batteries are shipped,
the Quality Control department would estimate the projected defective
batteries sent to customers to be 140 (two percent of 7000).

The projected volume of defective (PVD) products sent to customers
is a metric used by the Customer Services division to estimate the vol-
ume of calls expected from the customers and for the planning of the
financial and human resources to satisfactorily answer the customers’
calls. The same metric is used by Returned Goods department to esti-
mate the volume of returned products from the customers to estimate
the volume of the necessary new products for replacement and the fi-
nancial resources for refunds.

Yet there has historically always been a big discrepancy between
the volume of customer complaints and the PVD products that Quality
Control sends to Customer Services. This situation has caused the Cus-
tomer Services department to have difficulties planning their resources
to face the expected call volume from unhappy customers.

Upper management of Dakar Automotive initiated a Six Sigma
project to investigate the relevance of IHQF as a metric to estimate
the PVD products sent to customers. If it is a relevant metric, the Black
Belt is expected to find a way to better align it to the Customer Ser-
vices’ needs; if not, he is expected to determine a better metric for the
scorecard.

Project Execution. In the “Analyze” phase of the project, the Black Belt
decides to build a model that will help determine if the expected number
of batteries returned by the customers is indeed related to failure rate
changes. To build his regression model, he considers a sample of 14 days
of operations. He tabulates the proportions of the returned batteries and
the failure rate before the batteries were shipped and obtains the data
shown in Table 10.1. The table can be found in ReturnAccuracy.xls and
ReturnAccuracy.mpj on the included CD.

In this case, “Return” is the y variable; it is supposed to be explained
by “Accuracy,” which is the x variable. The equation that expresses the
relationship between x and y will be under the form of

ŷ = f (x)

10.1.1 Plotting the combination of x and y
to visualize the relationship: scatter plot

We can preempt the results of the regression analysis by using a graph
that plots the relationship between the xs and the ys. A scatter plot can
help visualize the relationship between the two variables.
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TABLE 10.1

Return Accuracy

0.050 0.9980
0.050 0.9970
0.004 0.9950
0.003 0.9960
0.006 0.9900
0.060 0.9970
0.009 0.9905
0.010 0.9980
0.050 0.9907
0.004 0.9990
0.050 0.9951
0.040 0.9980
0.005 0.9980
0.005 0.9970

UsingMinitab. After pasting Table 10.1 into a Minitab Worksheet, from
the Graph menu select “Scatterplot . . .”

The dialog box of Figure 10.1 pops up and select the With Regression
option.

Figure 10.1

In the “Scatterplot” dialog box, enter “Return” and “Accuracy” in the
appropriate fields and select “OK.”
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Every point on the graph represents a vector of x and y.

By looking at the spread of the points on the graph, we can conclude
that an increase of the accuracy rate does not necessarily lead to an
increase or a decrease in the return rate.

The equation we are about to derive from the data will determine the
line that passes through the points that represent the vector “Accuracy-
Return.” The vertical distance between the line and each point is called
the error of prediction. An unlimited number of lines could be plotted
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between the points, but there is only one regression line and it would
be the one that minimizes the distance between the points and the line.

Using Excel. We can use Excel to not only plot the vectors but also add
the equation of the regression line and the coefficient of determination.
Select the fields you want to plot and from the Insert menu, select
“Chart. . . ”

The box of Figure 10.2 pops up, select “XY (Scatter),” and then select
“Next >.”

Figure 10.2
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The scatter plot appears with a grid:

To remove the grid, select “Gridlines” and uncheck all the options.

Then, select “Next >.”
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The plotted surface appears without the regression line. To add the
line along with its equation, right-click on any point and select “Add
Trendline. . . ” from the drop-down list.

Then, select the “Linear” option.



Regression Analysis 239

Then select the “Options” tab and select the options “Display equation
on chart” and “Display R-squared on chart.”

Select “OK” and the chart appears with the regression equation.
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10.1.2 The regression equation

The regression equation ŷ = f (x) that we are looking for will be a first
degree polynomial function under the form of ŷ = ax + b, and it will
yield two points of interest: the slope of the line and the y-intercept.
The value a is the slope of the line and b is the y-intercept.

In statistics, the most commonly used letter to represent the slope and
intercept for a population is the Greek letter β. With β0 representing
the y-intercept and β1 being the slope of the line, we have

ŷ = β1x + β0

If the independent variable is known with certainty and only that vari-
able can affect the response variable ŷ, the model that will be built will
generate an exact predictable output. In that case, the model will be
called a deterministic model and it will be under the form of:

ŷ = β1x + β0

But in most cases, the independent variable is not the only factor affect-
ing y, so the value of ŷ will not always be equal to the value generated
by the equation for a given x. This is why an error term is added to the
deterministic model to take into account the uncertainty. The equation
for the probabilistic model is:

ŷ = β1x + β0 + ε
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for a population, or

ŷ = b1x + b0 + ε

for a sample, where ε represents the error term.

10.1.3 Least squares method

To determine the equation of the model, what we are looking for are
the values of b1 and b0. The method that will be used for that purpose
is called the least squares method. As mentioned earlier, the vertical
distance between each point and the line is called the error of prediction.
The line that generates the smallest error of predictions will be the least
squares regression line.

The values of b1 and b0 are obtained from the following formula:

b1 =

n∑
t=1

(xt − x)(yt − y)

n∑
t=1

(xt − x)2

In other words,

b1 =
∑

xy −
(∑

x
) (∑

y
)

n

∑
x2 −

(∑
x
)2

n

b1 = SSxy

SSxx

The value of b1 can be rewritten as:

b1 = cov(X, Y)
S 2

x

The y-intercept b0 is obtained from the following equation:

b0 = Y − b1 X

Now that we have the formula for the parameters of the equation, we
can build the Return-Accuracy model.
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We will need to add a few columns to the two that we had. Remem-
ber that y is the response variable, in this case “Return,” and x is the
independent variable, “Accuracy.”

Return Accuracy (x − x) (y − y) (x − x)(y − y) (x − x)2

0.05 0.998 0.0012 0.025285714 0.000030343 0.0000014
0.05 0.997 0.0002 0.025285714 0.000005057 0.0000000
0.004 0.999 0.0022 −0.02071429 −0.000045571 0.0000048
0.003 0.999 0.0022 −0.02171429 −0.000047771 0.0000048
0.006 0.993 −0.0038 −0.01871429 0.000071114 0.0000144
0.06 0.997 0.0002 0.035285714 0.000007057 0.0000000
0.009 0.9905 −0.0063 −0.01571429 0.000099000 0.0000397
0.01 0.989 −0.0078 −0.01471429 0.000114771 0.0000608
0.05 0.997 0.0002 0.025285714 0.000005057 0.0000000
0.004 0.9999 0.0031 −0.02071429 −0.000064214 0.0000096
0.05 0.999 0.0022 0.025285714 0.000055629 0.0000048
0.04 0.9989 0.0021 0.015285714 0.000032100 0.0000044
0.005 0.999 0.0022 −0.01971429 −0.000043371 0.0000048
0.005 0.9989 0.0021 −0.01971429 −0.000041400 0.0000044

Mean 0.024714 0.9968 Totals 0.000177800 0.0001543

x = 0.9968

y = 0.024714

b1 = 0.0001778
0.0001543

= 1.152151

b0 = 0.024714 − (1.152151 × 0.9968) = −1.12375

For a deterministic model,

ŷ = 1.152151x − 1.12375
or

Return = (1.1521 × Accuracy) − 1.12375

To determine the expected return, all we need to do is replace “Accuracy”
by a given value.

Assumptions for least squares regression. For the least squares regres-
sion analysis to be reliable for prediction, it must fit the following as-
sumptions:

� The error term ε has a constant variance.
� At each value of x, the error terms ε follow the normal distribution.
� The model is linear.
� At each possible value of x, the error terms are independent.
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Using Minitab to find the regression equation. After pasting the data into
the worksheet, from the Stat menu, select “Regression” and then “Re-
gression. . . ” again.

The dialog box of Figure 10.3 should appear.

Figure 10.3

Select “Return” for the Response box and “Accuracy” for the Predictors.
Then select “Graph. . . ” and the dialog box of Figure 10.4 appears.
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Figure 10.4

Because we want to have all the residual plots, select “Four in one” and
then select “OK.” Then select “Options. . . ”

In the “Options” dialog box, select the Fit intercept, Pure error and Data
subsetting options and then select “OK” to get back to the “Regression”
dialog box.

Now select “Results . . . ” By default, the third option should be se-
lected; leave it as is.
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Select “OK” to get back to the “Regression” dialog box.

Figure 10.5

The histogram at the bottom left corner and the scatter plot at the top
left corner of Figure 10.5 show if the residuals are normally distributed.
If the “Residuals” were normally distributed, the histogram would have
been symmetrically spread in a way that a bell-shaped curve could have
been drawn through the center tops of the bars. On the probability plot
of the residuals, the points would have been very close to the line in a
steady pattern, which is not the case. So we can conclude that the nor-
mality assumption is violated. The top right plot shows the relationship
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between x and y. In this case, the graph shows that a change in x does
not necessarily lead to a change in y.

UsingExcel to conduct a regressionanalysis. From the Tools menu, select
“Data Analysis. . . ”



Regression Analysis 247

In the “Data Analysis” dialog box, select “Regression.”

Insert the x and y columns into the appropriate fields and if we have
inserted the titles of the columns, select the “Label” option.

Then, select “OK.”
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10.1.4 How far are the results of our analysis
from the true values: residual analysis

Now that we have the equation we were looking for, what makes us
believe that we can use it to make predictions? How can we test it?
Because we have the x and y values that were used to build the model,
we can use them to see how far the regression is from its predicted
values. We replace the xs that we had in the regression equation to
obtain the predicted ŷ s.

We will proceed by replacing the xs that we used to build the model
into the regression equation:

ŷ = 1.152151x − 1.12375

Table 10.2 gives us the predicted values and the residuals.

TABLE 10.2
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Minitab residual table:

Excel residual table:

Knowing the residuals is very important because it shows how the re-
gression line fits the original data and therefore helps the experimenter
determine if the regression equation is fit to be used for prediction.
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Residuals are errors of estimate because they are deviations from
the regression line. Had the regression been so perfect that we could
predict with 100 percent certainty what the value of every ŷ for any
given x would be, all the points would have resided on the regression
line and all the residuals would have been zero, ŷ − y = 0. Because the
residuals are vertical distances from the regression line, the sum of all
the residuals ŷ − y is zero.

10.1.5 Standard error of estimate

The experimenter would want to know how accurate he can be in mak-
ing predictions of the y value for any given value of x based on the
regression analysis results. The validity of his estimate will depend on
how the errors of prediction will be obtained from his regression analy-
sis, particularly on the average error of prediction. With so many single
residuals, it is difficult to look at every one of them individually and
make a conclusion for all the data. The experimenter would want to
have a single number that reflects all the residuals.

If we add all the deviations of observation from the regression, we
obtain zero. To avoid that hurdle (as we saw it when we defined the
standard deviation), the deviations are squared to obtain the sum of
square of error (SSE),

SSE =
∑

(y − ŷ)2

To obtain the average deviation from the regression line, we use the
square root of the SSE divided by n − 2. We use the square root because
we had squared the residuals, and we subtract 2 from n because we lose
two degrees of freedom from using two sample treatments.

The standard error of estimate (SEE) therefore becomes

SEE =
√

SSE
n − 2

=
√∑

(y − ŷ)2

n − 2
=

√
0.000563

12
= 0.02373

10.1.6 How strong is the relationship
between x and y : correlation coefficient

The regression analysis helped us build a model that can help us make
predictions on how the response variable y would react to changes in
the input variable x. The reaction depends on the strength of the cor-
relation between the two variables. The strength of the relationships
between two sets of data is described in statistics by the correlation co-
efficient, usually noted with the letter r. The correlation coefficient is a
number between −1 and +1. When it is equal to zero, we conclude that
there is absolutely no relationship between the two sets of data. If it
is equal to +1, there is a strong positive relationship between the two.



Regression Analysis 251

An increase in one value of the input variable will lead to an increase
of the corresponding value in the exact same proportion; a decrease in
the value of x will lead to a decrease in the value of the corresponding
y in the same proportion. The two sets of data increase and decrease in
the same directions and in the same proportions.

If r equals −1, then an increase in the value of x will lead to a de-
crease of the corresponding y in the exact same proportion. The two sets
of data increase and decrease in opposite directions but in the same pro-
portions. Any value of r between zero and +1 and between zero and −1
is interpreted according to how close it is to those numbers.

The formula for the correlation coefficient is given as

r =
∑

(X − X )(Y − Y )√∑
(X − X )

2 ∑
(Y − Y )

2

Return Accuracy (x − x) (y − y) (x − x)(y − y) (x − x)2 (Y − Y)2

0.05 0.998 0.0012 0.025285714 0.000030343 0.0000014 0.000639
0.05 0.997 0.0002 0.025285714 0.000005057 0.0000000 0.000639
0.004 0.999 0.0022 −0.02071429 −0.000045571 0.0000048 0.000429
0.003 0.999 0.0022 −0.02171429 −0.000047771 0.0000048 0.000472
0.006 0.993 −0.0038 −0.01871429 0.000071114 0.0000144 0.00035
0.06 0.997 0.0002 0.035285714 0.000007057 0.0000000 0.001245
0.009 0.9905 −0.0063 −0.01571429 0.000099000 0.0000397 0.000247
0.01 0.989 −0.0078 −0.01471429 0.000114771 0.0000608 0.000217
0.05 0.997 0.0002 0.025285714 0.000005057 0.0000000 0.000639
0.004 0.9999 0.0031 −0.02071429 −0.000064214 0.0000096 0.000429
0.05 0.999 0.0022 0.025285714 0.000055629 0.0000048 0.000639
0.04 0.9989 0.0021 0.015285714 0.000032100 0.0000044 0.000234
0.005 0.999 0.0022 −0.01971429 −0.000043371 0.0000048 0.000389
0.005 0.9989 0.0021 −0.01971429 −0.000041400 0.0000044 0.000389

Mean 0.024714 0.9968 Totals 0.000177800 0.0001543 0.006957

r =
∑

(X − X )(Y − Y )√∑
(X − X )

2 ∑
(Y − Y )

2
= SSxy√

(SSxx)(SSw)

= 0.000177800√
0.0001543 × 0.006957

= 0.171599

Correlation
coefficient Interpretation

−1.0 Strong negative correlation
−0.5 Moderate negative correlation

0.0 Absolutely no relationship between the two sets of data
+0.5 Moderate positive relationship
+1.0 Strong positive relationship
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UsingMinitab. Paste the data into a worksheet and from the Stat menu,
select “Basic Statistics” and then “Correlation. . . ”

In the “Correlation” dialog box, select the appropriate columns, insert
them into the Variables text box, and then select “OK.”

The results are given with the P-value.
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Using Excel. We can find the correlation coefficient in several ways
using Excel. One quick way is the following: Select a cell where we
want to insert the result and then click on the “ fx” button to insert a
function, as indicated in Figure 10.6.

Figure 10.6

Then select “Statistical” from the drop-down list.

Select “CORREL” from the Select a function: text box, and then select
“OK.”
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Insert the fields in Array1 and Array2 accordingly and then select “OK.”

The result appears in the selected cell.
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10.1.7 Coefficient of determination, or what
proportion in the variation of y is explained
by the changes in x

The interpretation of the correlation coefficient is approximate and
vague and does not give an accurate account of the changes in the
y variable that are explained by changes in the x variable. The con-
clusions derived using the correlation coefficient were that there is a
strong, moderate, or inexistent correlation between the changes in the
values of the variables.

Whereas the correlation coefficient measures the strength of the re-
lationship between the two sets of data, the coefficient of determination
shows the proportion of variation in the variable y that is explained by
the variations in x. The coefficient of determination is the square of the
coefficient of correlation. In our case, the coefficient of determination
would be

r2 = 0.1722 = 0.029584

or in terms of percentage, 2.96 percent. So 2.96 percent of the changes
in the y variable are explained by changes in the x variables.

Note that even though the coefficient of determination is the square of
the correlation coefficient, the correlation coefficient is not necessarily
the square root of the coefficient of determination. This is because a
square root is always positive and the correlation coefficient may be
negative.

10.1.8 Testing the validity of the regression
line: hypothesis testing for the slope of the
regression model

The regression equation we obtained is based on a sample. If another
sample were taken for testing, we may very well have ended up with a
different equation. So for the equation we found to be valid, it must be
reflective of the parameters of the population.

If the sample regression model is identical to the population regres-
sion model and the slope of the population equation is equal to zero,
we should be able to predict with accuracy the value of the response
variable for any value of x because it will be equal to the constant b0
and β0.

To test the validity of the regression line as a tool for predictions, we
will need to test whether β1 (which is the population slope) is equal to
zero. What we are testing is the population slope using the slope of the
sample. The null and alternate hypotheses for the test will be

H0 : β1 = 0

Hα : β1 �= 0
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The equality sign suggests that we are faced with a two-tailed curve. We
will use the t test, which is obtained from the t-distribution with a de-
gree of freedom of n − 2 to conduct the hypothesis testing. The formula
for the t test is given as

t = b1 − β1

Sb1

where

Sb1 = SSE√
SSX

=
√∑

(y − ŷ)2/(n − 2)√
(x − x)2

= 0.023721√
0.0001543

= 0.023721
0.0123226

= 1.9095

The regression equation we obtained from our analysis was

ŷ = 1.152151x − 1.12375

The sample slope in this case is 1.152151 and Sb1= 1.9095. Because we
hypothesized that β1 = 0,

t = 1.152151 − 0
1.9095

= 0.60338

Because we are faced with a two-tailed test, for α = 0.05, the critical t
would be

tα/2,n−2 = t0.025,12 = 2.179

The calculated t = 0.60338 is lower than the critical t, therefore we
cannot reject the null hypothesis. We must conclude that there is not
a significant relationship between x and y that would justify using the
regression model for predictions.

Rejection zone

Rejection zone

t0.025,12 = 2.179
t0.025,12 = 2.179

t = 0.60338

t = 0

α / 2 = 0.025 α / 2 = 0.025
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Minitab results

Notice that the t statistic is nothing but the ratio of the coefficients to
the standard errors. The P-values are higher than 0.05, which suggests
that the results are insignificant.

Excel results

10.1.9 Using the confidence interval
to estimate the mean

One of the main reasons why one would want to build a regression line
is to use it to make predictions. For instance, based on the equation that
we created we should be able to use a point of estimate and determine
what the predicted y would be. What would happen if the in-house
accuracy rate is, say, 0.9991? All we need to do is replace x by 0.9991 in
the equation to obtain the predicted value of return.

ŷ = 1.15 × 0.9991 − 1.12 = 0.028965

Yet the validity of the results will depend on the data used to build
the regression equation. The equation was built based on a sample. If
another sample were taken, we might have ended up with a different
equation. So how confident can we be with the results that we have
obtained?

We cannot be 100 percent confident about the projected values of y
for every x, but we can find a confidence interval that would include the
predicted y for a set confidence level. For a given value x0, the confidence



258 Chapter Ten

interval to estimate ŷ will be

ŷ ± tα/2,n−2Se

√
1
n

+ (x0 − x)2

SSXX

with

SSXX =
∑

(x − x)2

n

Se = SEE =
√

SSE
n − 2

=
√∑

(y − y)2

n − 2

and tα/2,n−2 is found on the t table. For n = 14 and a confidence level of
95 percent, tα/2,n−2 = t0.025,12, which corresponds to 2.179 on the table.
So for a point of estimate of 0.9999, the value of ŷ will be 0.029885 and
the confidence interval will be

ŷ ± tα/2,n−2Se

√
1
n

+ (x0 − x)2

SSXX
= 0.029885 ± 2.179

× 0.02373

√
1
14

+ (0.9999 − 0.9968)2

0.0001543

= 0.029885 ± 0.018

10.1.10 Fitted line plot

Minitab offers a graphical method of depicting both the confidence inter-
val and the predicted interval for a regression model. For the Accuracy-
Return problem, we can generate a fitted line plot using Minitab.

After pasting the data into a worksheet, from the Stat menu, select
“Regression” and then “Fitted Line Plot. . . ”
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After the “Fitted Line Plot” dialog box pops up, select “Return” and
“Accuracy” for Response and Predictor, respectively.

Select “Options. . . ” to obtain the dialog box shown in Figure 10.7, then
select the Display confidence interval and Display prediction interval
options. By default, the Confidence level is set at “95.0.”

Figure 10.7

Then select “OK” and “OK” again to obtain the graph.
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For a confidence level of 95 percent, we can see that most of the points
are outside the range. The Black Belt must conclude that there is not
any relationship between the accuracy rate and the volume of return;
therefore, “Accuracy,” as it is used at Dakar Electromotive, is an incor-
rect metric for Customer Services to predict the call volumes.

Exercise. Fatick Distribution operates on the basis of activity-based
costing and internal customer-supplier relationship. The Information
Technology (IT) department is considered as a supplier of services to the
Operations department. The Operations director has been complaining
because the radio frequency (RF) devices keep locking up and prevent-
ing the employees from doing their work. It has been decided that the
QA department will audit the IT process and keep track of all the down-
times, which will be considered as a poor service provided by IT.

Because of the aging IT hardware, the company has been having a
lot of computer-related downtime. The QA manager decided to estimate
the effect of IT downtime on the productivity of the employees to de-
termine if the losses due to computer problems warrant an upgrade of
the computer system. He takes a sample of 25 days and tabulates the
downtimes (in minutes) and the productivity of the associates for those
days in Table 10.3. The table can be found in DowntimeProductivity.mpj
and Downtime.xls on the included CD

TABLE 10.3

Downtime 35 29 15 14 0 32 18 16 16 10 32 15
Productivity 94 97 98 98 99 89 92 95 95 97 94 97
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Downtime 9 8 14 0 10 9 8 6 5 4 3 8 7
Productivity 97 98 98 99 97 98 98 99 99 98 98 98 99

Using Excel then Minitab, run a Regression analysis to determine the
effect of downtime on productivity.

a. Determine which is the x-variable and which is the y-variable.

b. Using Minitab and Excel, plot the residuals on one graph and inter-
pret the results.

c. Are the residuals normally distributed?

d. Find the correlation coefficient between productivity and downtime
and interpret the result.

e. What proportion in the variations in productivity is explained by the
changes in downtime?

f. What would have been the predicted productivity if the downtime
were 45 minutes?

g. What effect would changing the confidence level from 95 percent to
99 percent have on the significant F?

10.2 Building a Model with More than Two
Variables: Multiple Regression Analysis

In our simple regression analysis, the variations of only one variable
(“Accuracy”) were used to explain the variations in the response vari-
able (“Return”). After conducting the analysis, we concluded that the
proportion of the variations in “Return” explained by the changes in “Ac-
curacy” was insignificant. Therefore, changes in other variables must
cause to the variations in “Return.” Most likely, there are several vari-
ables with each contributing a certain proportion. When more than one
independent variable explains the variations in the response variable,
the model will be called a multiple regression model.

The underlying premises for the building of the model are similar to
the ones for the simple regression with the difference that we have more
than one x factor. To differentiate between population and sample, we
will use

ŷ = β1x1 + β2x2 + · · · + βixi + βnxn

for the expected regression model for the population, and

ŷ = b1x1 + b2x2 + · · · + bixi + bnxn

for the samples.
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Six Sigma case study. A Customer Service manager has been urged to
reduce the operating costs in her department. The only way she can do it
is through a reduction of staff. Reducing her staff while still responding
to all her customers’ calls within a specified time frame would require
addressing the causes of the calls and improving on them. She initiates
a Six Sigma project to reduce customer complaints. In the “Analyze”
phase of the project, she categorizes the reasons for the calls into three
groups: “damaged plastic,” “machine overheating,” and “ignorance” (for
the customers who do not know how to use the product).

She believes that these are the main causes for the customers to keep
her representatives too long over the phone. She tabulates a random
sample of 15 days, shown in Table 10.5 (in minutes). The dependent
(or response) variable is “Call Time” and the independent variables (or
regressors) are “Overheat,” “Plastic,” and “Ignorance.” The table can be
found in Calltime.xls and Calltime.mpj on the included CD

TABLE 10.5

Call Time Overheat Plastic Ignorance

69 15 17 7
76 17 23 6
89 20 24 10
79 18 23 7
76 17 23 9
76 17 25 5
78 18 26 8
56 14 24 9
87 20 28 11
65 17 26 3
89 23 27 9
67 19 26 10
76 17 25 8
67 15 26 7
71 16 27 9

She wants to build a model that explains how the time that the cus-
tomer representatives spend talking to the customers relates to the
different causes of the calls and help make predictions on how reducing
the number of the calls based on the reasons for the calls can affect the
call times.

In this case, we have one dependent (or response) variable, “Call
Time,” and three independent variables, “Overheat,” “Plastic,” and “Ig-
norance.” The model we are looking for will be under the form of

Call Time = b1 × Overheat + b2 × Plastic + b3 × Ignorance + b0

where b1, b2,and b3 are coefficients of the dependent variables. They
represent the proportions of the change in the dependent variable when
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the independent variables change by a factor of one. The term b0 is a
constant that would equal the response variable if all the independent
variables were equal to zero.

Using Excel, the process used to find the multiple regression equation
is the same as the one used for the simple linear regression. The output
also will be similar and the interpretations that we make of the values
obtained are the same. In that respect, Excel’s scope is limited compared
to Minitab.

Excel’s output for the Customer Service data:

10.2.1 Hypothesis testing
for the coefficients

When we conducted the simple regression analysis, we only had one
coefficient for the slope, and we conducted hypothesis testing to deter-
mine if the population’s regression slope was equal to zero. The null
and alternate hypotheses were

H0 : β1 = 0

Hα : β1 �= 0

We used the regression equation that we found to test the hypothesis.
In the case of a multiple regression analysis, we have several coeffi-

cients to conduct a hypothesis test; therefore, ANOVA would be more
appropriate to test the null hypothesis. The null and alternate hypothe-
ses would be:

H0 : β1 = β2 = β3 = 0

Hα : At least one coefficient is different from zero.

Using Minitab. We will not be able to address all the capabilities of
Minitab with regard to multiple regression analysis because it would
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take a voluminous book by itself, so we will be selective with the options
offered to us.

After pasting the table into a Minitab worksheet, from the Stat menu,
select “Regression” and then select “Regression” again. In the “Regres-
sion” dialog box, select “Options.”

Select the option Variance inflation factor, then select “OK” and “OK”
again to get the output shown in Figure 10.8.

Using Excel. If we reject the null hypothesis, we would conclude that
at least one independent variable is linearly related to the dependent
variable. On the ANOVA table shown in Figure 10.9, the calculated F
(8.5174) is much higher than the critical F (0.0033). Therefore, we must
reject the null hypothesis and conclude that a least one independent
variable is correlated to the dependent variable.

The circled coefficients represent the coefficients for each indepen-
dent variable and the intercept represents the constant.

The residuals are interpreted in the same manner they were inter-
preted in the simple regression analysis. When calculating the residu-
als, we replace the values of “Overheat,” “Plastics,” and “Ignorance” for
each line in the equation to obtain the predicted “Call Time;” then the
predicted “Call Time” is subtracted from the actual “Call Time.”
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Interpretation of the results. Note that on the ANOVA table, we do not
have the F-critical value obtained from the F table, but we do have the
P-value, which is 0.003, therefore less that the critical value of 0.05.
So we must reject the null hypothesis and conclude that at least one
independent variable is correlated with the dependent variable.

P-values for the coefficients. The P-values are the results of hypotheses
testing for every individual coefficient. The tests will help determine if
the variable whose coefficient is being tested is significant in the model,
i.e., if it must be kept or deleted from the model.

The P-value is compared to the α level, which in general is equal to
0.05. If the P-value is less that 0.05, we are in the rejection zone and we
conclude that the variable is significant and reject the null hypothesis.
Otherwise, we cannot reject the null hypothesis.

In our example, all the P-values are greater than the 0.05 except
for “Overheat,” which is 0.001. So “Overheat” is the only independent
variable that is significantly correlated with the dependent factor “Call
Time.” Both “Plastic” and “Ignorance” are higher than 0.1 and are there-
fore insignificant and should be removed from the model.

Adjusted coefficient of determination. In the previous section on simple
linear regression analysis, we defined the coefficient of determination as
the proportion in the variation of the response variable that is explained
by the independent factor. The same definition holds with multiple re-
gression analysis.
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Figure 10.8

But taking into account sample sizes and the degrees of freedom of
independent factors is recommended to assure that the coefficient of
determination is not inflated. The formula for the adjusted coefficient
of determination is

Adj R2 = 1 −
∣∣∣∣(1 − R2)

n − 1
n − 1 − k

∣∣∣∣
where k is the number of independent factors, which is three.

Figure 10.9
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Multicollinearity. Multicollinearity refers to a situation where at least
two independent factors are highly correlated. An increase in one of the
factors would lead to an increase or a decrease of the other. When this
happens, the interpretation that we make of the coefficient of determi-
nation may be inaccurate. The proportion of the changes in the depen-
dent factor due to the variations in the independent factors might be
overestimated.

One way to estimate multicollinearity is the use of the variance infla-
tion factor (VIF). It consists in using one independent variable at a time
as if it were a dependent variable and conducting a regression analysis
with the other independent variables. This way, the experimenter will
be able to determine if a correlation is present between the x factors.

The coefficient of determination for each independent variable can be
used to estimate the VIF,

VIF =
(
1 − R2

i

)−1

In most cases, multicollinearity is suspected when a VIF greater than
10 is present. In this case, the VIF are relatively small.

Exercise

a. Complete the missing fields in Table 10.6.

b. What is the coefficient of determination?

c. Interpret the results.

d. What does a P-value of zero suggest?

Exercise

a. Complete the missing items on this Minitab Output of Figure 10.10.

b. Based on the P-values, what can we conclude about the input factors?

c. What proportion of the input factors cause variations in the output
factor?

d. What can we say about the VIF?

TABLE 10.6

ANOVA

Source of Variation SS df MS F P-value F Critical

Between Groups 7680.519 3840.259 0.0000 3.402826
Within Groups 24
Total 9368.963 26
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Figure 10.10

10.2.2 Stepwise regression

Six Sigma case study. Senegal Electric is a company that manufactures
and sells robots. It markets the robots through five channels: websites,
TV, magazine, radio, and billboards. A Six Sigma project was initiated
to reduce marketing cost and improve its impact on sales. In the “An-
alyze” phase of the project, a Black Belt decides to build a regression
model that will determine the significant factors that affect sales and
eliminate the insignificant ones from the model. She randomly selects
15 days of a month and tabulates the number of hits from the website,
the number of coupons from the magazine, the numbers of radio and TV
broadcasts, and the number of people who bought the robots because
they saw the billboards.

She wants to build a model that uses all the variables whose varia-
tions significantly explain the variation in sales. At the same time, she
wants the model to be simple and relevant. This data is presented in
Table 10.7 and can be found in the files Senegal electric.xls and Senegal
electric.mpj on the included CD.

In this case, “Sales” is the response factor and “TV,” “Radio,” “Mag-
azine,” “Website,” and “Billboard” are the regressors (or independent
factors).

After using Minitab to run a multiple regression analysis, we obtain
the output shown in Figure 10.11.
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TABLE 10.7

Sales TV Radio Magazine Website Billboard

1292 12 17 220 11987 60
1234 11 17 298 8976 58
1254 12 16 276 8720 20
1983 16 21 190 19876 729
1678 13 17 276 2342 305
1876 14 19 230 1456 198
2387 18 19 311 2135 511
1234 10 16 325 1238 1153
1365 11 18 368 1243 131
2354 18 22 143 2313 989
1243 9 11 109 1215 1111
2345 18 25 215 163 1102
1342 11 18 160 9808 1003
1235 11 16 543 706 107
1243 11 17 24 973 8
1293 12 15 19 169 50

Figure 10.11
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The reading we can make of the results is that because the P-values
for “TV” is zero and the one for “Billboard” is 0.02, these two factors are
significant in the model at an α level of 0.05. The website ads have an
insignificant negative impact on the sales.

Both the coefficient of determination and the adjusted coefficient of
determination show that a significant proportion in the variation of
the sales is due to the variations in the regressors. Because “Website,”
“Radio,” and “Magazine” are insignificant for the model, the Black Belt
has decided to drop them from the model, but she is wondering what
would happen to the model if the insignificant factors are taken off.
What impact will that action have on R2?

One way she can find out is to use stepwise regression. All the inde-
pendent variables in the model contribute to the value of R2, so if one
of the variables is removed from or added to the model, this will change
its value. Stepwise regression is a process that helps determine a model
with only independent variables that are significant at a given α level.
Three types of stepwise regression are generally used: the standard
stepwise regression, the forward selection, and the backward elimina-
tion.

Standard stepwise. The standard stepwise regression is a selection
method that starts with building a model with only one regressor, then
adding regressors one at a time, keeping the significant ones and reject-
ing the insignificant ones, until there is no more significant regressor
out of the model.

Simple linear regression models for each regressor are initially built
to predict the response variable. The initial model will be the simple
regression model with the highest absolute value of t at that α level.
The first model will therefore be under the form of

ŷ = b1x1 + b0

Then the next step will consist in finding the next regressor whose ab-
solute value of t combined with an initial one would provide the highest
t value in the model. The model becomes

ŷ = b1x1 + b2x2 + b0

Then the whole model is examined to determine if all the t values are
still significant at that α level. If they are, both of them are kept and the
process is started again to add another regressor. Every time a regressor
is added, the model is tested to see if the t values are still significant.
When one has become insignificant, it is removed from the model.

After adding x3 to the model, it becomes

ŷ = b1x1 + b2x2 + b3x3 + b0
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If after testing all the t values, the t value for x2 has proved insignificant,
x2 is removed from the model and it becomes

ŷ = b1x1 + b3x3 + b0

Use Minitab to run a stepwise regression at α = 0.05. After pasting the
data into a Minitab Worksheet, from the Stat menu select “Regression”
and then select “Stepwise . . .”

After the “Stepwise Regression” dialog box pops up, enter the vari-
ables into the appropriate fields as shown in Figure 10.12; then select
“Methods. . . ”

Figure 10.12

In the “Stepwise Method” box, the options Use alpha values and Step-
wise (forward and backward) should be selected by default. The α levels
are “0.15,” so change them to “0.05.”
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Then select “OK” and “OK” again to get the output shown in Figure
10.13.

Figure 10.13
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An examination of the output shows that the only two regressors that
are kept are “TV” and “Billboard,” and their P-values show that they
are significant in the model. After removing the other regressors, R2

and adjR2 have not drastically changed; they went from 96.9 and 95.4
to 95.89 and 95.26, respectively. This means that the variations in the
variables that were dropped from the model did not significantly ac-
count for the variations in sales.

Forward selection. As in the standard stepwise regression, the forward
selection begins with building a model with the single largest coefficient
of determination R2 to predict the dependent variable. After that, it
selects the second variable that produces the highest absolute value
of t. Once that regressor is added to the model, the forward selection
does not examine the model to see if the t values have changed and
one needs to be removed. Forward selection is therefore similar to the
standard stepwise regression with the difference that it does not remove
regressors once they are added. With the data that we have, if we run a
forward selection we would have the exact same results as in the case
of the standard stepwise regression.

Backward elimination. The backward elimination begins the opposite to
forward selection. It builds a complete model using all the regressors
and then it looks for the insignificant regressors. If it finds one, it per-
manently deletes it from the model; if it does not find any, it keeps the
model as is. The least significant regressors are deleted first. If we had
ran a backward elimination using Minitab with data that we have at
the same α level, we would have the same results.

Exercise. The rotations per minute (RPM) is critical to the quality of a
wind generator. Several components affect the RPM of a particular gen-
erator. Among them, the weight of the fans, the speed of the wind, and
the pressure. After having designed the Conakry model of a wind gener-
ator, the reliability engineer wants to build a model that will show how
the “Rotation” variable relates to the “Wind,” “Pressure,” and “Weight”
variables. After testing the generator under different settings, he tab-
ulates the results shown in Table 10.8. The table can also be found in
Windmill.xls and Windmill.mpj on the included CD.

Using the information from Table 10.8:

a. Show that “Wind” and “Pressure” are highly correlated.

b. Show that “Rotation” is highly dependent on the input factors.

c. Show that only “Weight” is significant in the equation.

d. Show that the VIF is too high for “Wind” and “Pressure.”
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TABLE 10.8

Rotation Weight Pressure Wind

2345 69 98 75
2365 70 100 77
2500 74 114 88
2467 73 113 87
2345 69 127 98
2347 69 129 99
2134 63 101 78
2368 70 124 95
2435 72 113 87
2654 78 112 86
2345 69 104 80
2346 69 116 89
2435 72 127 98
2436 72 113 87
2435 72 116 89
2543 75 112 86
2435 72 113 87

e. What would happen to the coefficient of determination if the insignif-
icant factors are removed from the equation?

f. Interpret the probability plot for the residuals.

g. Use stepwise regression, the forward selection, and backward elim-
ination to determine the effect of removing some factors from the
model.



Chapter

11
Design of Experiment

Incorrect business decisions can have very serious consequences for
a company. The decisions that a company makes can be as simple as
choosing on what side of a building to install bathrooms, or as complex
as what should be the layout of a manufacturing plant, or as serious
as whether it should invest millions of dollars in the acquisition of a
failing company or not.

In any event, when we are confronted with a decision we must choose
between at least two alternatives. The choice we make depends on many
factors but in quality driven operations, the most important factor is
the satisfaction that the customers derive from using the products or
services delivered to them. The quality of a product is the result of a
combination of factors. If that combination is suboptimal, quality will
suffer and the company will lose as a result of rework and repair.

The best operations’ decisions are the result of a strategic thinking
that consists in conducting several experiments, combining relevant
factors in different ways to determine which combination is the best.
This process is known in statistics as Design Of Experiment (DOE).

Because several factors affect the quality levels of products and ser-
vices (from now on, we will refer to the generated products or services as
response factors or response variables) and they affect them differently,
it is necessary to know how the input factors and their interactions
affect the response variable.

One part of statistics that helps determine if different inputs affect
the response variables differently is the ANOVA. ANOVA is a basic step
in the DOE that is a formidable tool for decision-making based on data
analysis. The types of ANOVA that are more commonly used are:
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� The completely randomized experimental design, or one-way ANOVA.
One-way ANOVA compares several (usually more than two) sam-
ples’ means to determine if there is a significant difference between
them.

� The factorial design, or two-way ANOVA, which takes into account
the effect of noise factors.

Because one-way ANOVA has been extensively dealt with in the pre-
vious chapters, we will concentrate on two-way ANOVA in this chapter.
Through an example, we will show the mathematical reasoning to bet-
ter understand the rationale behind the results generated by Minitab
and Excel. We will conduct a test in two ways: we will first use the
math formulas and then we will use Minitab or Excel and extensively
interpret the generated results after the test.

11.1 The Factorial Design with Two Factors

In our one-way ANOVA examples, all we did was determine if there was
a significant difference between the means of the three treatments. We
did not consider the treatment levels in those examples.

The factorial designs experiments conducted in a way that several
treatments are tested simultaneously. The difference from the one-way
ANOVA is that in factorial design, the level of every treatment is tested
for all treatments.

Consider that the heat generated by a type of electricity generator
depends on its RPM and on the time it is operating. Samples taken
while two generators are running for four hours are summarized in
Table 11.1. For the first hour, the generators ran at 500 RPM and the
heat generated was 65 degrees Celsius for both generators.

In this example, the variations in the level of heat produced by the
generators can be due to the time they have been running, or to the
fluctuations in the RPM, or the interaction of the time and RPM vari-
ations. Had we been running a one-way ANOVA, we would have only
considered one treatment (either the time or the RPM).

With the two-way ANOVA, we consider all the RPMs for every time-
frame and we also consider the timeframes (hours) for every RPM. The
row effects and the column effects are called the main effects, and the
combined effects of the rows and columns is called the interaction effect.
In this example, we will call a “cell” the intersection between an RPM
(column) and a length of time (row). Every cell has two observations.
Cell 1 is comprised of observations (65, 65). So we have three cells per
row and four rows, which make a total of 12 cells.
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TABLE 11.1

Hours 500 RPM 550 RPM 600 RPM

1 65 80 84
65 81 85

2 75 83 85
80 85 86

3 80 86 90
85 87 90

4 85 89 92
88 90 92

As in the case of the one-way ANOVA, the two-way ANOVA is also
a hypothesis test and in this case, we are faced with three hypotheses:
The first hypothesis will stipulate that there is no difference between
the means of the RPM treatments.

H0 : µr1 = µr2 = µr3

where µ1, µ2, and µ3 are the means of the RPM treatments.
The second hypothesis will stipulate that the number of hours that

the generators operate does not make any difference on the heat.

H0 : µh1 = µh2 = µh3

where µh1, µh2, and µh3 are the means of the hours that generators were
operating.

The third stipulation will be that the effect of the interaction of the
two main effects (RPM and time) is zero. If the interaction effect is
significant, a change in one treatment will have an effect on the other
treatment. If the interaction is very important, we say that the two
treatments are confounded.

Conduct the ANOVA for the data we gathered. At first, we will use
the formulas and mathematically solve the problem, and then verify
the results we obtained using Excel. We will show how to use Excel
step by step to conduct a factorial design, two-way ANOVA.

11.1.1 How does ANOVA determine if the
null hypothesis should be rejected or not?

The way ANOVA determines if the null hypothesis should be rejected or
not is by assessing the sources of the variations from the means. In Table
11.1, all the observations are not identical; they range between 65 and
92 degrees. The means of the different main factors (the different RPMs
and the different timeframes) are not identical, either. For a confidence
level of 95 percent (an α level of 0.05), ANOVA seeks to determine the
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sources of the variations between the main factors. If the sources of
the variations are solely within the treatments (in this case, within the
columns or rows), we would not be able to reject the null hypothesis. If
the sources of variations are between the treatments, we reject the null
hypothesis.

Table 11.2 summarizes what we have just discussed:

TABLE 11.2

Sources of Sums of Degrees of
variation squares freedom Mean square F-statistics

RPM tSS a − 1 MSt = tSS / (a − 1) F = MSt / MSE
TIME lSS b − 1 MSL = lSS / (b − 1) F = MSL / MSE
Interaction ISS (a − 1)(b − 1) MSI = ISS / [(a − 1)(b − 1)] F = MSI / MSE

Time RPM
Error SSE ab(n − 1) MSE = SSE / [ab(n − 1)]
Total TSS N − 1

The formulas for the sums of squares to solve a two-way ANOVA with
interaction are given as follows.

The sums of squares are nothing but deviations from means,

lSS = nt
l∑

i=1

(Xi − X )2

tSS = nl
t∑

j=1

(X j − X )2

ISS = n
l∑

i=1

t∑
j=1

(Xij − Xi − X j + X )2

SSE =
l∑

i=1

t∑
j=1

n∑
k=1

(Xijk − Xij)2

TSS =
l∑

i=1

t∑
j=1

n∑
k=1

(Xijk − X )2

where lSS is the sum of squares for the rows, tSS is the sum of squares
for the treatments, ISS is the sum of squares for the interactions, SSE
is the error of the sum of squares, TSS is the total sum of squares, n is
the number of observed data in a cell (n = 2), t is the number of treat-
ments, l is the number of row treatments, i is the number of treatment
levels, j is the column treatment levels, k is the number of cells, Xijk is
any observation, Xij is the cell mean, Xi is the level mean, X j is the
treatment mean, and X is the mean of all the observations.
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11.1.2 A mathematical approach

The extra cells to the right in Table 11.3 are the means of the six num-
bers to their left. The extra cells at the very bottom are the means of
the columns Plug in the numbers to the equations:

TABLE 11.3

Hours 500 RPM 550 RPM 600 RPM

1 65 80 84
65 81 85 76.66667

Mean 65 80.5 84.5
2 75 83 85

80 85 86 82.33333
Mean 77.5 84 85.5

3 80 86 90
85 87 90 86.33333

Mean 82.5 86.5 90
4 85 89 92

88 90 92 89.33333
Mean 86.5 89.5 92

77.875 85.125 88

lSS = nt
l∑

i=1

(Xi − X)2 = 2 × 3((76.66 − 83.667)2 + (82.333 − 83.667)2

+ (86.33 − 86.667)2 + (89.333 − 86.667)2)

Therefore

lSS = nt
l∑

i=1

(Xi − X)2 = 2 × 3(49 + 1.778 + 7.1111 + 32.111) = 540

tSS = nl
t∑

j=1

(X j − X)2 = 2 × 4(33.5434 + 2.126736 + 18.77778)

= 435.5833

Add a row at the bottom of each cell to visualize the means for the cells.
The mean of the first cell is 65, because (65 + 65) / 2 = 65.

ISS = n
l∑

i=1

t∑
j=1

(Xij − Xi − X j + X )2

= 2
[
(65 − 76.6667 − 77.875 + 83.667)2 + (80.5 − 76.6667 − 85.125

+ 83.667)2] + · · · + (92 − 89.333 − 88 + 83.667)2 = 147.75
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The SSE is obtained from

SSE =
l∑

i=1

t∑
j=1

n∑
k=1

(Xijk − Xij)2

= (
65 − 65

)2 + (
65 − 65

)2 + (
80 − 80.5

)2 + · · · + (
90 − 89

)2

+ (
92 − 92

)2 + (
92 − 92

)2 = 34

The TSS will be the sum of SSE, ISS, tSS, and lSS,

TSS = 34 + 147.75 + 540 + 435.5833 = 1157.3333

We can now insert the numbers in our table. Note that what we were
looking for was the F-statistic.

TABLE 11.4

Sums of Degrees of
Sources of variation squares freedom Mean square F-statistic F-critical

RPM 435.45 2 217.79 76.86 3.89
TIME 540 3 180 63.53 3.49
Interaction Time RPM 147.75 6 24 8.69 3
Error 34 12 2.833
Total 1157.333 23

To determine if we must reject the null hypothesis, we must compare the
F-statistic to the F-critical value found on the F table. If the F-critical
value (the one on the F-table) is greater than the F-statistic (the one we
calculated), we would not reject the null hypothesis; otherwise, we do.
In this case, the F-statistics for all the main factors and interaction are
greater than their corresponding F-critical values, so we must reject the
null hypotheses. The length of time the generators are operating, the
RPM variations, and the interaction of RPM and time have an impact
on the heat that the generators produce. But once we determine that the
interaction between the two main factors is significant, it is unnecessary
to investigate the main factors.

Using Minitab. Open the file Generator.mpj. From the Stat menu, se-
lect “ANOVA” and then select “Two-Way.” In the “Two-Way Analysis of
Variance” dialog box, select “Effect” for the Response field. For Row Fac-
tor, select “Time” and for Column Factor, select “RPM.” Select “OK” to
obtain the results shown in Figure 11.1.

Using Excel. We must have Data Analysis installed in Excel to perform
ANOVA. If you do not have it installed, from the Tools menu select “Add
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Figure 11.1

Ins.” A dialog box should pop up, select all the options, and then select
“OK.”

Now that we have Data Analysis, open the file Generator.xls from the
included CD. From the Tools menu, select “Data Analysis . . . ”
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Select “ANOVA: Two-Factor With Replication.”

When selecting the Input Range, we include the labels (the titles of the
rows and columns).

Then select “OK.”
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We can also determine the significance of our results based on the P-
value. In this case, all the P-values are infinitesimal, much lower than
0.05, which confirms the conclusion we previously made: the RPMs, the
time, and interactions thereof have an effect on the heat produced by
the generators. But once we determine that the interaction between
the two main factors is significant, it is unnecessary to investigate the
main factors.

Example Sanghomar is a company that manufactures leather products. It
has four lines that use that same types of machines. The quality engineer has
noticed variations in the thickness of the sheets of leather that come from
the different lines. He thinks that only two factors, the machines and the
operators, can affect the quality of the products. He wants to run a two-way
ANOVA and takes samples of the products generated by five operators and
the four machines. The data obtained are summarized in Table 11.5. The
same data are in the files Leatherthickness.xls and Leatherthickness.mpj on
the included CD.

TABLE 11.5

Employee Machine 1 Machine 2 Machine 3 Machine 4

1 9.01 9.01 9.06 9.03
1 9.20 9.20 9.24 9.20
2 9.06 9.07 9.06 9.06
2 9.00 9.00 8.98 9.03
3 9.01 9.01 9.21 8.97
3 8.90 8.99 9.09 8.90
4 9.02 9.02 9.02 9.02
4 9.40 8.98 9.40 9.40
5 9.89 9.89 9.05 9.89
5 9.60 9.07 9.05 8.90

Using Excel and Minitab:

a. Determine if there is a difference between the performances of the ma-
chines.

b. Determine if there is a difference between the performances of the em-
ployees.

c. What can we say about the interaction between machines and employees?
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Solution Minitab output:

Excel output:
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a. The P-value for the machines is 0.821, which means that we cannot reject
the null hypothesis because there is not a significant difference between
the performances of the machines.

b. The P-value for the employees is 0.023, which means that we must reject
the null hypothesis and conclude that there is a significant difference
between the performances the employees.

c. The P-value for the interaction between machines and employees is 0.646,
which means that we cannot reject the null hypothesis. The interaction
of employees and machines does not make a significant difference in the
quality of the products.

11.2 Factorial Design with More
than Two Factors (2k)

In the previous examples, only two factors were considered to have
an effect on the response variable. In most situations, more than two
independent variables affect the response factor. When the factors af-
fecting the response variable are too many, collecting many samples for
analysis that would reflect multiple factorial levels may become time-
consuming and costly, and the analysis itself may become complex. An
alternative to that approach would be the use of 2k, a two levels with
k factors design. This approach simplifies the analysis because it only
considers two levels, high (+1) and low (−1) for each factor, resulting in
2k trials. The simplest form of a 2k design with more than two factors
is the 23. In this case, the number of trials would be 23 = 2 × 2 ×2 = 8.

Example New barcode scanners are being tested for use at a Memphis Distri-
bution Center to scan laminated barcodes. The speed at which the scanners
perform is critical to the productivity of the employees in the warehouse.
The quality engineer has determined that three factors can contribute to the
speed of the scanners: the distance between the operator and the barcodes,
the ambient light in the warehouse, and the reflections from the laminated
barcodes. She conducts an experiment based on a time study that measured
the time it took a scanner to read a barcode. In this study, eight trials are
conducted, and the results of the trials are summarized in Table 11.6. The
first trial—conducted at a close distance, in a dark environment, and without
any reflection from the laminated barcode—yielded a high response of 2.01
seconds and a low response of 1.95 seconds.

The objective of the experimenter is to determine if the different factors
or their interactions have an impact on the response time of the Barcode
scanner. In other words:
� Does the distance from which the operator scans the barcode have an impact

on the time it takes the scanner to read the barcode?
� Is the scanner going to take longer to read the barcode if the warehouse is

dark?
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� Do the reflections due to the plastic on the laminated barcode reduce the
speed of reading of the scanner?

� Do the interactions between these factors have an influence on the perfor-
mance of the scanner?

To answer these questions, the experimenter postulates hypotheses. The null
hypothesis would suggest that the different factors do not have any impact on
the time the scanner takes to read the barcode, and the alternate hypothesis
would suggest the opposite.

H0 : µlow = µhigh

Ha : µlow �= µhigh

At the end of the study, the experimenter will either reject the null hypothesis
or she will fail to reject them.

Then the experimenter collects samples of observations and tabulates the
different response levels as shown in Table 11.6.

TABLE 11.6

Distance Light Reflection High Response Low Response Mean Response

Close Dark None 2.01 1.95 1.980
Close Bright Glary 2.08 2.04 2.060
Close Bright None 2.07 1.90 1.985
Close Dark Glare 3.00 1.98 2.490
Far Dark Glare 4.00 3.90 4.250
Far Dark None 4.02 4.10 4.360
Far Bright None 4.02 3.80 3.910
Far Bright Glare 4.05 4.30 4.175

The test that the experimenter conducts is a balanced ANOVA. A balanced
ANOVA requires all the treatments to have the same number of observations,
which we have in this case.

Solution Open the file RFscanner.mpj from the included CD. From the
Stat menu, select “ANOVA” and from the drop-down list, select “Balanced
ANOVA.” Fill in the “Balanced Analysis of Variance” as indicated in Figure
11.2:
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Figure 11.2

Select “Options . . . ” and select the Use the restricted form of model option.
Select “OK” and select “OK” again to get the output shown in Figure 11.3.

Interpretation of the results. What we are seeking to determine is if the
three factors (distance, light, and reflection) separately have an impact
on the time it takes to scan a laminated barcode. As in the case of the
one-way ANOVA, what will help us make a determination is the P-
value. For a confidence level of 95 percent, if the P-value is less that
0.05, we must reject the null hypothesis and conclude that the factor
has an impact on the response time; otherwise, we will fail to reject the
null hypothesis.

In our example, all the main factors except for the distance and all
the interactions have a P-value greater than 0.05. Therefore, we must
conclude that only the null hypothesis for the distance will be rejected;
the other ones should not be rejected. Distance is the only main factor
affecting the time it takes the scanner to read the barcode.
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Figure 11.3



Chapter

12
The Taguchi Method

I recently had a very unpleasant experience with a notebook computer
that I bought about six months ago. At first, I was having some irritating
problems with the LCD (liquid Crystal display). It would be very dim
for about five minutes when I turned the computer on; the system had
to warm up before the LCD would display correctly. I did bear with
that situation until it started to black out while I was in the middle
of my work. Because it was still under warranty, I sent it back to the
manufacturer for repair and decided that I would never buy a product
from that manufacturer again.

12.1 Assessing the Cost of Quality

The quality of a product is one of the most important factors that de-
termine a company’s sales and profit. Quality is measured in relation
with the characteristics of the products that customers’ expect to find
on it, so the quality level of the products is ultimately determined by the
customers. The customers’ expectations about a product’s performance,
reliability, and attributes are translated into CTQ characteristics and
integrated in the products’ design by the design engineers.

While designing the products, the design engineers must also take
into account the resources’ capabilities (machines, people, materials,
and so on), i.e., their ability to produce products that meet the cus-
tomers’ expectations. They specify with precision the quality targets
for every aspect of the products.

But quality comes with a cost. The definition of the cost of quality
is contentious. Some authors define it as the cost of nonconformance,
i.e., how much producing nonconforming products would cost a com-
pany. This is a one-sided approach because it does not consider the cost
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incurred to prevent nonconformance and, above all in a competitive
market, the cost of improving the quality targets.

For instance, in the case of an LCD display manufacturer, if the
market standard for a 15-inch LCD with a resolution of 1024 × 768 is
786,432 pixels and a higher resolution requires more pixels, improving
the quality of the 15-inch LCD and pushing the company’s specifica-
tions beyond the market standards would require the engineering of
LCDs with more pixels, which would require extra cost.

The cost of quality is traditionally measured in terms of the cost of
conformance and the cost of nonconformance, to which we will add the
cost of innovation. The cost of conformance includes the appraisal and
preventive costs whereas the cost of nonconformance includes the costs
of internal and external defects.

12.1.1 Cost of conformance

Preventive costs. Preventive costs are the costs incurred by the com-
pany to prevent nonconformance. It includes the costs of:

� Process capability assessment and improvement
� The planning of new quality initiatives (process changes, quality im-

provement projects, and so on)
� Employee training

Appraisal costs. Appraisal costs are the costs incurred while assess-
ing, auditing, and inspecting, products and procedures to assure con-
formance of products and services to specifications. It is intended to
detect quality related failures. It includes:

� Cost of process audits
� Inspection of products received from suppliers
� Final inspection audit
� Design review
� Prerelease testing

12.1.2 Cost of nonconformance

The cost of nonconformance is, in fact, the cost of having to rework
products and the loss of customers that results from selling poor quality
products.
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Internal failure. Internal failures are failures that occur before the prod-
ucts reach the customers.

� Cost of reworking products that failed audit
� Cost of bad marketing
� Scrap

External failure. External failures are reported by the customers.

� Cost of customer support
� Cost of shipping returned products
� Cost of reworking products returned from customers
� Cost of refunds
� Loss of customer goodwill
� Cost of discounts to recapture customers

In the short term, there is a positive correlation between quality im-
provement and the cost of conformance and a negative correlation be-
tween quality improvement and the cost of nonconformance. In other
words, an improvement in the quality of the products will lead to an
increase in the cost of conformance that generated it. This is because
an improvement in the quality level of a product might require extra
investment in R&D, more spending in appraisal cost, more investment
in failure prevention, and so on.

But a quality improvement will lead to a decrease in the cost of
nonconformance because fewer products will be returned from the cus-
tomers, therefore less operating costs of customer support, and there
will be less internal rework.

For instance, one of the CTQs for an LCD is the number of pixels it
contains. The brightness of each pixel is controlled by individual tran-
sistors that switch the backlights on and off. The manufacturing of
LCDs is very complex and very expensive, and it is very difficult to
determine the number of dead pixels on an LCD before the end of the
manufacturing process. So to reduce the number of scrapped units, if
the number of dead pixels is infinitesimal or the dead pixels are almost
invisible, the manufacturer would consider the LCDs as “good enough”
to be sold. Otherwise, the cost of scrap or internal rework would be so
prohibitive that it would jeopardize the cost of production. Improving
the quality level of the LCDs to zero dead pixels would therefore in-
crease the cost of conformance. On the other hand, not improving the
quality level of the LCDs will lead to an increase in the probability of
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Cost

Total cost of quality

Cost of non conformance

Cost of conformance

C3

C2

C1
Q2 Q Quality Improvement

C

Figure 12.1

having returned products from customers and internal rework, there-
fore increasing the cost of nonconformance.

The graph in Figure 12.1 plots the relationship between quality im-
provement and the cost of conformance on one hand and the cost of
nonconformance on the other hand.

If the manufacturer determines the quality level at Q2, the cost of
conformance would be low (C1), but the cost of nonconformance would
be high (C2) because the probability for customer dissatisfaction will be
high and more products will be returned for rework, therefore increas-
ing the cost of rework, the cost of customers services, and shipping and
handling.

The total cost of quality would be the sum the cost of conformance
and the cost of nonconformance. That cost would be C3 for a quality
level of Q2.

C3 = C1 + C2

Cost

Total cost of quality

Cost of non conformance

Cost of conformance

C3

C2

C1
Q1Q Quality Improvement

C
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Should the manufacturer decide that the quality level should be at Q1,
the cost of conformance (C2) would be higher than the cost of noncon-
formance (C1) and the total cost of quality would be at C3. The total
cost of quality is minimized only when the cost of conformance and the
cost of nonconformance are equal.

It is worthy to note that currently, the most frequently used graph to
represent the throughput yield in manufacturing is the normal curve.
For a given target and specified limits, the normal curve helps estimate
the volume of defects that should be expected. Whereas the normal
curve estimates the volume of defects, the “U” curve estimates the cost
incurred as a result of producing parts that do not match the target.

The graph of Figure 12.2 represents both the volume of expected
conforming and nonconforming parts and the costs associated to them
at every level.

USL LSLT

Figure 12.2

12.2 Taguchi’s Loss Function

In the now-traditional quality management acceptance, the engineers
integrate all the CTQs in the design of their new products and clearly
specify the target for their production processes as they define the char-
acteristics of the products to be sent to the customers. But because of
unavoidable common causes of variation (variations that are inherent
to the production process and that are hard to eliminate) and the high
costs of conformance, they are obliged to allow some variation or tol-
erance around the target. Any product that falls within the specified
tolerance is considered as meeting the customers’ expectations, and
any product outside the specified limits would be considered as noncon-
forming.

But according to Taguchi, the products that do not match the target—
even if they are within the specified limits—do not operate as intended
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and any deviation from the target, be it within the specified limits or
not, will generate financial loss to the customers, the company, and to
society, and the loss is proportional to the deviation from the target.

Suppose that a design engineer specifies the length and diameter of
a certain bolt that needs to fit a given part of a machine. Even if the
customers do not notice it, any deviation from the specified target will
cause the machine to wear out faster, causing the company a financial
loss under the form of repairs of the products under warranty or a loss
of customers if the warranty has expired.

Taguchi constructed a loss function equation to determine how much
society loses every time the parts produced do not match the specified
target. The loss function determines the financial loss that occurs every
time a CTQ of a product deviates from its target. The loss function is
the square of the deviation multiplied by a constant k, with k being the
ratio of the cost of defective products and the square of the tolerance.

The loss function quantifies the deviation from the target and assigns
a financial value to the deviation,

l(y) = k(y − T )2

with

k = �

m2

where � is the cost of a defective product, T is the engineered target
and m is a measure of the deviation from the target. and m = LSL − T
or m = T − USL. According to Taguchi, the cost of quality in relation
to the deviation from the target is not linear because the customers’
frustration increases (at a faster rate) as more defects are found on a
product. That’s why the loss function is quadratic.

0 LCL UCL QualityT

Cost
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The graph that depicts the financial loss to society that results from
a deviation from the target resembles the total cost of quality “U” graph
that we built earlier, but the premises that helped build them are not
the same. While the total cost curve was built based on the costs of
conformance and nonconformance, Taguchi’s loss function is primarily
based on the deviation from the target and measures the loss from the
perspective of the customers’ expectations.

Example Suppose a machine manufacturer specifies the target for the diam-
eter of a given rivet to be 6 inches and the upper and lower limits to be 5.98
and 6.02 inches, respectively. A bolt measuring 5.99 inches is inserted in its
intended hole of a machine. Five months after the machine was sold, it breaks
down as a result of loose parts. The cost of repair is estimated at $95. Find
the loss to society incurred as a result of the part not matching its target.

Solution We must first determine the value of the constant k:

l(y) = k(y − T )2

with

k = �

m2

T = 6

USL = 6.02

m = (USL − T) = 6.02 − 6 = 0.02

� = 95

k = (95/0.004) = 237,500

Therefore,

l(y) = 0.0001 × $237,500 = $23.75

Not producing a bolt that matches the target would have resulted in a finan-
cial loss to society that amounted to $23.75.

12.3 Variability Reduction

Because the deviation from the target is the source of financial loss to
society, what needs to be done to prevent any deviation from the set tar-
get? The first thought might be to reduce the specification range and
improve the online quality control—to bring the specified limits closer
to the target and inspect more samples during the production process
to find the defective products before they reach the customers. But this
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would not be a good option because it would only address the symptoms
and not the root causes of the problem. It would be an expensive alter-
native because it would require more inspection, which would at best
help detect nonconforming parts early enough to prevent them from
reaching the customers. The root of the problem is, in fact, the vari-
ation within the production process, i.e., the value of σ , the standard
deviation from the mean.

Suppose that the length of a screw is a CTQ characteristic and the
target is determined to be 15 inches with an LCL of 14.96 and a UCL
of 15.04 inches. The sample data of Table 12.1 was taken for testing.

TABLE 12.1

15.02
14.99
14.96
15.03
14.98
14.99
15.03
15.01
14.99

All the observed items in this sample fall within the control limits
even though all of them do not match the target. The mean is 15 and
the standard deviation is 0.023979. Should the manufacturer decide to
improve the quality of the output by reducing the range of the control
limits to 14.98 and 15.02, three of the items in the sample would have
failed audit and would have to be reworked or discarded.

Suppose that the manufacturer decides instead to reduce the vari-
ability (the standard deviation) around the target and leave the control
limits untouched. After process improvement, the sample data of Table
12.2 is taken.
TABLE 12.2

15.01
15.00
14.99
15.01
14.99
14.99
15.00
15.01
15.00

The mean is still 15 but the standard deviation has been reduced
to 0.00866, and all the observed items are closer to the target. Reduc-
ing the variability around the target has resulted in improving quality
in the production process at a lower cost. This is not to suggest that
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the tolerance around the target should never be reduced; addressing
the tolerance limits should be done under specific conditions and only
after the variability around the target has been reduced.

Because variability is a source of financial loss to producers, cus-
tomers, and society at large, it is necessary to determine what the
sources of variation are so that actions can be taken to reduce them. Ac-
cording to Taguchi, these sources of variation that he calls noise factors
can be reduced to three:

� The inner noise. Inner noises are deteriorations due to time. Product
wear, metal rust or fading colors, material shrinkage, and product
waning are among the inner noise factors.

� The outer noise, which are environmental effects on the products.
They are factors such as heat, humidity, operating conditions, or pres-
sure. These factors have negative effects on products or processes. In
the case of the notebook computer, at first the LCD would not display
until it heated up, so humidity was the noise factor that was prevent-
ing it from operating properly. The manufacturer has no control over
these factors.

� The product noise, or manufacturing imperfections. Product noise is
due to production malfunctions, and can come from bad materials,
inexperienced operators, or incorrect machine settings.

But if the online quality control is not the appropriate way to reduce
production variations, what must be done to prevent deviations from
the target?

According to Taguchi, a preemptive approach must be taken to thwart
the variations in the production processes. That preemptive approach
that he calls offline quality control consists in creating a robust design—
in other words, designing products that are insensitive to the noise
factors.

12.3.1 Concept design

The production of a product begins with the concept design, which con-
sists in choosing the product or service to be produced and defining its
structural design and the production process that will be used to gener-
ate it. These factors are contingent upon, among other factors, the cost
of production, the company’s strategy, the current technology, and the
market demand. So the concept design will consist of:

� Determining the intended use of the product and its basic functions
� Determining the materials needed to produce the selected product
� Determining the production process needed to produce the product
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12.3.2 Parameter design

The next step in the production process is the parameter design. After
the design architecture has been selected, the producer will need to set
the parameter design. The parameter design consists in selecting the
best combination of control factors that will optimize the quality level of
the product by reducing the product’s sensitivity to noise factors. Con-
trol factors are parameters over which the designer has control. When
an engineer designs a computer, he has control over factors such as the
CPU, system board, LCD, memory, cables, and so on. He determines
what CPU best fits a motherboard, what memory and what wireless
network card to use, and how to design the system board that would
make it easier for the parts to fit. The way he combines these factors
will impact the quality level of the computer.

The producer wants to design products at the lowest possible cost and,
at the same time, have the best quality result under current technology.
To do so, the combination of the control factors must be optimal while the
effect of the noise factors must be so minimal that they will not have any
negative impact on the functionality of the products. The experiment
that leads to the optimal results will require the identification of the
noise factors because they are part of the process and their effects must
be controlled.

One of the first steps the designer will take is to determine what the
optimal quality level is. He will need to determine what the functional
requirements are, assess the CTQ characteristics of the product, and
specify their targets. The determination of the CTQs and their targets
depends, among other criteria, on the customer requirements, the cost of
production, and current technology. The engineer is seeking to produce
the optimal design,a product that is insensitive to noise factors.

The quality level of the CTQ characteristics of the product under opti-
mal conditions depends on whether the response experiment is static or
dynamic. The response experiment (or output of the experiment) is said
to be dynamic when the product has a signal factor that steers the out-
put. For instance, when I switch on the power button on my computer,
I am sending a signal to the computer to load my operating system. It
should power up and display within five seconds and it should do so
exactly the same way every time I switch it on. As in the case of my
notebook computer, if it fails to display because of the humidity, I con-
clude that the computer is sensitive to humidity and that humidity is a
noise factor that negatively impacts the performance of my computer.

The response experiment is said to be static when the quality level of
the CTQ characteristic is fixed. In that case, the optimization process
will seek to determine the optimal combination of factors that enables
the process to reach the targeted value. This happens in the absence of
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Input

Control Factors

Process Output

Operating System
loaded

Signal Factor 
Press the computer’s 
power button

Noise Factors 
Humidity

Figure 12.3

a signal factor, where the only input factors are the control factors and
the noise factors. When we build a product, we determine all the CTQ
targets and we want to produce a balanced product with all the parts
matching the targets.

The optimal quality level of a product depends on the nature of the
product itself. In some cases, the more a CTQ characteristic is found on
a product, the happier the customers are; in other cases, the less the
CTQ characteristic is present, the better it is. Some products require
the CTQs to match their specified targets.

According to Taguchi, to optimize the quality level of products, the
producer must seek to minimize the noise factors and maximize the
signal-to-noise (S/N) ratio. Taguchi uses logarithmic functions to deter-
mine the signal-to-noise ratios that optimize the desired output.

The bigger, the better. If the number of minutes per dollar customers
get from their cellular phone service provider is critical to quality, the
customers will want to get the maximum number of minutes they can
for every dollar they spend on their phone bills.

If the lifetime of a battery is critical to quality, the customers will
want their batteries to last forever. The longer the battery lasts, the
better it is. The signal-to-noise ratio for the bigger-the-better is

S/N = −10 × log10 (mean square of the inverse of the response)

S/N = 10 log10

(
1
n

∑ 1
y2

)

The smaller, the better. Impurity in drinking water is critical to quality.
The fewer impurities customers find in their drinking water, the better
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it is. Vibrations are critical to quality for a car—the fewer vibrations
the customers feel while driving their cars, the better, and the more
attractive the cars are. The signal-to-noise ratio for the smaller -the
better is

S/N = −10 × log10 (mean square of the response)

S/N = −10 log10

(∑
y2

n

)

The nominal, the best. When a manufacturer is building mating parts,
he would want every part to match the predetermined target. For in-
stance, when he is creating pistons that must be anchored on a given
part of a machine, failure to have the length of the piston match a
predetermined size will result in it being either too short or too long,
resulting in a reduction of the quality of the machine. In this case, the
manufacturer wants all the parts to match their target.

When a customer buys ceramic tiles to decorate their bathroom, the
size of the tiles is critical to quality; having tiles that do not match
the predetermined target will result in them not being correctly lined
up against the bathroom walls. The S/N equation for the nominal-the-
best is

S/N = −10 × log10 (the square of the mean divided by the variance)

S/N = 10 log10

(
y2

s2

)

12.3.3 Tolerance design

Parameter design may not completely eliminate variations from the
target. This is why tolerance design must be used for all parts of a
product to limit the possibility of producing defective products. The
tolerance around the target is usually set by the design engineers; it
is defined as the range within which variation may take place. The
tolerance limits are set after testing and experimentation. The setting
of the tolerance must be determined by criteria such as the set target,
the safety factors, the functional limits, the expected quality level, and
the financial cost of any deviation from the target.

The safety limits measure the loss incurred when products that are
outside the specified limits are produced,

θ =
√

AD

A



The Taguchi Method 301

with A0 being the loss incurred when the functional limits are exceeded,
and A being the loss when the tolerance limits are exceeded. Tolerance
specifications for the response factor will be

� = �D

θ

with �0 being the functional limit.

Example The functional limits of a conveyor motor are ±0.05 (or 5 percent) of
the response RPM. The adjustments made at the audit station before a motor
leaves the company costs $2.50 and the cost associated with defective motors
once they have been sold is on average $180. Find the tolerance specification
for a 2500 RPM motor.

Solution First, we must find the economical factor, which is determined by the
loss incurred when the functional limits or the tolerance limits are exceeded.

θ =
√

AD

A
=

√
180
2.6

= 8.486

Now we can determine the tolerance specification. The tolerance specification
will be the value of the response factor plus or minus the allowed variation
from the target. Tolerance specification for the response factor is

� = �D

θ
= 0.06

8.486
= 0.0069

The variation from the target is

2500 × 0.0059 = 14.73

Thus, the tolerance specification will be 2500 ± 14.73.
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Chapter

13
Measurement Systems Analysis

–MSA: Is Your Measurement
Process Lying to You?

In our SPC study, we showed how to build control charts. Control charts
are used to monitor production processes and help make adjustments
when necessary to keep the processes under control. We have also no-
ticed that no matter how well-controlled a process is, there is always
variation in the quality level of the output. All the points on a control
chart are never on the same line. In fact, when we think about a control
chart, what comes to mind is a zig-zag line with points at the edges. If all
the tested parts were identical and the testing processes were precise
and accurate, then they would all have been aligned on one line.

To improve the quality of a production system, it is necessary to deter-
mine the sources of the variations, whether they are common or special.
The variations in a production process are due either to the actual dif-
ferences between the parts produced or to the process used to assess
the quality of the parts, or a combination of these two factors.

For instance, when we test the weight of some parts produced by the
same machine using the same process and we notice a weight variation
in the results of the test, that variation can only be due to either an ac-
tual difference in weight between the parts themselves or to the testing
process (the device we use to test the parts and the people who perform
the testing). If the testing process is faulty, we might think that there
are differences between the parts when, in actuality, there is not any.
A faulty measurement system will necessarily lead to wrong conclu-
sions.

303
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If we measure the same part repeatedly, chances are that there will
be a variation in the results that we obtain. The measurement process
is never perfect but there is always a possibility to reduce the measure-
ment process variations:

σ 2
T = σ 2

p + σ 2
m

where σ 2
T is the total variation, σ 2

p is the part-to-part variation, and σ 2
m

is the variation due to the measurement process.
The variations due to the measurement system can be broken down

into the variations due to the operator and those due to the instrument
used for the measurement,

σ 2
m = σ 2

o + σ 2
d

Before collecting data and testing a process output, it is necessary to
analyze the measurement system to assure that the procedures used are
not faulty and that it would therefore not lead to erroneous conclusions
—rejecting the null hypothesis when in actuality it is correct. The errors
due to the measurement system can be traced to two factors: precision
and accuracy.

The accuracy is measured in terms of the deviation of the measure-
ment system from the actual value of the part being measured. If the
actual weight of an engine is 500 pounds and a measurement results in
500 pounds, we conclude that the measurement is accurate. If the mea-
surement results in 502 pounds, we conclude that the measurement
deviates from the actual value by 2 pounds and that it is not accurate.
Precision refers to variations observed when the same instrument is
used repeatedly.

13.1 Variation Due to Precision: Assessing
the Spread of the Measurement

Precision refers to the variability observed from a repeated measure-
ment process in an experiment under control. If an experiment that
consists of repeating the same test using the same process is conducted
and the results of the test show the same pattern of variability, we can
conclude that there is a reproducibility of the process.

Precision, repeatability, and reproducibility. If the very same part is tested
repeatedly with the very same instrument, we expect to find the exact
same result if the measurement is precise. Suppose the length of a
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crankshaft is critical to the quality of an electric motor. We use an elec-
tronic meter to measure a randomly selected shaft for testing. In this
case, at first what we are testing is not the crankshaft itself but the elec-
tronic meter. No matter how many times we test the same crankshaft,
its actual dimensions will not change. If there are variations in the re-
sults of the testing, they are more likely to come from the electronic
meter or the person performing the test. We repeat the test several
times and we expect to reproduce the same result if the electronic me-
ter is precise.

If the same operator tests the crankshaft repeatedly, they are very
likely to do it the same way. In that case, if there is any variation it
is likely to come from the device (electronic meter) used to test the
crankshaft. If several operators test the same crankshaft repeatedly,
they may do so in different ways. In that case, failure to reproduce the
same results may come from either the device or the process used for
the testing.

When we talk about precision, what is being addressed is repeata-
bility and reproducibility. To determine the sources of variations when
we fail to reproduce the same results after repeated testing, we can use
several methods including the ANOVA, the XR chart, the gage R&R,
and gage run charts. A gage in this context can be software, a physical
instrument, a standard operating procedure (SOP), or any system or
process used to measure CTQs.

We have seen how ANOVA and DOE can help determine sources of
variations in a production process. ANOVA is based on the formulation
of a null hypothesis and running a test that will result in rejecting or
failing to reject that hypothesis. The rejection or the failure to reject
the null hypothesis is determined by the sources of the variations. If
the sources of variations are within treatment, the null hypothesis is
not rejected; if the sources of variations are between treatment, the null
hypothesis is rejected.

A gage run chart is a graphical representation of the observations by
part and by operator. It enables the experimenter to make an assess-
ment based on how close the observations are about their means and the
presence of outliers. A gage R&R experiment is conducted to describe
the performance of a measurement system through the quantification
of the variations in the measurement process.

13.1.1 Gage repeatability & reproducibility
crossed

XR chart. A quality control manager wants to tests new wattmeters
used to measure the active electric power generated by a newly designed
generator. He takes a sample of 20 units of wattmeters labeled from “A”
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to “T” and designates Macarlos, one of the auditors to test each one of
them three times. Macarlos takes the measurements to construct XR
control charts to assess the variations in the measurement system. He
tabulates the results, shown in Table 13.1.

TABLE 13.1

Part # Measurement 1 Measurement 2 Measurement 3 X Range

A 9.9895 10.0115 9.9887 9.996567 0.0228
B 9.9925 10.0726 9.9574 10.007500 0.1152
C 9.9959 9.9154 10.0827 9.998000 0.1673
D 9.9284 9.9035 10.0765 9.969467 0.1730
E 9.9933 9.9894 10.0050 9.995900 0.0156
F 10.0927 9.9390 10.0219 10.017870 0.1537
G 9.9571 10.0341 10.0680 10.019730 0.1109
H 10.0198 10.0222 9.9482 9.996733 0.0740
I 10.0316 9.9924 10.0352 10.019730 0.0428
J 10.0341 9.9509 9.9808 9.988600 0.0832
K 9.8503 10.0326 9.9435 9.942133 0.1823
L 9.9776 9.9956 10.0235 9.998900 0.0459
M 10.0148 10.0133 10.0025 10.010200 0.0123
N 10.0687 9.9999 9.9950 10.021200 0.0737
O 10.0166 9.9708 9.9324 9.973267 0.0842
P 10.0061 10.0189 10.0827 10.035900 0.0766
Q 9.9488 9.9544 9.9968 9.966667 0.0480
R 10.1188 9.9999 9.9608 10.026500 0.1580
S 10.0349 10.0932 9.9212 10.016430 0.1720
T 10.1071 10.0088 9.9233 10.013070 0.1838

Mean 10.000720 0.099765

We recall from our discussion of SPC that the control limits and the
center line for an X-chart are obtained from the following equations:

UCL = X + A2 R

CL = X

LCL = X − A2 R
We obtain A2 from the control charts constant table, Table 13.2.

The value n = 3, therefore A2 = 1.023 and

UCL = 10.00071 + 1.023 × 0.099765 = 10.1028

CL = 10.00071

UCL = 10.00071 − 1.023 × 0.099765 = 9.8987

The interpretation we make of this X-chart shown in Figure 13.1 is
different from the ones we had in earlier chapters. In this example,
each wattmeter is considered as a sample and each measurement is an
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TABLE 13.2

Sample size A2 A3 B3 B4 d2 d3

2 1.880 2.659 0.000 3.267 1.128 0.853
3 1.023 1.954 0.000 2.568 1.693 0.888
4 0.729 1.628 0.000 2.266 2.059 0.880
5 0.577 1.427 0.000 2.089 2.326 0.864
6 0.483 1.287 0.030 1.970 2.534 0.848
7 0.419 1.182 0.118 1.882 2.704 0.833
8 0.373 1.099 0.185 1.815 2.847 0.820
9 0.337 1.032 0.239 1.761 2.970 0.808

10 0.308 0.975 0.284 1.716 3.078 0.797
11 0.285 0.927 0.321 1.679 3.173 0.787
12 0.266 0.886 0.354 1.646 3.258 0.778
13 0.249 0.850 0.382 1.618 3.336 0.770
14 0.235 0.817 0.406 1.594 3.407 0.763
15 0.223 0.789 0.428 1.572 3.472 0.756
16 0.212 0.763 0.448 1.552 3.532 0.750
17 0.203 0.739 0.466 1.534 3.588 0.744
18 0.194 0.718 0.482 1.518 3.640 0.739
19 0.187 0.698 0.497 1.503 3.689 0.734
20 0.180 0.680 0.510 1.490 3.735 0.729
21 0.173 0.663 0.523 1.477 3.778 0.724
22 0.167 0.647 0.534 1.466 3.819 0.720
23 0.162 0.633 0.545 1.455 3.858 0.716
24 0.157 0.619 0.555 1.455 3.895 0.712
25 0.153 0.606 0.565 1.435 3.031 0.708

element in the sample, which translates to n = 3. Therefore, each point
on the control chart represents the mean measurement of a wattmeter.

The X control chart shows that the points follow a normal pattern
and are all within the control limits, which suggests that the variabil-
ity around the mean is due to common causes and the auditor is not
having problems getting accurate results. If the part-to-part variations
between the wattmeters is under control, the conclusion that must be

Figure 13.1
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drawn would be that the measurement process is in-control and that
the gage used in the measurement process is precise.

The R-chart will show the extent of the variations because it mea-
sures the difference between the observations collected from the same
wattmeter. Here again, we can use the equations obtained from the
chapter about SPC:

UCL = D4 R = 2.575 × 0.099765 = 0.2569

CL = R = 0.099765

LCL = D3 R = 0.099765 × 0 = 0

with a standard deviation of

σgage = R
d2

= 0.099765
1.693

= 0.05893

The R-chart of Figure 13.2 shows the variations in measurement for
each wattmeter. It measures the difference between the highest and
the lowest measurements for each unit. Therefore, each point on the
chart represents a range, the difference between the highest and lowest
measurements for each unit.

The R-chart shows a random pattern with all the points being inside
the control limits; this confirms that the gage used in the measurement
process is generating consistent results.

Repeatability and reproducibility. Because the true, actual value of the
measurements of the wattmeters are known to be consistent and only
exhibit random variations, had the results of the experiment that
Macarlos conducted shown inconsistency, that inconsistency could have
only come from errors in the measurement process. Measurement
errors occur when either the operator did not perform the test prop-
erly or the instrument s/he is using is not consistent, or both.

Figure 13.2
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If several operators are testing the gage for consistency, we should be
concerned about the repeatability and the reproducibility of the gage.
Repeatability refers to a special cause of variation that can be traced
to the measuring device—the variations occur when the same part is
measured multiple times by the same operator.

Reproducibility refers to the special causes of variation due to the
process used—when variations are observed after several operators test
the same parts with the same device. The device in this context can be
anything from software to a work instruction to a physical object.

Precision-to-tolerance ratio (P/T). Not only does the quality engineer
want the measurement process to be consistent, stable, and in-control
and the variation to be only due to common causes, but he also wants
the process to be within preset specified limits. He is not only concerned
about the process consistency but is also concerned about the measure-
ment process capability.

The X-chart of Figure 13.1 showed how the data are scattered about
the measurement process mean X and how the variations are patterned
about the mean. But the quantification of the variations is better as-
sessed by the R-chart. As seen in previous chapters, R can be expressed
in terms of the standard deviation,

R = d2σgage

This equation can be rewritten as

σ = R
d2

Cr = UCL − LCL
USL − LSL

= 6σgage

USL − LSL

Because the standard deviation of the gage is also the measure of the
precision of the gage, and the denominator measures the spread of the
tolerance, this equation can be rewritten as

P/T = 6σgage

USL − LSL

P/T is called the precision-to-tolerance ratio. In general, a unit is consid-
ered calibrated when the variations from the target are less than one
tenth of the unit’s actual CTQ value. Therefore if the P/T is less than
0.1, the measurement process is considered precise. The total measure-
ment error of the gage can be divided into two parts: the error due to
repeatability and the error due to reproducibility.
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Let’s get Back to our example, the QA manager looks at the results
presented by Macarlos and decides to push the test a little further to
validate the findings. He invites Jarrett and Tim to perform the same
test as Macarlos with the same parts. In other words, they are asked
to repeat the test to see if they will produce results that are consistent
with the previous test. The results of their tests are tabulated in Table
13.3 with the mean measurements and the range for each part.

Because we have three operators measuring 20 parts, the variations
can come from the gage or from the process used by the different oper-
ators, or from both the gage and the process. Because we have defined
“repeatability” as the variations traced to the device and “reproducibil-
ity” as variations traced to the process, we can summarize the total
variation in the following equation:

σ 2
Total = σ 2

repeatability + σ 2
reproducibility

Repeatability is the variations traced to the device. R measures the
variations observed for each part for each operator using the gage and
helps estimate the gage repeatability. The mean range is obtained by
adding the three R values and dividing the result by 3,

R = RMacarlos + RJarrett + RTim

3
= 0.1 + 0.1 + 0.186

3
= 0.129

σgage = R
d2

because, in this case, n = 3, we obtain

d2 = 1.693

from the control charts constant table, Table 13.4.
The gage repeatability is therefore

σrepeatability = R
d2

= 0.129
1.693

= 0.0762

The gage reproducibility measures the measurement error due to the
process used by the different operators. X measures the overall mean
measurement found by an operator for all the parts measured. In this
case again, we will be interested in the standard deviation obtained for
all the operators,

σgage = RX

d2

RX = Xmax − Xmin = 10.003 − 9.997 = 0.006



TABLE 13.3

Macarlos Jarrett Tim

Part M1 M2 M3 X Range M1 M2 M3 X Range M1 M2 M3 X Range

A 9.990 10.012 9.989 9.997 0.023 9.939 10.042 10.079 10.020 0.140 10.054 9.874 9.969 9.966 0.181
B 9.993 10.073 9.957 10.008 0.115 10.052 9.957 9.952 9.987 0.100 10.051 9.897 9.994 9.981 0.154
C 9.996 9.915 10.083 9.998 0.167 10.024 10.078 9.991 10.031 0.087 10.060 9.893 9.942 9.965 0.167
D 9.928 9.904 10.077 9.969 0.173 10.069 10.102 9.956 10.042 0.146 9.903 9.936 10.055 9.965 0.152
E 9.993 9.989 10.005 9.996 0.016 10.125 9.938 10.033 10.032 0.187 10.002 9.881 9.956 9.946 0.120
F 10.093 9.939 10.022 10.018 0.154 9.998 9.954 10.009 9.987 0.054 10.137 10.085 9.941 10.054 0.196
G 9.957 10.034 10.068 10.020 0.111 10.001 9.900 10.016 9.972 0.116 9.920 10.048 9.886 9.951 0.163
H 10.020 10.022 9.948 9.997 0.074 10.033 10.049 10.035 10.039 0.016 9.874 10.106 9.902 9.960 0.233
I 10.032 9.992 10.035 10.020 0.043 9.926 10.028 9.965 9.973 0.102 9.903 10.016 9.873 9.931 0.144
J 10.034 9.951 9.981 9.989 0.083 10.021 9.946 9.885 9.951 0.136 9.975 10.179 10.181 10.111 0.206
K 9.850 10.033 9.944 9.942 0.182 9.923 9.912 9.992 9.942 0.080 10.078 10.239 9.889 10.068 0.350
L 9.978 9.996 10.024 9.999 0.046 9.980 9.988 9.975 9.981 0.013 9.884 10.197 10.144 10.075 0.313
M 10.015 10.013 10.003 10.010 0.012 9.997 9.954 9.951 9.967 0.046 9.823 10.062 10.008 9.964 0.239
N 10.069 10.000 9.995 10.021 0.074 10.046 9.964 10.044 10.018 0.082 9.916 9.975 10.014 9.968 0.098
O 10.017 9.971 9.932 9.973 0.084 10.016 9.983 9.928 9.976 0.088 9.851 10.110 10.084 10.015 0.260
P 10.006 10.019 10.083 10.036 0.077 10.033 10.079 10.040 10.051 0.046 10.050 10.079 10.014 10.048 0.065
Q 9.949 9.954 9.997 9.967 0.048 9.869 9.997 9.947 9.938 0.128 9.926 9.986 10.146 10.019 0.220
R 10.119 10.000 9.961 10.027 0.158 9.973 10.009 10.072 10.018 0.099 10.142 9.968 10.102 10.071 0.174
S 10.035 10.093 9.921 10.016 0.172 10.074 10.012 9.977 10.021 0.097 10.057 9.898 10.083 10.013 0.185
T 10.107 10.009 9.923 10.013 0.184 10.117 9.874 9.961 9.984 0.243 10.033 9.978 9.932 9.981 0.102

10.001 0.100 9.997 0.100 10.003 0.186

X R X R X R
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TABLE 13.4

Sample size A2 A3 B3 B4 d2 d3

2 1.880 2.659 0.000 3.267 1.128 0.853
3 1.023 1.954 0.000 2.568 1.693 0.888
4 0.729 1.628 0.000 2.266 2.059 0.880
5 0.577 1.427 0.000 2.089 2.326 0.864
6 0.483 1.287 0.030 1.970 2.534 0.848
7 0.419 1.182 0.118 1.882 2.704 0.833
8 0.373 1.099 0.185 1.815 2.847 0.820
9 0.337 1.032 0.239 1.761 2.97 0.808

10 0.308 0.975 0.284 1.716 3.078 0.797
11 0.285 0.927 0.321 1.679 3.173 0.787
12 0.266 0.886 0.354 1.646 3.258 0.778
13 0.249 0.850 0.382 1.618 3.336 0.770
14 0.235 0.817 0.406 1.594 3.407 0.763
15 0.223 0.789 0.428 1.572 3.472 0.756
16 0.212 0.763 0.448 1.552 3.532 0.750
17 0.203 0.739 0.466 1.534 3.588 0.744
18 0.194 0.718 0.482 1.518 3.640 0.739
19 0.187 0.698 0.497 1.503 3.689 0.734
20 0.180 0.680 0.510 1.490 3.735 0.729
21 0.173 0.663 0.523 1.477 3.778 0.724
22 0.167 0.647 0.534 1.466 3.819 0.720
23 0.162 0.633 0.545 1.455 3.858 0.716
24 0.157 0.619 0.555 1.455 3.895 0.712
25 0.153 0.606 0.565 1.435 3.031 0.708

Therefore,

σreproducibility = RX

d2
= 0.006

1.693
= 0.0035

The total variance will be the sum of the variance for the measure of
reproducibility and the one for the repeatability,

σ 2
Total = σ 2

repeatability + σ 2
reproducibility

σ 2
Total = 0.07622 + 0.00352 = 0.00582

Example The diameter of the pistons produced at Joal Mechanics is critical
to the quality of the products. Many products are being returned from cus-
tomers due to variations in their diameters. The Quality Control manager
decided to investigate the causes of the variations; he starts the task with
an open mind and believes that the variations can be due to the operators,
to the measurement devices, or to a variation in the actual sizes of the parts
that have gone unnoticed. He selects 10 parts and three operators whose
assignment it is to test the parts, and the results of their findings are tested
using Minitab. Each operator should test every part. The results of the test
can be found in the file Joal.mpj on the included CD.
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Solution Open the file Joal.mpj on the included CD. From the Stat menu,
select “Quality Tools” and from the drop-down list, select “Gage Study” and
then select “Gage R&R Study (Crossed).” Fill out the fields as indicated in
Figure 13.3. To obtain Xbar and R charts, select that option.

Figure 13.3

Click on the “OK” to get the results.
The first part of the output in Figure 13.4 shows the sources of the
variations and the proportion of the contribution of each aspect of the
measurement to the total variation. The total gage R&R measures
the variations due to the measurement process. In this case, it is 88.74
percent, which is very high. The proportion due to reproducibility is very
close to zero and the one due to repeatability in 88.74 percent; therefore,
the measuring device is most likely to be blamed for the variations. The
variations between parts are relatively small (11.26 percent).
The graphs in Figure 13.5 are a representation of the output in the
session window. The top left graph shows how the contributions of the
part-to-part reproducibility and repeatability are distributed. In this
case, we clearly see that the part-to-part variation is relatively small,
and that the repeatability carries the bulk of the variations.

The graphs at the center left and at the bottom left show how the
different operators managed to measure the parts. It shows that Al and
Sira have had trouble using their measuring device. Their measuring
processes are unstable and out-of-control, whereas Ken has been able
to produce an in-control and stable process.

Had we selected the ANOVA option, we would have ended up with
the results shown in Figure 13.6. The ANOVA shows that for an α level
of 0.05, neither the parts, the operators, nor the interaction between the
parts and the operators have a statistical significance; their P-values
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Figure 13.4

are all much greater than 0.05. The gage R&R shows that the repeata-
bility contributes up to 88.84 percent to the variations.

13.1.2 Gage R&R nested

Not all products can be tested multiple times. Some products lose their
value after a test; in this case, the test done on a product cannot be repli-
cated. This type of testing is generally referred to as destructive testing.
For instance, if we must apply pressure over a metal shaft to measure
the strength it takes to bend it 90 degrees, after using a shaft for test-
ing and it is bent, it would not be possible to replicate the test on the
same part. The nature of the test conducted under these circumstances
makes it essential to be very selective about the parts being tested be-
cause their lack of homogeneity can lead to incorrect conclusions. If the
parts being tested are not identical and the part-to-part variations are
too high, the results of the test would be misleading because one of the
assumptions of the destructive test for measurement systems analysis
is that only common causes of part-to-part variations are present.

In some nondestructive tests, several identical parts are tested with
each part being tested by only one operator multiple times. The results
of such tests can distinguish the proportions of the sources of variations
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Figure 13.6

due to reproducibility and the ones due to repeatability. When each part
is tested by only one operator, Minitab suggests the use of the gage R&R
nested method.

Example The diameter of washers used on an alternator is CTQ. A qual-
ity inspector selects 12 washers for inspection. He gives three auditors four
washers each and asks them to measure the size of the diameter for each part
twice and compute the results on a spreadsheet. The results of the measures
are found on the file Washers.mpj on the included CD. Determine the sources
of the variations in the sizes of the diameters.

Solution Open the file Washers.mpj on the included CD. From the Stat menu,
select “Quality Tools” and from the drop-down list, select “Gage Study” and
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Figure 13.7

then select “Gage R&R Study (Nested).” Fill out the dialog box as indicated
in Figure 13.7 and then select “OK.”

The output of Figure 13.8 should appear on the session window.

Figure 13.8
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Figure 13.9

The results show that the proportion of the variations due to the
gage R&R (65.37 percent) is about twice as high as the ones due to
part-to-part variation (34.63 percent). The proportion due to repeata-
bility is 60.25 percent compared to reproducibility at 5.12 percent. The
measurement system is the primary source of the variations.

The graphs in Figure 13.9 give a pictorial account of the sources of
variation.
The top left graph shows that the gage R&R is the source of variations
and in it, repeatability accounts for a significant portion of the varia-
tions. The sample range and the sample mean graphs show that Keshia
has had problems with the measuring device.

13.2 Gage Run Chart

A gage run chart is a graphical expression of the observations by part
and by operator. It helps graphically assess the variations due to the
operators or the parts. In the following example, the length of a shaft
is critical to the quality of an electric motor, so five parts are tested by
three operators. Each part is tested by every one of the three operators
and the results are tabulated in the Table 13.5.
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TABLE 13.5

Part ID Operator Measurement

A Macarlos 12.00
B Macarlos 11.90
C Macarlos 12.01
D Macarlos 11.98
E Macarlos 12.01
A Bob 12.05
B Bob 11.90
C Bob 12.00
D Bob 11.99
E Bob 12.01
A Joe 12.01
B Joe 11.91
C Joe 12.00
D Joe 12.40
E Joe 12.00

UsingMinitab. Minitab is very practical for generating a run gage chart.
Open the file Motorshaft.mpj on the included CD. From the Stat menu,
select “Quality Tools,” from the drop-down list select “Gage Study,” and
then select “Gage Run Chart.” In the “Gage Run Chart” dialog box,
enter “Part numbers,” the “Operator,” and “Measurement” in their ap-
propriate fields. Then, select “OK.”

The gage run chart output of Figure 13.10 shows that Joe did not do
a good job measuring part D. Part D is an outlier, very far away from
the average. Part B is far from the mean for all three operators, and
the measurements taken by all the operators are fairly close, so in this
case the variation is most likely due to the part.
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Figure 13.10

13.3 Variations Due to Accuracy

The accuracy of a measurement process refers to how close the results
of the measurement are to the true values of the CTQ characteristics of
products or services being measured. For an accurate process, the re-
sults obtained from the measurement process should only exhibit com-
mon variations. Such a condition implies a lack of bias and linearity.
Bias is defined as the deviation of the measurement results from the
true values of the CTQs. Linearity refers to gradual, proportional vari-
ations in the results of the measurements. Linearity also implies mul-
tiple measurements.

13.3.1 Gage bias

Bias is a measure of the difference between the results of the mea-
surement system and the actual value of the part being measured; it
assesses the accuracy of the measurement system. If the reference (the
true length) of a part is 15 inches and, after measuring it, the result we
obtain is 13 inches, we would conclude that the measurement system
is biased by 2 inches.

Therefore, we can use the following formula to estimate the gage bias:

Bias =

n∑
i=1

xi

n
− θ
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with θ being the true value of the part being measured and

n∑
i=1

xi

n being
the mean measurement observed. The equation is read as the difference
between the average measurement result and the true value of the part.

A gage bias assesses the extent to which the mean measurement de-
viates from the actual value of the product being measured. Because
all the measurements taken are just a sample of the infinite number of
the possible measurements, one way of measuring the statistical signif-
icance of the difference would be the use of hypothesis testing. The null
hypothesis would consist of stating that there is not a difference be-
tween the measurements’ mean and the actual value of the part being
measured,

H0 : X = θ

and the alternate hypothesis would state the opposite,

H1 : X �= θ

with X being the sample’s mean and θ being the true value of the mea-
surement. If the number of measurements taken is relatively small, we
can use the t-test to test the hypothesis. In this case,

t = X − θ

s/
√

n

df = n − 1

Example The production process for the manufacturing of liners is know
to have a standard deviation of 0.02 ounces, and with the upper and lower
specified limits set at three standard deviations from the mean, the process
mean is 15 ounces. A liner known to weigh 15 ounces is selected for a test
and the measurements obtained are summarized in Table 13.6.
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TABLE 13.6

15.0809 15.1299 15.0483 15.0307
15.0873 15.0414 15.0515 14.9630
14.9679 15.0351 15.0962 15.1002
15.0423 15.0559 15.0654 15.0731
15.1029 15.0793 14.9759 15.0363
14.9803 15.0753 15.0507 14.9833

Find the gage bias and determine if the bias is significant at an α level of
0.05.

Solution We find the measurements’ mean to be 15.04805, and because the
true value is 15,

Gage bias = 15.04805 − 15 = 0.04805

The null and alternate hypotheses to test the significance of the difference
would be

H0 : X = 15

H1 : X �= 15

The standard deviation is 0.045884 and the measurement mean is 15.048.
The t-test value would be

t = X − µ

σ/
√

n
= 15.0480 − 15

0.045884√
24

= 5.1248

Minitab output:

The P-value is equal to zero, therefore we must reject the null hypothesis
and conclude that there is a statistically significant difference between the
true value and the measurements’ mean.

13.3.2 Gage linearity

In the previous example, only one part was measured against a known
actual value of a part. Because a gage is supposed to give dimensions or
attributes of different parts of a same nature, the same gage can be used
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to measure different parts of the same nature but of different sizes. In
this case, every part would be measured against a known actual value
of a part. If the gage is accurate, an increase in the dimensions of the
parts being measured should result in a proportional increase of the
measurements taken. Even if the gage is biased, if the gage exhibits
linearity we should expect the same proportional variations.

Suppose that we are using a voltmeter to measure the voltage of
the current that flows through an electrical line. If the actual voltage
applied is 120 volts and that voltage is doubled and then tripled, if
the voltmeter is accurate we should expect it to read 120 volts, then
240 volts, and finally 360 volts.

If the first reading of the voltmeter was not exact and was off by
5 volts, we should expect the readings to be 125 volts for the for the first
reading, 250 Volts for the second reading, and 375 volts for the third
reading. If these results are obtained, we can conclude that the gage
exhibits linearity.

If all the known actual values of different parts of dimensions that
increase proportionally at a constant rate are plotted on a graph, we
should obtain a straight line, and the equation of that line should be of
the form

Y = aX + b

If measurements of the same parts are taken using an accurate and
precise gage, the measurements obtained should be on the same line as
the previous one if plotted on the same graph. Otherwise, the points rep-
resenting the measurements would be scattered around the regression
line (the reference line).

To run a gage linearity test, we can use regression analysis to de-
termine the regression line and observe the spread of the data plots of
the gage measurements about the line. The regression analysis would
be a simple linear one with the independent variable being the known
actual values and the dependent variables being the gage bias. If the
equation of the regression line is under the form of

Y = X

in other words if a = 1 and b = 0, we would conclude that the gage is
a perfect instrument to measure the parts because every gage mea-
surement would be equal to the true value of the part being measured.
Therefore, the bias would be equal to zero and the regression plot would
look like that of Figure 13.11.

To have a good estimate of the measurements, each part should be
measured several times—at least four times—and the bias would be the
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Figure 13.11

difference between the actual known value and the mean measurement
for each part.

Example A scale is used to measure the weight of pistons. The true values
of the pistons are known and five measurements for each piston are taken
using the same scale. The results of the measurements are given in Table
13.7. Find the equation of the regression line to estimate the bias at any
value and determine if the scale is a good gage to measure the weight of the
parts.

TABLE 13.7

True value M1 M2 M3 M4 M5 Mean Bias

5 4.70 4.90 4.89 4.98 5.03 4.900 −0.100
10 9.98 9.78 10.03 10.09 10.70 10.116 0.116
15 14.99 14.66 14.98 14.93 14.98 14.908 −0.092
20 20.04 19.54 19.84 19.99 19.98 19.878 −0.122
25 25.08 24.42 24.76 24.10 24.44 24.560 −0.440
30 30.03 29.30 29.57 29.84 29.11 29.570 −0.430
35 34.78 34.18 33.58 32.98 32.38 33.580 −1.420
40 39.89 39.06 39.23 39.40 39.57 39.430 −0.570
45 44.08 43.94 43.80 43.66 43.52 43.800 −1.200
50 50.09 49.82 49.55 49.28 49.01 49.550 −0.450
55 54.01 54.70 54.39 54.08 54.77 54.39 − 0.610
60 60.00 59.58 59.16 59.74 59.32 59.560 −0.440
65 65.04 64.46 64.88 64.30 65.72 64.880 −0.120
70 70.01 69.34 69.67 69.00 69.33 69.470 −0.530
75 74.04 74.22 74.40 74.58 74.76 74.400 −0.600
80 80.02 80.10 80.18 80.26 80.34 80.180 0.180
85 85.04 84.98 84.92 85.86 84.80 85.120 0.120
90 90.20 89.86 89.52 89.18 90.84 89.920 −0.080
95 95.02 95.74 94.46 95.18 94.90 95.060 0.060

100 100.03 99.62 99.21 99.80 99.39 99.610 −0.390

Solution Minitab output for the equation of the regression line is given in
Figure 13.12.
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Figure 13.12

The slope of the regression line—which represents the percent linearity—
is 0.00192, and the y-intercept is −0.457. The gage would have been consid-
ered linear if the slope were equal to one; in this case, it is very far from one.
The coefficient of determination is equal to 1.8 percent, which is very low and
therefore suggests that the proportion in the variations in the bias explained
by the true values is insignificant.

The determination of the gage bias is based on whether the y-intercept is
equal to zero. If it is equal to zero, the gage would be considered as unbiased;
otherwise, it is. In this case, it is equal to −0.457. We must conclude that the
scale used for measuring the weight of the pistons is not fit and would lead
to wrong conclusions.

The scatter plot of bias versus value is shown in Figure 13.13.
The vertical distances between the regression line and every point represent
the errors of measurement.

Figure 13.13
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The spread of the points shows no correlation between the values of the bias
and the true values. The y-intercept is far from zero and the regression line
is almost horizontal. These two results suggest bias and a lack of linearity.

Example A thermometer is used to measure the heat generated by motors
used on conveyors at Boal Mechanicals. The heat is known to depend on the
type of motor used. Six motors labeled A, B, C, D, E, and F with known heat
levels are selected for testing. The results of the tests are summarized in
Table 13.8, which can also be found on the included CD in the file Baol.mpj.

Test the thermometer for its fitness to be used as a measuring tool for the
business.

TABLE 13.8

Motor True value Gage measurement Motor True value Gage measurement

A 15 15.0000 D 30 30.0028
A 15 15.0400 D 30 29.5911
A 15 15.0613 D 30 30.0003
A 15 15.0092 D 30 29.9907
A 15 15.0048 D 30 29.9992
B 20 20.0026 E 35 34.8712
B 20 19.9667 E 35 35.3279
B 20 20.0001 E 35 35.0023
B 20 19.9527 E 35 35.0023
B 20 20.0002 E 35 34.9994
C 25 24.9894 F 40 40.0050
C 25 25.0628 F 40 40.0021
C 25 24.7427 F 40 39.9978
C 25 25.0081 F 40 39.9995
C 25 25.0774 F 40 40.0397

Solution Open the file Boal.mpj on the included CD. From the Stat menu,
select “Quality Tools,” then select “Gage Study,” and then select “Gage
Linearity and Bias Study.” fill out the “Gage Linearity and Bias Study” dialog
box as indicated in Figure 13.14.

Figure 13.14
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Then select “OK” to obtain the output of Figure 13.15.

Figure 13.15

Interpretation. Remember that the linearity of the gage is based on the
value of the slope. If the slope is equal to one, we conclude that the gage
exhibits linearity. In this case, the slope is 0.000218; therefore, we must
conclude that there is a lack of linearity. The graph on the left side shows
an almost horizontal regression line, which forces us to reject the null
hypothesis of linearity.

The determination of the gage bias depends on whether the y-
intercept is equal to zero or not. In this case, it is equal to −0.01435. The
P-values for the gage bias for each part are higher than 0.1, with the
average being 0.639. Therefore, we should not reject the null hypothesis
for bias.
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Chapter

14
Nonparametric Statistics

So far, all the probability distributions that we have seen are based on
means, variances, standard deviations, and proportions. For instance,
the Poisson distribution is based on the mean, and the normal and log-
normal distributions are based on the mean and standard deviation.

The hypothesis tests and the estimations that we conducted were
based on assumptions about the distributions that the data being ana-
lyzed follow, and that those distributions depended on means and stan-
dard deviations. The standard error-based t-test was founded on the
assumption that the samples were randomly taken from populations
that were normally distributed, and the analyses done were contingent
upon the standard deviation, the mean, and the sample size. This also
applied to ANOVA and ANOM.

In these contexts, statisticians call the mean and the standard devi-
ation parameters. If we use probability distributions that involve these
parameters to estimate the probability of an event to occur or to de-
termine if there is a difference between samples’ statistics, we are con-
ducting a parametric procedure to derive an estimation or to determine
if a hypothesis must be rejected or not.

But what if the data being analyzed do not follow any probability
distribution? What if we cannot derive a mean or a standard deviation
from the data? What if the data are qualitative, ranked, nominal, ordi-
nal, or nonadditive? In these cases, distribution-free or nonparametric
techniques will be used to analyze the data. In this chapter, we will
discuss a few nonparametric tests.
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14.1 The Mann-Whitney U test

14.1.1 The Mann-Whitney U test for
small samples

The Mann-Whitney U test is better explained through an example.

Example A business owner has two plants of unequal sizes that use several
types of vehicles that use unleaded fuel. The daily consumption of fuel is not
normally distributed. He wants to compare the amount of fuel that the two
plants use a day. He takes a sample of seven days from Plant A and a sample
of five days from Plant B. Table 14.1 shows the two samples.measured in
gallons.

We can make several observations from this table. First, the sample sizes
are small and we only have two samples, so the first thing that comes to
mind would be to use the standard error-based t-test. But the t-test assumes
that the populations from which the samples are taken should be normally
distributed—which is not the case in this example—therefore, the t-test can-
not be used. Instead, the Mann-Whitney U test will be.

The Mann-Whitney U test assumes that the samples are independent and
from dissimilar populations.

Step 1: Define the null hypothesis Just as in the case of the t-test, the Mann-
Whitney U test is a hypothesis test. The null and alternate hypotheses are

H0 : The daily consumption of fuel is the same in the two plants.

H1 : The daily consumption of fuel in the two plants is different.

The result of the test will lead to the rejection of the null hypothesis or a
failure to reject the null hypothesis.

Step 2: Analyze the data The first step in the analysis of the data will consist
in naming the groups. In our case, they are already named A and B. The
next step will consist in grouping the two columns into one and sorting the
observations in ascending order and ranked from 1 to n. Each observation
will be paired with the name of the original group to which it belonged. We
obtain the columns shown in Table 14.2.

TABLE 14.1

A B

15 17
24 23
19 10
9 11
12 18
13
16
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TABLE 14.2

Observation Group Rank

9 A 1
10 B 2
11 B 3
12 A 4
13 A 5
15 A 6
16 A 7
17 B 8
18 B 9
19 A 10
23 B 11
24 A 12

We will call ω1 the sum of the ranks of the observations for group A and
ω2 the sum of the ranks of the observations for group B.

ω1 = 1 + 4 + 5 + 6 + 7 + 10 + 12 = 45

ω2 = 2 + 3 + 8 + 9 + 11 = 33

Step 3:Determine the values of theU statistic The computation of the U statistic
will depend on the samples’ sizes.

The samples are small when n1 and n2 are both smaller than 10. In that
case,

U1 = n1 n2 + n1 (n1 + 1)
2

− �1

U2 = n1 n2 + n2 (n2 + 1)
2

− �2

The test statistic U will be the smallest of U1 and U2.
If any or both of the sample sizes is greater than 10, then U will be approx-

imately normally distributed and we could use the Z transformation with

µ = n1 · n2

2

σ =
√

n1n2 (n1 + n2 + 1)
12

And

Z = U − µ

σ

In our case, both sample sizes are less than 10, therefore

U1 = 7 × 5 + 7(7 + 1)
2

− 45 = 35 + 28 − 45 = 18

U2 = 7 × 5 + 5(5 + 1)
2

− 33 = 35 + 15 − 33 = 17
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Because the calculated test statistic is the smaller of the two, we will have
to consider U2 = 17, so we will use U = 17 with n2 = 7 and n1 = 5. From the
Mann-Whitney table below, we obtain a P-value equal to 0.5 for a one-tailed
graph. Because we are dealing with a two-tailed graph, we must double the
P-value and obtain 1.

Mann-Whitney Table

U 4 5 6 7

13 0.4636 0.2652 0.1474 0.825
14 0.5364 0.3194 0.1830 0.1588
15 0.3775 0.2226 0.1297
16 0.4381 0.2669 0.1588
17 0.5000 0.3141 0.1914
18 0.3654 0.2279

Using Minitab Open the file Fuel.mpj on the included CD. From the Stat
menu, select “Nonparametrics” and from the drop-down menu, select “Mann-
Whitney.” Fill out the Mann-Whitney dialog box as indicated in Figure 14.1.

Figure 14.1
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Figure 14.2

Select “OK” to obtain the output of Figure 14.2.
The P-value is the highest it can be, therefore we cannot reject the null

hypothesis. We must conclude that there is not enough statistical evidence
to say that the two sets of data are not identical.

14.1.2 The Mann-Whitney U test for
large samples

Example In the previous example, we used small samples; in this one, we
will use large samples.

Tambacounda Savon is a soap manufacturing company located in Senegal.
It operates two shifts and the quality manager wants to compare the quality
level of the output of the two shifts. He takes a sample of 12 days from the
first shift and 11 days from the second shift and obtains the following errors
per 10,000 units. At a confidence level of 95 percent, can we say that the two
shifts produce the same quality level of output?

TABLE 14.4

First shift Second shift

2 14
4 5
7 1
9 7
6 15
3 4
12 9
13 10
10 17
0 16
11 8
5
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Solution

Step 1: Define the hypotheses The null hypothesis in this case will suggest that
there is not any difference between the quality level of the output of the two
shifts, and the alternate hypothesis will suggest the opposite.

H0 : The quality level of the first shift is the same as the one for the
second shift.

H1 : The quality level of the first shift is different from the one of the
second shift.

Step 2: Analyze the data Here again, we pool all the data in one column or line
and we rank them from the smallest to the highest while still maintaining
the original groups to which they belonged.

TABLE 14.5

Defects Shift Rank

0 First 1
1 Second 2
2 First 3
3 First 4
4 First 5.5
4 Second 5.5
5 First 7.5
5 Second 7.5
6 First 9
7 First 10.5
7 Second 10.5
8 Second 12
9 First 13.5
9 Second 13.5
10 First 15.5
10 Second 15.5
11 First 17
12 First 18
13 First 19
14 Second 20
15 Second 21
16 Second 22
17 Second 23

ω f irst = 1 + 3 + 4 + 5.5 + 7.5 + 9 + 10.5 + 13.5 + 15.5 + 17
+ 18 + 19 = 123.5

ωsecond = 2 + 5.5 + 7.5 + 10.5 + 13.5 + 15.5 + 20
+ 21 + 22 + 23 = 152.5

We can now find the value of U:

Uf irst = 12 × 11 + 12(12 + 1)
2

− 123.5 = 86.5
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Usecond = 12 × 11 + 11(11 + 1)
2

− 152.5 = 45.5

µ = n1 × n2

2
= 12 × 11

2
= 66

σ =
√

n1n2(n1 + n2 + 1)
12

=
√

132(12 + 11 + 1)
12

=
√

264 = 16.25

The next step will consist in finding the Z score. We use Usecond

Z = U − µ

σ
= 45.5 − 66

16.25
= −1.262

What would have happened if we had used Uf irst instead of Usecond?

Z = U − µ

σ
= 86.5 − 66

16.25
= 1.262

We would have obtained the same result with the opposite sign.
At a confidence level of 95 percent, we would reject the null hypothesis if the

value of Z is outside the interval [−1.96, +1.96]. In this case, Z = −1.262 is
well within that interval; therefore, we should not reject the null hypothesis.

Minitab output

The P-value of 0.2184 is greater than 0.05, which suggests that for an α level
of 0.05, we cannot reject the null hypothesis.

Minitab does not offer the Z value but because we obtained it from our
calculations, we can find the value of P. On the Z-score table, a value of
Z = 1.262 corresponds to about 0.3962. Because we are faced with a two-
tailed graph, we must double that value and subtract the result from one
to obtain 0.2076. The difference between what we obtained and the Minitab
output is attributed to rounding errors.

Mann-Whitney Test and Cl: First Shift, Second Shin

H Median
First Shift 12 6.500
Second Shift 11 9.DQO

Point estimate for ETM-ETA2 is -3.000
95.5 Percent CI for ETA1-ETA2 is (-7.001,1.999)
H = 123.5
Teat of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.2184
The test ia significant at D.217B (adjusted for ties)
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14.2 The Chi-Square Tests

In our hypothesis testing examples, we used means and variances to de-
termine if there were statistically significant differences between sam-
ples. When comparing two or more samples’ means, we expect their val-
ues to be identical for the samples to be considered similar. Yet while
using the standard error-based t-test to analyze and interpret hypothe-
ses, we have seen that even when samples do not have the exact same
means, we sometimes cannot reject the null hypothesis and must con-
clude that the samples’ means are not significantly statistically differ-
ent.

The chi-square test compares the observed values to the expected
values to determine if they are statistically different when the data
being analyzed do not satisfy the t-test assumptions.

14.2.1 The chi-square goodness-of-fit test

Suppose that a molding machine has historically produced metal bars
with varying strength (measured in PSI) and the strengths of the bars
are categorized in Table 14.5. The ideal strength is 1998 PSI.

TABLE 14.6

Strength (PSI) Proportion

2000 5%
1999 9%
1998 65%
1997 10%
1996 6%
1995 5%

After the most important parts of the machine have been changed,
a shift supervisor wants to know if the changes made have made a
difference to the production. She takes a sample of 300 bars and finds
that their strengths in PSI are as shown in Table 14.6.

TABLE 14.7

Strength (PSI) Bars

2000 22
1999 45
1998 198
1997 30
1996 9
1995 1
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Based on the sample that she took, can we say that the changes made
to the machine have made a difference?

In this case, we cannot use a hypothesis testing based on the mean
because we cannot simply add the percentages, divide them by six, and
conclude that we have or do not have a mean strength, nor can we add
the number of bars and divide them by six to determine the mean.

Because the data that we have is not additive, we will use a non-
parametric test called the chi-square goodness-of-fit test. The chi square
goodness-of-fit test compares the expected frequencies (Table 14.5) to
the actual or observed frequencies (Table 14.6). The formula for the
test is

χ2 =
∑ ( fa − fe)2

fe

with fe as the expected frequency and fa as the actual frequency. The
degree of freedom will be given as

df = k − 1

Chi-square cannot be negative because it is the square of a number.
If it is equal to zero, all the compared categories would be identical,
therefore chi-square is a one-tailed distribution.

The null and alternate hypotheses will be

H0 : The distribution of quality of the products after the parts were
changed is the same as before the parts were changed.

H1 : The distribution of the quality of the products after the parts
were changed is different than it was before they were changed.

We will first transform Table 14.5 to obtain the absolute values of the
number of products that would have been obtained had we chosen a
sample of 300 products before the parts were changed.

TABLE 14.8

Strength (PSI) Proportion

2000 5% × 300 15
1999 9% × 300 27
1998 65% × 300 195
1997 10% × 300 30
1996 6% × 300 18
1995 5% × 300 15

Total 300
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Now we can use the formula to determine the value of the calculated
chi-square,

χ2 = ( fa − fe)2

fe
= (15 − 22)2

15
+ (27 − 45)2

27
+ (195 − 198)2

195
+ (30 − 30)2

30

+ (18 − 9)2

18
+ (15 − 1)2

15
= 32.88

With a confidence level of 95 percent, α = 0.05 and a degree of freedom
of 5 (df = 6 − 1), the critical value of χ2

0.05,5 is equal to 11.0705.
The next step will be to compare the calculated χ2 with the critical

χ2
0.05,5 found on the table Chi square. If the critical χ2

0.05,5 critical value
is greater than the calculated χ2, we cannot reject the null hypothesis;
otherwise, we reject it.

Because the calculated χ2 value (32.88) is much higher that the crit-
ical value (11.0705), we must reject the null hypothesis. The changes
made on the machine have indeed resulted in changes in the quality of
the output.

Example Konakry Motor Company owns five warehouses in Bignona. The
five plants are being audited for ISO-9000 compliance. The audit is performed
to test the employees’ understanding and conformance with the companies
standardized processes. The employees at the different plants are expected
to have the same probability to be selected for audit.

The random samples taken from the different plants were:

Plant 1 76 employees
Plant 2 136 employees
Plant 3 89 employees
Plant 4 95 employees
Plant 5 93 employees

Can we conclude at a significance level of 0.05 that the employees at the five
plants had the same probability of being selected?

Solution

Step 1: Define the hypotheses In this case, the ratios of the number of employees
audited at each plant to the overall number of employees audited are expected
to be the same if there is not any statistical difference between them at a
confidence level of 95 percent. So the null hypothesis will be

H0 : p1 = p2 = p3 = p4 = p5

with p1, p2, p3, p4, and p5, being the ratios of the employees selected from each
plant to the overall number of employees selected. The alternate hypothesis
would be that at least one ratio is different form the rest of the ratios.



Nonparametric Statistics 339

Step 2: Determine when the null hypothesis should be rejected The rejection or nonre-
jection of the null hypothesis is based on whether the calculated χ2 that we
will obtain from our analysis is greater or smaller than the expected χ2

0.05,4
found on the chi-square table.

A value of 0.05 represents the α level for 95 percent confidence while 4 rep-
resents the degree of freedom (5 − 1). χ2

0.05,4 happens to be equal to 9.48773.
If the calculated χ2 > 9.48773, we would have to reject the null hypothesis;
otherwise, we should not.

Rejection region

9.48773

Step 3:Determine the calculated �2 The total number of employees selected is 76 +
136 + 89 + 95 + 93 = 489.

TABLE 14.9

Selected Expected number of Actual
employees selected employees proportion

Plant 1 76 489 × (1/5) = 97.8 76/489 = 0.155
Plant 2 136 489 × (1/5) = 97.8 136/489 = 0.278
Plant 3 89 489 × (1/5) = 97.8 89/489 = 0.1820
Plant 4 95 489 × (1/5) = 97.8 95/489 = 0.194
Plant 5 93 489 × (1/5) = 97.8 93/489 = 0.190
Totals 489 489 1

χ2 =
(
76 − 97.8

)2

97.8
+

(
136 − 97.8

)2

97.8
+

(
89 − 97.8

)2

97.8

(
95 − 97.8

)2

97.8
+

(
93 − 97.8

)2

97.8

χ2 = 20.888

Step 3: Decision making Because the calculated χ2 is greater than the expected
χ2

0.05,4 (which is equal to 9.948773), we must reject the null hypothesis and
conclude that employees at the different plants did not have an equal prob-
ability of being selected.

Using Minitab Open the file Konakry.mpj on the included CD. From
the State menu, select “Tables and Chi-Square Goodness-of-Fit (One
Variable).” Fill out the fields as indicated in Figure 14.3, then select
“Graphs. . . ”
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On the “Chi-Square Goodness-of-Fit Graph” dialog box, select each
of the options, then select “OK” and select “OK” again. We obtain the
results shown in Figure 14.4.

Figure 14.4

The degree of freedom is four, the observed χ2 is 20.8875, and the
P-value equal to zero indicates that there is a statistically significant
difference between the samples; therefore, the employees did not have
the same probability of being selected.

Interpretation of the graphs The “Chart of Observed and Expected Val-
ues” in Figure 14.5 compares the actual number of employees selected

Figure 14.5
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Figure 14.6

to what it should have been for all the employees to have an equal oppor-
tunity to be selected. We can clearly see that the number of employees
selected from Plant 2 is too high compared to the rest of the plants and
compared to the expected value.

The “Chart of Contribution to the Chi-Square Value by Category” in
Figure 14.6 shows how the different plants are distributed. It makes the
differences more obvious, and it shows how wide the difference between
Plant 2 and Plant 4 really is.

14.2.2 Contingency analysis: chi-square
test of independence

In the previous example, we only had one variable, which was the qual-
ity level of the metal bars measured in terms of strength. If we have two
variables with several levels (or categories) to test at the same time, we
use chi-square test of independence.

Suppose a chemist wants to know the effect of an acidic chemical on
a metal alloy. The experimenter wants to know if the use of the acidic
chemical accelerates the oxidation of the metal. Samples of the metal
were taken and immersed with the chemical, and some were not. Of
the samples that were immersed, traces of oxide were found on 79 bars
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TABLE 14.10

Acidic Non-acidic

Oxide 79 48
No Oxide 1091 1492

and no trace of oxide was found on 1091 bars. For those that were not
immersed with the chemical, traces of oxide were found on 48 bars and
no oxide was found on 1492 bars. The findings are summarized in Table
14.9.

In this case, if the acidic chemical has no impact on the oxidation level
of the metal we should expect that there would be no statistically sig-
nificant difference between the proportions of the metals with oxidation
and the ones without oxidation with respect to their groups.

If we call P1 the proportion of the bars with oxide that were immersed
in the chemical and P2 the proportion of the bars with oxide that were
not immersed in the chemical, the null and alternate hypotheses will
be as follows:

H0 : P1 = P2

H1 : P1 �= P2

Rewrite Table 14.9 by adding the totals.

TABLE 14.11

Acidic Non-acidic Total

Oxide 79 48 127
No Oxide 1091 1492 2583

Total 1170 1540 2710

The grand mean proportion for the bars with traces of oxidation is

P = 79 + 48
1170 + 1540

= 127
2710

= 0.0468635

The grand mean proportion of the bars without traces of oxide is

Q = 1 − P = 1 − 0.0468635 = 0.9531365

Now we can build the table of the expected frequencies:
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TABLE 14.12

Acidic Non-acidic Total

Oxide 0.046864 × 1170 = 54.830295 0.46864 × 1540 = 72.16979 127
No Oxide 0.953137 × 1170 = 1115.169705 0.953137 × 1540 = 1467.83021 2583

Total 1170 1540 2710

Now that we have both the observed data and the expected data, we
can use the formula to make the comparison.

The formula that will be used in the case of a contingency table is
slightly different from the one of chi-square goodness-of-fit,

χ2 =
∑ ∑ ( fe − fa)2

fe

with a degree of freedom of

df = (r − 1)(c − 1)

where c is the number of columns and r is the number of rows. The
degree of freedom for this instance will be (2 − 1)(2 − 1) = 1. For a sig-
nificance level of 0.05, the critical χ2

0.05,1 found on the Chi-Square table
would be 3.841.

We can now compute the test statistics:

TABLE 14.13

fe fa ( fa − fe)2 ( fa − fe)2/ fe

54.830295 79 584.1746 10.65423
72.16979 48 584.1787 8.094505

1115.169705 1091 584.1746 0.523844
1467.83021 1492 584.1787 0.397988

Totals 19.67057

The calculated χ2 is 19.67057, which is much higher than the critical
χ2

0.05,1, which is 3.841. Therefore, we must reject the null hypothesis. At
a confidence level of 0.05, there is enough evidence to suggest that the
acidic chemical has an effect on the oxidation of the metal alloy.

Test these findings using Minitab. After pasting the table into a
Minitab worksheet, from the Stat menu, select “Tables”, then “Chi-
Square Test (Table in Worksheet)” as shown in Figure 14.7.

Then the dialog box of Figure 14.8 appears.
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Figure 14.7

Figure 14.8
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Select “Acidic” and “Non-Acidic” and then select “OK.”

The degree of freedom is one, and the calculated χ2 is 19.671. The P-
value of zero suggests that there is a statistically significant difference,
and therefore we must reject the null hypothesis.



Chapter

15
Pinpointing the Vital
Few Root Causes

15.1 Pareto Analysis

Pareto analysis is simple. It is based on the principle that 80 percent
of problems find their roots in 20 percent of causes. This principle was
established by Vilfredo Pareto, a nineteenth-century Italian economist
who discovered that 80 percent of the land in Italy was owned by only
20 percent of the population. Later empirical evidence showed that the
80/20 ratio was determined to have a universal application.

� 80 percent of customer dissatisfaction stems from 20 percent of de-
fects.

� 80 percent of the wealth is in the hands of 20 percent of the people.
� 20 percent of customers account for 80 percent of a business.

When applied to management, the Pareto rule becomes an invaluable
tool. For instance, in the case of problem-solving the objective should be
to find and eliminate the circumstances that make the 20 percent “vital
few” possible so that 80 percent of the problems are eliminated. It is wor-
thy to note that Pareto analysis is a better tool to detect and eliminate
sources of problems when those sources are independent variables. If
the different causes of a problem are highly correlated, the Pareto prin-
ciple may not be applicable.

The first step in Pareto analysis will be to clearly define the goals
of the analysis. What is it that we are trying to achieve? What is the
nature of the problem we are facing?

347

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



348 Chapter Fifteen

The next step in Pareto analysis is the data collection. All the data
pertaining to the factors that can potentially affect the problem being
addressed must be quantified and stratified. In most cases, a sophisti-
cated statistical analysis is not necessary; a simple tally of the numbers
suffices to prioritize the different factors. But in some cases, the quan-
tification might require statistical analysis to determine the level of
correlation between the cause and the effect. A regression analysis can
be used for that purpose, or a correlation coefficient or a coefficient of
determination can be derived to estimate the level of association of the
different factors to the problem being analyzed. Then a categorization
can be made: the factors are arranged according to how much they con-
tribute to the problem. The data generated is used to build a cumulative
frequency distribution.

The next step will be to create a Pareto diagram or Pareto chart to
visualize the main factors that contribute to the problem and there-
fore concentrate focus on the “vital few.” The Pareto chart is a simple
histogram; the horizontal axis shows the different factors whereas the
vertical axis represents the frequencies. Because all the different causes
will be listed on the same diagram, it is necessary to standardize the
unit of measurement and set the timeframe for the occurrences.

The building of the chart requires a data organization. A four-column
data summary must be created to organize the information collected.
The first column will list the different factors that cause the problem,
the second column will list the frequency of occurrence of the prob-
lem during a given timeframe, the third column records the relative
frequencies (in other words, the percentage of the total), and the last
column will record the cumulative frequencies—keeping in mind that
the data are listed from the most important factor to the least.

The data of Table 15.1 was gathered during a period of one month
to analyze the reasons behind a high volume of customer returns of
cellular phones ordered online.

TABLE 15.1

Relative Cumulative
Factors Frequency Frequency Frequency

Misinformed about the contract 165 58% 58%
Wrong products shipped 37 13% 71%
Took too long to receive 30 11% 82%
Defective product 26 9.2% 91.2%
Changed my mind 13 4.6% 95.8%
Never received the phone 12 4.2% 100%
Totals 283 100%
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The diagram itself will consist of three axes. The horizontal axis lists
the factors, the left vertical axis lists frequency of occurrence and is
graded from zero to at least the highest frequency. The right vertical
line is not always present on Pareto charts; it represents the percentage
of occurrences and is graded from zero to 100 percent.

The breaking point (the point on the cumulative frequency line at
which the curve is no longer steep) on the graph of Figure 15.1 occurs
at around “Wrong products.” Because the breaking point divides the
“vital few” from the “ trivial many,” the two first factors, “Misinformed
about contract” and “Wrong products” are the factors that need more
attention. By eliminating the circumstances that make them possible,
we will eliminate about 71 percent of our problems.

Creating a Pareto chart using Minitab. Open the file Cell phone.mpj from
the included CD. From the Stat menu, select “Quality Tools” and then
select “Pareto Chart.”
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Select the option “Chart Defect Table” from the “Pareto Chart” dialog
box and change the “Combine remaining defects into one category after
this percent” to “99,” as indicated in Figure 15.2.

Figure 15.2

Select “OK” to get the output shown in Figure 15.3.

15.2 Cause and Effect Analysis

The cause-and-effect diagram—also known as a fishbone (because of its
shape) or Ishikawa diagram (after its creator)—is used to synthesize
the different causes of an outcome. It is an analytical tool that provides a
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Figure 15.3

visual and systematic way of linking different causes (input) to an effect
(output). It can be used in the “Design” phase of a production process
as well as in an attempt to identify the root causes of a problem. The
effect is considered positive when it is an objective to be reached, as in
the case of a manufacturing design. It is negative when it addresses a
problem being investigated

The building of the diagram is based on the sequence of events. “Sub-
causes” are classified according to how they generate “sub-effects,” and
those “sub-effects” become the causes of the outcome being addressed.

The fishbone diagram does help visually identify the root causes of
an outcome, but it does not quantify the level of correlation between
the different causes and the outcome. Further statistical analysis is
needed to determine which factors contribute the most to creating the
effect. Pareto analysis is a good tool for that purpose but it still requires
data gathering. Regression analysis allows the quantification and the
determination of the level of association between causes and effects. A
combination of Pareto and regression analysis can help not only deter-
mine the level of correlation but also stratify the root causes. The causes
are stratified hierarchically according to their level of importance and
their areas of occurrence

The first step in constructing a fishbone diagram is to clearly define
the effect being analyzed. The second step will consist into gathering
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all the data about the key process input variables (KPIV), the potential
causes (in the case of a problem), or requirements (in the case of the
design of a production process) that can affect the outcome.

The third step will consist in categorizing the causes or requirements
according to their level of importance or areas of pertinence. The most
frequently used categories are:

� Manpower, machine, method, measurement, and materials for man-
ufacturing

� Equipment, policy, procedure, plant, and people for services

Subcategories are also classified accordingly; for instance, different
types of machines and computers can be classified as subcategories of
equipment. The last step is the actual drawing of the diagram.

The diagram in Figure 15.4 is an example of a cause-and-effect dia-
gram that explains why a production plant is producing an excessive
amount of defects.
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Appendix 1 Binomial Table P(x) = nCx p xq n −x

s 0 0.02 0.04 0.05 0.06 0.08 0.1 0.12 0.14 0.15 0.16 0.18 0.2 0.22 0.24 0.25
n
2 0 0.98 0.96 0.92 0.903 0.884 0.846 0.81 0.774 0.74 0.72 0.706 0.672 0.64 0.608 0.578 0.563
2 1 0.02 0.039 0.08 0.095 0.113 0.147 0.18 0.211 0.241 0.26 0.269 0.295 0.32 0.343 0.365 0.375
2 2 0 0.003 0.004 0.006 0.01 0.014 0.02 0.02 0.026 0.032 0.04 0.048 0.058 0.063

3 0 0.97 0.941 0.89 0.857 0.831 0.779 0.729 0.681 0.636 0.61 0.593 0.551 0.512 0.475 0.439 0.422
3 1 0.03 0.058 0.11 0.135 0.159 0.203 0.243 0.279 0.311 0.33 0.339 0.363 0.384 0.402 0.416 0.422
3 2 0.001 0.01 0.007 0.01 0.018 0.027 0.038 0.051 0.06 0.065 0.08 0.096 0.113 0.131 0.141
3 3 0.001 0.001 0.002 0.003 0 0.004 0.006 0.008 0.011 0.014 0.016

4 0 0.96 0.922 0.85 0.815 0.781 0.716 0.656 0.6 0.547 0.52 0.498 0.452 0.41 0.37 0.334 0.316
4 1 0.04 0.075 0.14 0.171 0.199 0.249 0.292 0.327 0.356 0.37 0.379 0.397 0.41 0.418 0.421 0.422
4 2 0 0.002 0.01 0.014 0.019 0.033 0.049 0.067 0.087 0.1 0.108 0.131 0.154 0.177 0.2 0.211
4 3 0.001 0.002 0.004 0.006 0.009 0.01 0.014 0.019 0.026 0.033 0.042 0.047
4 4 0 0.001 0.001 0.002 0.002 0.003 0.004

0 0.02 0.04 0.05 0.06 0.08 0.1 0.12 0.14 0.15 0.16 0.18 0.2 0.22 0.24 0.25
5 0 0.95 0.904 0.82 0.774 0.734 0.659 0.59 0.528 0.47 0.44 0.418 0.371 0.328 0.289 0.254 0.237
5 1 0.05 0.092 0.17 0.204 0.234 0.287 0.328 0.36 0.383 0.39 0.398 0.407 0.41 0.407 0.4 0.396
5 2 0 0.004 0.01 0.021 0.03 0.05 0.073 0.098 0.125 0.14 0.152 0.179 0.205 0.23 0.253 0.264
5 3 0 0.001 0.002 0.004 0.008 0.013 0.02 0.02 0.029 0.039 0.051 0.065 0.08 0.088
5 4 0.001 0.002 0 0.003 0.004 0.006 0.009 0.013 0.015
5 5 0.001 0.001 0.001
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0 0.02 0.04 0.05 0.06 0.08 0.1 0.12 0.14 0.15 0.16 0.18 0.2 0.22 0.24 0.25
6 0 0.94 0.886 0.78 0.735 0.69 0.606 0.531 0.464 0.405 0.38 0.351 0.304 0.262 0.225 0.193 0.178
6 1 0.06 0.108 0.2 0.232 0.264 0.316 0.354 0.38 0.395 0.4 0.401 0.4 0.393 0.381 0.365 0.356
6 2 0 0.006 0.02 0.031 0.042 0.069 0.098 0.13 0.161 0.18 0.191 0.22 0.246 0.269 0.288 0.297
6 3 0 0.002 0.004 0.008 0.015 0.024 0.035 0.04 0.049 0.064 0.082 0.101 0.121 0.132
6 4 0.001 0.001 0.002 0.004 0.01 0.007 0.011 0.015 0.021 0.029 0.033
6 5 0.001 0.001 0.002 0.002 0.004 0.004
6 6

0 0.02 0.04 0.05 0.06 0.08 0.1 0.12 0.14 0.15 0.16 0.18 0.2 0.22 0.24 0.25
7 0 0.93 0.868 0.75 0.698 0.648 0.558 0.478 0.409 0.348 0.32 0.295 0.249 0.21 0.176 0.146 0.133
7 1 0.07 0.124 0.22 0.257 0.29 0.34 0.372 0.39 0.396 0.4 0.393 0.383 0.367 0.347 0.324 0.311
7 2 0 0.008 0.03 0.041 0.055 0.089 0.124 0.16 0.194 0.21 0.225 0.252 0.275 0.293 0.307 0.311
7 3 0 0.004 0.006 0.013 0.023 0.036 0.053 0.06 0.071 0.092 0.115 0.138 0.161 0.173
7 4 0.001 0.003 0.005 0.009 0.01 0.014 0.02 0.029 0.039 0.051 0.058
7 5 0.001 0 0.002 0.003 0.004 0.007 0.01 0.012
7 6 0.001 0.001 0.001
7 7

0 0.02 0 0.05 0.06 0.08 0.1 0.12 0.14 0.2 0.16 0.2 0.2 0.22 0.24 0.3
8 0 0.9 0.85 0.72 0.663 0.61 0.513 0.43 0.36 0.299 0.27 0.25 0.2 0.17 0.14 0.111 0.1
8 1 0.1 0.14 0.24 0.279 0.311 0.357 0.38 0.392 0.39 0.39 0.38 0.36 0.34 0.31 0.281 0.27
8 2 0 0.01 0.04 0.051 0.07 0.109 0.15 0.187 0.222 0.24 0.25 0.28 0.29 0.31 0.311 0.31
8 3 0 0.005 0.009 0.019 0.03 0.051 0.072 0.08 0.1 0.12 0.15 0.17 0.196 0.21
8 4 0.001 0.002 0.01 0.009 0.015 0.02 0.02 0.03 0.05 0.06 0.077 0.09
8 5 0.001 0.002 0 0 0.01 0.01 0.01 0.02 0.02
8 6 0 0 0 0.003 0
8 7
8 8

(continues)
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Appendix 1 Binomial Table P(x) = nCx p xq n −x(Continued )

9 0 0.9 0.83 0.69 0.63 0.573 0.472 0.39 0.316 0.257 0.23 0.21 0.17 0.13 0.11 0.085 0.08
9 1 0.1 0.15 0.26 0.299 0.329 0.37 0.39 0.388 0.377 0.37 0.36 0.33 0.3 0.27 0.24 0.23
9 2 0 0.01 0.04 0.063 0.084 0.129 0.17 0.212 0.245 0.26 0.27 0.29 0.3 0.31 0.304 0.3
9 3 0 0 0.008 0.013 0.026 0.05 0.067 0.093 0.11 0.12 0.15 0.18 0.2 0.224 0.23
9 4 0.001 0.001 0.003 0.01 0.014 0.023 0.03 0.04 0.05 0.07 0.09 0.106 0.12
9 5 0 0.002 0.004 0.01 0.01 0.01 0.02 0.02 0.033 0.04
9 6 0 0 0 0 0.01 0.007 0.01
9 7 0 0.001 0
9 8
9 9

0 0.02 0 0.05 0.06 0.08 0.1 0.12 0.14 0.2 0.16 0.2 0.2 0.22 0.24 0.3
10 0 0.9 0.82 0.67 0.599 0.539 0.434 0.35 0.279 0.221 0.2 0.18 0.14 0.11 0.08 0.064 0.06
10 1 0.1 0.17 0.28 0.315 0.344 0.378 0.39 0.38 0.36 0.35 0.33 0.3 0.27 0.24 0.203 0.19
10 2 0 0.02 0.05 0.075 0.099 0.148 0.19 0.233 0.264 0.28 0.29 0.3 0.3 0.3 0.288 0.28
10 3 0 0.01 0.01 0.017 0.034 0.06 0.085 0.115 0.13 0.15 0.17 0.2 0.22 0.243 0.25
10 4 0.001 0.002 0.005 0.01 0.02 0.033 0.04 0.05 0.07 0.09 0.11 0.134 0.15
10 5 0.001 0 0.003 0.006 0.01 0.01 0.02 0.03 0.04 0.051 0.06
10 6 0.001 0 0 0 0.01 0.01 0.013 0.02
10 7 0 0 0.002 0
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Appendix 2 Poisson Table P (x) = �xe−�/x !

Mean
Events 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.90484 0.81873 0.74082 0.67032 0.60653 0.54881 0.49659 0.4493 0.40657 0.36788
1 0.09048 0.16375 0.22225 0.26813 0.30327 0.32929 0.34761 0.3595 0.36591 0.36788
2 0.00452 0.01637 0.03334 0.05363 0.07582 0.09879 0.12166 0.1438 0.16466 0.18394
3 0.00015 0.00109 0.00333 0.00715 0.01264 0.01976 0.02839 0.0383 0.0494 0.06131
4 0 0.00005 0.00025 0.00072 0.00158 0.00296 0.00497 0.0077 0.01111 0.01533
5 0 0 0.00002 0.00006 0.00016 0.00036 0.0007 0.0012 0.002 0.00307

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0 0.33287 0.30119 0.27253 0.2466 0.22313 0.2019 0.18268 0.1653 0.14957 0.13534
1 0.36616 0.36143 0.35429 0.34524 0.3347 0.32303 0.31056 0.2975 0.28418 0.27067
2 0.20139 0.21686 0.23029 0.24167 0.25102 0.25843 0.26398 0.2678 0.26997 0.27067
3 0.07384 0.08674 0.09979 0.11278 0.12551 0.13783 0.14959 0.1607 0.17098 0.18045
4 0.02031 0.02602 0.03243 0.03947 0.04707 0.05513 0.06357 0.0723 0.08122 0.09022
5 0.00447 0.00625 0.00843 0.01105 0.01412 0.01764 0.02162 0.026 0.03086 0.03609
6 0.00082 0.00125 0.00183 0.00258 0.00353 0.0047 0.00612 0.0078 0.00977 0.01203
7 0.00013 0.00021 0.00034 0.00052 0.00076 0.00108 0.00149 0.002 0.00265 0.00344
8 0.00002 0.00003 0.00006 0.00009 0.00014 0.00022 0.00032 0.0005 0.00063 0.00086
9 0 0 0.00001 0.00001 0.00002 0.00004 0.00006 9E-05 0.00013 0.00019
10 0 0 0 0 0 0.00001 0.00001 2E-05 0.00003 0.00004

(continues)
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Appendix 2 Poisson Table P (x) = �xe−�/x ! (Continued )

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0 0.12246 0.1108 0.10026 0.09072 0.08208 0.07427 0.06721 0.0608 0.05502 0.04979
1 0.25716 0.24377 0.2306 0.21772 0.20521 0.19311 0.18145 0.1703 0.15957 0.14936
2 0.27002 0.26814 0.26518 0.26127 0.25652 0.25104 0.24496 0.2384 0.23137 0.22404
3 0.18901 0.19664 0.20331 0.20901 0.21376 0.21757 0.22047 0.2225 0.22366 0.22404
4 0.09923 0.10815 0.1169 0.12541 0.1336 0.14142 0.14882 0.1557 0.16215 0.16803
5 0.04168 0.04759 0.05378 0.0602 0.0668 0.07354 0.08036 0.0872 0.09405 0.10082
6 0.01459 0.01745 0.02061 0.02408 0.02783 0.03187 0.03616 0.0407 0.04546 0.05041
7 0.00438 0.00548 0.00677 0.00826 0.00994 0.01184 0.01395 0.0163 0.01883 0.0216
8 0.00115 0.00151 0.00195 0.00248 0.00311 0.00385 0.00471 0.0057 0.00683 0.0081
9 0.00027 0.00037 0.0005 0.00066 0.00086 0.00111 0.00141 0.0018 0.0022 0.0027
10 0.00006 0.00008 0.00011 0.00016 0.00022 0.00029 0.00038 0.0005 0.00064 0.00081
11 0.00001 0.00002 0.00002 0.00003 0.00005 0.00007 0.00009 0.0001 0.00017 0.00022
12 0 0 0 0.00001 0.00001 0.00001 0.00002 3E-05 0.00004 0.00006
13 0 0 0 0 0 0 0 1E-05 0.00001 0.00001
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
0 0.04505 0.04076 0.03688 0.03337 0.0302 0.02732 0.02472 0.0224 0.02024 0.01832
1 0.13965 0.13044 0.12171 0.11347 0.10569 0.09837 0.09148 0.085 0.07894 0.07326
2 0.21646 0.2087 0.20083 0.1929 0.18496 0.17706 0.16923 0.1615 0.15394 0.14653
3 0.22368 0.22262 0.22091 0.21862 0.21579 0.21247 0.20872 0.2046 0.20012 0.19537
4 0.17335 0.17809 0.18225 0.18582 0.18881 0.19122 0.19307 0.1944 0.19512 0.19537
5 0.10748 0.11398 0.12029 0.12636 0.13217 0.13768 0.14287 0.1477 0.15219 0.15629
6 0.05553 0.06079 0.06616 0.0716 0.0771 0.08261 0.0881 0.0936 0.09893 0.1042
7 0.02459 0.02779 0.03119 0.03478 0.03855 0.04248 0.04657 0.0508 0.05512 0.05954
8 0.00953 0.01112 0.01287 0.01478 0.01687 0.01912 0.02154 0.0241 0.02687 0.02977
9 0.00328 0.00395 0.00472 0.00558 0.00656 0.00765 0.00885 0.0102 0.01164 0.01323
10 0.00102 0.00126 0.00156 0.0019 0.0023 0.00275 0.00328 0.0039 0.00454 0.00529
11 0.00029 0.00037 0.00047 0.00059 0.00073 0.0009 0.0011 0.0013 0.00161 0.00192
12 0.00007 0.0001 0.00013 0.00017 0.00021 0.00027 0.00034 0.0004 0.00052 0.00064
13 0.00002 0.00002 0.00003 0.00004 0.00006 0.00007 0.0001 0.0001 0.00016 0.0002
14 0 0.00001 0.00001 0.00001 0.00001 0.00002 0.00003 3E-05 0.00004 0.00006
15 0 0 0 0 0 0 0.00001 1E-05 0.00001 0.00002
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4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
0 0.01657 0.015 0.01357 0.01228 0.01111 0.01005 0.0091 0.0082 0.00745 0.00674
1 0.06795 0.06298 0.05834 0.05402 0.04999 0.04624 0.04275 0.0395 0.03649 0.03369
2 0.13929 0.13226 0.12544 0.11884 0.11248 0.10635 0.10046 0.0948 0.0894 0.08422
3 0.19037 0.18517 0.1798 0.17431 0.16872 0.16307 0.15738 0.1517 0.14601 0.14037
4 0.19513 0.19442 0.19328 0.19174 0.18981 0.18753 0.18493 0.182 0.17887 0.17547
5 0.16 0.16332 0.16622 0.16873 0.17083 0.17253 0.17383 0.1748 0.17529 0.17547
6 0.10934 0.11432 0.11913 0.12373 0.12812 0.13227 0.13617 0.1398 0.14315 0.14622
7 0.06404 0.06859 0.07318 0.07778 0.08236 0.08692 0.09143 0.0959 0.10021 0.10444
8 0.03282 0.03601 0.03933 0.04278 0.04633 0.04998 0.05371 0.0575 0.06138 0.06528
9 0.01495 0.01681 0.01879 0.02091 0.02316 0.02554 0.02805 0.0307 0.03342 0.03627
10 0.00613 0.00706 0.00808 0.0092 0.01042 0.01175 0.01318 0.0147 0.01637 0.01813
11 0.00228 0.00269 0.00316 0.00368 0.00426 0.00491 0.00563 0.0064 0.00729 0.00824
12 0.00078 0.00094 0.00113 0.00135 0.0016 0.00188 0.00221 0.0026 0.00298 0.00343
13 0.00025 0.0003 0.00037 0.00046 0.00055 0.00067 0.0008 0.001 0.00112 0.00132
14 0.00007 0.00009 0.00011 0.00014 0.00018 0.00022 0.00027 0.0003 0.00039 0.00047
15 0.00002 0.00003 0.00003 0.00004 0.00005 0.00007 0.00008 0.0001 0.00013 0.00016

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0 0.0061 0.00552 0.00499 0.00452 0.00409 0.0037 0.00335 0.003 0.00274 0.00248
1 0.03109 0.02869 0.02646 0.02439 0.02248 0.02071 0.01907 0.0176 0.01616 0.01487
2 0.07929 0.07458 0.07011 0.06585 0.06181 0.05798 0.05436 0.0509 0.04768 0.04462
3 0.13479 0.12928 0.12386 0.11853 0.11332 0.10823 0.10327 0.0985 0.09377 0.08924
4 0.17186 0.16806 0.16411 0.16002 0.15582 0.15153 0.14717 0.1428 0.13831 0.13385
5 0.17529 0.17479 0.17396 0.17282 0.1714 0.16971 0.16777 0.1656 0.16321 0.16062
6 0.149 0.15148 0.15366 0.15554 0.15712 0.1584 0.15938 0.1601 0.16049 0.16062
7 0.10856 0.11253 0.11634 0.11999 0.12345 0.12672 0.12978 0.1326 0.13527 0.13768
8 0.06921 0.07314 0.07708 0.08099 0.08487 0.0887 0.09247 0.0962 0.09976 0.10326
9 0.03922 0.04226 0.04539 0.04859 0.05187 0.05519 0.05856 0.062 0.0654 0.06884
10 0.02 0.02198 0.02406 0.02624 0.02853 0.03091 0.03338 0.0359 0.03859 0.0413
11 0.00927 0.01039 0.01159 0.01288 0.01426 0.01573 0.0173 0.019 0.0207 0.02253
12 0.00394 0.0045 0.00512 0.0058 0.00654 0.00734 0.00822 0.0092 0.01018 0.01126
13 0.00155 0.0018 0.00209 0.00241 0.00277 0.00316 0.0036 0.0041 0.00462 0.0052
14 0.00056 0.00067 0.00079 0.00093 0.00109 0.00127 0.00147 0.0017 0.00195 0.00223
15 0.00019 0.00023 0.00028 0.00033 0.0004 0.00047 0.00056 0.0007 0.00077 0.00089

(continues)

359



Appendix 2 Poisson Table P (x) = �xe−�/x ! (Continued )

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7
0 0.00224 0.00203 0.00184 0.00166 0.0015 0.00136 0.00123 0.0011 0.00101 0.00091
1 0.01368 0.01258 0.01157 0.01063 0.00977 0.00898 0.00825 0.0076 0.00695 0.00638
2 0.04173 0.03901 0.03644 0.03403 0.03176 0.02963 0.02763 0.0258 0.02399 0.02234
3 0.08485 0.08061 0.07653 0.07259 0.06881 0.06518 0.0617 0.0584 0.05518 0.05213
4 0.12939 0.12495 0.12053 0.11615 0.11182 0.10755 0.10335 0.0992 0.09518 0.09123
5 0.15786 0.15494 0.15187 0.14867 0.14537 0.14197 0.13849 0.135 0.13135 0.12772
6 0.16049 0.1601 0.15946 0.15859 0.15748 0.15617 0.15465 0.1529 0.15105 0.149
7 0.13986 0.1418 0.14352 0.14499 0.14623 0.14724 0.14802 0.1486 0.1489 0.149
8 0.10664 0.1099 0.11302 0.11599 0.11882 0.12148 0.12397 0.1263 0.12842 0.13038
9 0.07228 0.07571 0.07911 0.08248 0.08581 0.08908 0.09229 0.0954 0.09846 0.1014
10 0.04409 0.04694 0.04984 0.05279 0.05578 0.05879 0.06183 0.0649 0.06794 0.07098
11 0.02445 0.02646 0.02855 0.03071 0.03296 0.03528 0.03766 0.0401 0.04261 0.04517
12 0.01243 0.01367 0.01499 0.01638 0.01785 0.0194 0.02103 0.0227 0.0245 0.02635
13 0.00583 0.00652 0.00726 0.00806 0.00893 0.00985 0.01084 0.0119 0.01301 0.01419
14 0.00254 0.00289 0.00327 0.00369 0.00414 0.00464 0.00519 0.0058 0.00641 0.00709
15 0.00103 0.00119 0.00137 0.00157 0.0018 0.00204 0.00232 0.0026 0.00295 0.00331
16 0.00039 0.00046 0.00054 0.00063 0.00073 0.00084 0.00097 0.0011 0.00127 0.00145
17 0.00014 0.00017 0.0002 0.00024 0.00028 0.00033 0.00038 0.0005 0.00052 0.0006
18 0.00005 0.00006 0.00007 0.00008 0.0001 0.00012 0.00014 0.0002 0.0002 0.00023
19 0.00002 0.00002 0.00002 0.00003 0.00003 0.00004 0.00005 6E-05 0.00007 0.00009
20 0 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 2E-05 0.00002 0.00003
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7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8
0 0.00083 0.00075 0.00068 0.00061 0.00055 0.0005 0.00045 0.0004 0.00037 0.00034
1 0.00586 0.00538 0.00493 0.00452 0.00415 0.0038 0.00349 0.0032 0.00293 0.00268
2 0.0208 0.01935 0.018 0.01674 0.01556 0.01445 0.01342 0.0125 0.01157 0.01073
3 0.04922 0.04644 0.0438 0.04128 0.03889 0.03661 0.03446 0.0324 0.03047 0.02863
4 0.08736 0.0836 0.07993 0.07637 0.07292 0.06957 0.06633 0.0632 0.06017 0.05725
5 0.12406 0.12038 0.1167 0.11303 0.10937 0.10574 0.10214 0.0986 0.09507 0.0916
6 0.1468 0.14446 0.14199 0.13941 0.13672 0.13394 0.13108 0.1282 0.12517 0.12214
7 0.1489 0.14859 0.14807 0.14737 0.14648 0.14542 0.14419 0.1428 0.14126 0.13959
8 0.13215 0.13373 0.13512 0.13632 0.13733 0.13815 0.13878 0.1392 0.1395 0.13959
9 0.10425 0.10698 0.1096 0.11208 0.11444 0.11666 0.11874 0.1207 0.12245 0.12408
10 0.07402 0.07703 0.08 0.08294 0.08583 0.08866 0.09143 0.0941 0.09673 0.09926
11 0.04777 0.05042 0.05309 0.0558 0.05852 0.06126 0.064 0.0667 0.06947 0.07219
12 0.02827 0.03025 0.0323 0.03441 0.03658 0.0388 0.04107 0.0434 0.04574 0.04813
13 0.01544 0.01675 0.01814 0.01959 0.0211 0.02268 0.02432 0.026 0.02779 0.02962
14 0.00783 0.00862 0.00946 0.01035 0.0113 0.01231 0.01338 0.0145 0.01568 0.01692
15 0.00371 0.00414 0.0046 0.00511 0.00565 0.00624 0.00687 0.0075 0.00826 0.00903
16 0.00164 0.00186 0.0021 0.00236 0.00265 0.00296 0.0033 0.0037 0.00408 0.00451
17 0.00069 0.00079 0.0009 0.00103 0.00117 0.00132 0.0015 0.0017 0.0019 0.00212
18 0.00027 0.00032 0.00037 0.00042 0.00049 0.00056 0.00064 0.0007 0.00083 0.00094
19 0.0001 0.00012 0.00014 0.00016 0.00019 0.00022 0.00026 0.0003 0.00035 0.0004
20 0.00004 0.00004 0.00005 0.00006 0.00007 0.00009 0.0001 0.0001 0.00014 0.00016
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Appendix 2 Poisson Table P (x) = �xe−�/x ! (Continued )

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9
0 0.0003 0.00027 0.00025 0.00022 0.0002 0.00018 0.00017 0.0002 0.00014 0.00012
1 0.00246 0.00225 0.00206 0.00189 0.00173 0.00158 0.00145 0.0013 0.00121 0.00111
2 0.00996 0.00923 0.00856 0.00793 0.00735 0.00681 0.0063 0.0058 0.0054 0.005
3 0.02689 0.02524 0.02368 0.02221 0.02083 0.01952 0.01828 0.0171 0.01602 0.01499
4 0.05444 0.05174 0.04914 0.04665 0.04425 0.04196 0.03977 0.0377 0.03566 0.03374
5 0.0882 0.08485 0.08158 0.07837 0.07523 0.07217 0.06919 0.0663 0.06347 0.06073
6 0.11907 0.11597 0.11285 0.10972 0.10658 0.10345 0.10033 0.0972 0.09414 0.09109
7 0.13778 0.13585 0.1338 0.13166 0.12942 0.12709 0.12469 0.1222 0.1197 0.11712
8 0.1395 0.13924 0.13882 0.13824 0.13751 0.13663 0.1356 0.1345 0.13316 0.13176
9 0.12555 0.12687 0.12803 0.12903 0.12987 0.13055 0.13108 0.1315 0.13168 0.13176
10 0.1017 0.10403 0.10626 0.10838 0.11039 0.11228 0.11404 0.1157 0.1172 0.11858
11 0.07488 0.07755 0.08018 0.08276 0.0853 0.08778 0.0902 0.0926 0.09482 0.09702
12 0.05055 0.05299 0.05546 0.05793 0.06042 0.06291 0.06539 0.0679 0.07033 0.07277
13 0.03149 0.03343 0.03541 0.03743 0.03951 0.04162 0.04376 0.0459 0.04815 0.05038
14 0.01822 0.01958 0.02099 0.02246 0.02399 0.02556 0.0272 0.0289 0.03061 0.03238
15 0.00984 0.0107 0.01162 0.01258 0.01359 0.01466 0.01577 0.0169 0.01816 0.01943
16 0.00498 0.00549 0.00603 0.0066 0.00722 0.00788 0.00858 0.0093 0.0101 0.01093
17 0.00237 0.00265 0.00294 0.00326 0.00361 0.00399 0.00439 0.0048 0.00529 0.00579
18 0.00107 0.00121 0.00136 0.00152 0.0017 0.0019 0.00212 0.0024 0.00261 0.00289
19 0.00046 0.00052 0.00059 0.00067 0.00076 0.00086 0.00097 0.0011 0.00122 0.00137
20 0.00018 0.00021 0.00025 0.00028 0.00032 0.00037 0.00042 0.0005 0.00055 0.00062
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9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10
0 0.00011 0.0001 0.00009 0.00008 0.00007 0.00007 0.00006 6E-05 0.00005 0.00005
1 0.00102 0.00093 0.00085 0.00078 0.00071 0.00065 0.00059 0.0005 0.0005 0.00045
2 0.00462 0.00428 0.00395 0.00365 0.00338 0.00312 0.00288 0.0027 0.00246 0.00227
3 0.01402 0.01311 0.01226 0.01145 0.0107 0.00999 0.00932 0.0087 0.00811 0.00757
4 0.03191 0.03016 0.0285 0.02691 0.0254 0.02397 0.02261 0.0213 0.02008 0.01892
5 0.05807 0.05549 0.053 0.05059 0.04827 0.04602 0.04386 0.0418 0.03976 0.03783
6 0.08807 0.08509 0.08215 0.07926 0.07642 0.07363 0.0709 0.0682 0.06561 0.06306
7 0.11449 0.11183 0.10915 0.10644 0.10371 0.10098 0.09825 0.0955 0.09279 0.09008
8 0.13024 0.12861 0.12688 0.12506 0.12316 0.12118 0.11912 0.117 0.11483 0.1126
9 0.13168 0.13147 0.13111 0.13062 0.13 0.12926 0.12839 0.1274 0.12631 0.12511
10 0.11983 0.12095 0.12193 0.12279 0.1235 0.12409 0.12454 0.1249 0.12505 0.12511
11 0.09913 0.10116 0.10309 0.10493 0.10666 0.10829 0.10982 0.1112 0.11254 0.11374
12 0.07518 0.07755 0.0799 0.08219 0.08444 0.08663 0.08877 0.0908 0.09285 0.09478
13 0.05262 0.05488 0.05716 0.05943 0.06171 0.06398 0.06624 0.0685 0.07071 0.07291
14 0.03421 0.03607 0.03797 0.0399 0.04187 0.04387 0.04589 0.0479 0.05 0.05208
15 0.02075 0.02212 0.02354 0.02501 0.02652 0.02808 0.02968 0.0313 0.033 0.03472
16 0.0118 0.01272 0.01368 0.01469 0.01575 0.01685 0.01799 0.0192 0.02042 0.0217
17 0.00632 0.00688 0.00749 0.00812 0.0088 0.00951 0.01027 0.0111 0.01189 0.01276
18 0.00319 0.00352 0.00387 0.00424 0.00464 0.00507 0.00553 0.006 0.00654 0.00709
19 0.00153 0.0017 0.00189 0.0021 0.00232 0.00256 0.00282 0.0031 0.00341 0.00373
20 0.0007 0.00078 0.00088 0.00099 0.0011 0.00123 0.00137 0.0015 0.00169 0.00187
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Appendix 3 Normal Z table

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0 0.004 0.008 0.012 0.016 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.091 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.148 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.17 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.195 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.219 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.258 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.291 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.334 0.3365 0.3389
1 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.377 0.379 0.381 0.383
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.398 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.437 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.475 0.4756 0.4761 0.4767
2 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.483 0.4834 0.4838 0.4842 0.4846 0.485 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.489
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.492 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.494 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.496 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.497 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.498 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.499 0.499
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Appendix 4 Student’s t table

0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0005
1 0.32492 1 3.077684 6.313752 12.7062 31.82052 63.65674 636.6192
2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991
3 0.276671 0.764892 1.637744 2.353363 3.18245 4.5407 5.84091 12.924
4 0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103
5 0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688
6 0.264835 0.717558 1.439756 1.94318 2.44691 3.14267 3.70743 5.9588
7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079
8 0.261921 0.706387 1.396815 1.859548 2.306 2.89646 3.35539 5.0413
9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809
10 0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869
11 0.259556 0.697445 1.36343 1.795885 2.20099 2.71808 3.10581 4.437
12 0.259033 0.695483 1.356217 1.782288 2.17881 2.681 3.05454 4.3178
13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208
14 0.258213 0.692417 1.34503 1.76131 2.14479 2.62449 2.97684 4.1405
15 0.257885 0.691197 1.340606 1.75305 2.13145 2.60248 2.94671 4.0728
16 0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.015
17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651
18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216
19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834
20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495
21 0.25658 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193
22 0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921
23 0.256297 0.685306 1.31946 1.713872 2.06866 2.49987 2.80734 3.7676
24 0.256173 0.68485 1.317836 1.710882 2.0639 2.49216 2.79694 3.7454
25 0.25606 0.68443 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251
26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066
27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896
28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739
29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594
30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75 3.646
inf 0.253347 0.67449 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905365
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Appendix 5 Chi-Square Table

area 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050
df
1 0.0000 0.0002 0.0010 0.0039 0.0158 0.1015 0.4549 1.3233 2.7055 3.8415
2 0.0100 0.0201 0.0506 0.1026 0.2107 0.5754 1.3863 2.7726 4.6052 5.9915
3 0.0717 0.1148 0.2158 0.3519 0.5844 1.2125 2.3660 4.1083 6.2514 7.8147
4 0.2070 0.2971 0.4844 0.7107 1.0636 1.9226 3.3567 5.3853 7.7794 9.4877
5 0.4117 0.5543 0.8312 1.1455 1.6103 2.6746 4.3515 6.6257 9.2364 11.0705
6 0.6757 0.8721 1.2373 1.6354 2.2041 3.4546 5.3481 7.8408 10.6446 12.5916
7 0.9893 1.2390 1.6899 2.1674 2.8331 4.2549 6.3458 9.0372 12.0170 14.0671
8 1.3444 1.6465 2.1797 2.7326 3.4895 5.0706 7.3441 10.2189 13.3616 15.5073
9 1.7349 2.0879 2.7004 3.3251 4.1682 5.8988 8.3428 11.3888 14.6837 16.9190

10 2.1559 2.5582 3.2470 3.9403 4.8652 6.7372 9.3418 12.5489 15.9872 18.3070
11 2.6032 3.0535 3.8158 4.5748 5.5778 7.5841 10.3410 13.7007 17.2750 19.6751
12 3.0738 3.5706 4.4038 5.2260 6.3038 8.4384 11.3403 14.8454 18.5494 21.0261
13 3.5650 4.1069 5.0088 5.8919 7.0415 9.2991 12.3398 15.9839 19.8119 22.3620
14 4.0747 4.6604 5.6287 6.5706 7.7895 10.1653 13.3393 17.1169 21.0641 23.6848
15 4.6009 5.2294 6.2621 7.2609 8.5468 11.0365 14.3389 18.2451 22.3071 24.9958
16 5.1422 5.8122 6.9077 7.9617 9.3122 11.9122 15.3385 19.3689 23.5418 26.2962
17 5.6972 6.4078 7.5642 8.6718 10.0852 12.7919 16.3382 20.4887 24.7690 27.5871
18 6.2648 7.0149 8.2308 9.3905 10.8649 13.6753 17.3379 21.6049 25.9894 28.8693
19 6.8440 7.6327 8.9065 10.1170 11.6509 14.5620 18.3377 22.7178 27.2036 30.1435
20 7.4338 8.2604 9.5908 10.8508 12.4426 15.4518 19.3374 23.8277 28.4120 31.4104
21 8.0337 8.8972 10.2829 11.5913 13.2396 16.3444 20.3372 24.9348 29.6151 32.6706
22 8.6427 9.5425 10.9823 12.3380 14.0415 17.2396 21.3370 26.0393 30.8133 33.9244
23 9.2604 10.1957 11.6886 13.0905 14.8480 18.1373 22.3369 27.1413 32.0069 35.1725
24 9.8862 10.8564 12.4012 13.8484 15.6587 19.0373 23.3367 28.2412 33.1962 36.4150
25 10.5197 11.5240 13.1197 14.6114 16.4734 19.9393 24.3366 29.3389 34.3816 37.6525
26 11.1602 12.1982 13.8439 15.3792 17.2919 20.8434 25.3365 30.4346 35.5632 38.8851
27 11.8076 12.8785 14.5734 16.1514 18.1139 21.7494 26.3363 31.5284 36.7412 40.1133
28 12.4613 13.5647 15.3079 16.9279 18.9392 22.6572 27.3362 32.6205 37.9159 41.3371
29 13.1212 14.2565 16.0471 17.7084 19.7677 23.5666 28.3361 33.7109 39.0875 42.5570
30 13.7867 14.9535 16.7908 18.4927 20.5992 24.4776 29.3360 34.7997 40.2560 43.7730
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Appendix 6 F table (� = 0.05)

df2/df1 1 2 3 4 5 6 7 8 9 10
1 39.863 49.5 53.593 55.833 57.24 58.2044 58.906 59.439 59.858 60.195
2 8.5263 9 9.1618 9.2434 9.2926 9.32553 9.3491 9.3668 9.3805 9.3916
3 5.5383 5.4624 5.3908 5.3426 5.3092 5.28473 5.2662 5.2517 5.24 5.2304
4 4.5448 4.3246 4.1909 4.1073 4.0506 4.00975 3.979 3.9549 3.9357 3.9199
5 4.0604 3.7797 3.6195 3.5202 3.453 3.40451 3.3679 3.3393 3.3163 3.2974
6 3.776 3.4633 3.2888 3.1808 3.1075 3.05455 3.0145 2.983 2.9577 2.9369
7 3.5894 3.2574 3.0741 2.9605 2.8833 2.82739 2.7849 2.7516 2.7247 2.7025
8 3.4579 3.1131 2.9238 2.8064 2.7265 2.66833 2.6241 2.5894 2.5612 2.538
9 3.3603 3.0065 2.8129 2.6927 2.6106 2.55086 2.5053 2.4694 2.4403 2.4163
10 3.285 2.9245 2.7277 2.6053 2.5216 2.46058 2.414 2.3772 2.3473 2.3226
11 3.2252 2.8595 2.6602 2.5362 2.4512 2.38907 2.3416 2.304 2.2735 2.2482
12 3.1766 2.8068 2.6055 2.4801 2.394 2.33102 2.2828 2.2446 2.2135 2.1878
13 3.1362 2.7632 2.5603 2.4337 2.3467 2.28298 2.2341 2.1954 2.1638 2.1376
14 3.1022 2.7265 2.5222 2.3947 2.3069 2.24256 2.1931 2.1539 2.122 2.0954
15 3.0732 2.6952 2.4898 2.3614 2.273 2.20808 2.1582 2.1185 2.0862 2.0593
16 3.0481 2.6682 2.4618 2.3327 2.2438 2.17833 2.128 2.088 2.0553 2.0282
17 3.0262 2.6446 2.4374 2.3078 2.2183 2.15239 2.1017 2.0613 2.0284 2.0009
18 3.007 2.624 2.416 2.2858 2.1958 2.12958 2.0785 2.0379 2.0047 1.977
19 2.9899 2.6056 2.397 2.2663 2.176 2.10936 2.058 2.0171 1.9836 1.9557
20 2.9747 2.5893 2.3801 2.2489 2.1582 2.09132 2.0397 1.9985 1.9649 1.9367
21 2.961 2.5746 2.3649 2.2333 2.1423 2.07512 2.0233 1.9819 1.948 1.9197
22 2.9486 2.5613 2.3512 2.2193 2.1279 2.0605 2.0084 1.9668 1.9327 1.9043
23 2.9374 2.5493 2.3387 2.2065 2.1149 2.04723 1.9949 1.9531 1.9189 1.8903
24 2.9271 2.5383 2.3274 2.1949 2.103 2.03513 1.9826 1.9407 1.9063 1.8775
25 2.9177 2.5283 2.317 2.1842 2.0922 2.02406 1.9714 1.9293 1.8947 1.8658
26 2.9091 2.5191 2.3075 2.1745 2.0822 2.01389 1.961 1.9188 1.8841 1.855
27 2.9012 2.5106 2.2987 2.1655 2.073 2.00452 1.9515 1.9091 1.8743 1.8451
28 2.8939 2.5028 2.2906 2.1571 2.0645 1.99585 1.9427 1.9001 1.8652 1.8359
29 2.887 2.4955 2.2831 2.1494 2.0566 1.98781 1.9345 1.8918 1.8568 1.8274
30 2.8807 2.4887 2.2761 2.1422 2.0493 1.98033 1.9269 1.8841 1.849 1.8195367
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Index

Accuracy, 304, 320
variations due to, 320–327

Alternate hypothesis (see Hypothesis)
Analysis

cause and effect, 350–352
contingency, 342–346

see also Chi-squared tests
MSA (see Measurement systems

analysis) of the organization, 11–13
Pareto, 347–350
process capability, 171–202

assumptions, 174
definition, 173
with non-normal data, 194–202

regression (see Regression analysis)
residual (see Residuals)
of samples, 99–110

Analysis of means (ANOM), 226–229
Analysis of variance (ANOVA)

balanced, 286
and hypothesis testing, 203–204
one-way, 204–222

Appraisal costs (see Costs)
Arithmetic mean (see Mean)
Association, measures of, 56–62
Attribute control charts

c, 155–157
np, 154–155
p, 151–154
u, 157–158
see also Control charts

Backward elimination, 273
see also Stepwise regression

Bias, 320–322
Binomial distribution, 74–79
Block design (see Design)
Box-Cox transformation

(see Transformations)
Box plots, 66–68
Breaking point, 349

c-charts, 155–157
Calc menu (Minitab), 27

Calculator (Minitab), 27–28
Capability

barely, 177
definition, 147
potential, 177

vs. actual, 176–178
short-term (Cp and Cr), 176–177

process
analysis, 171–202

assumptions, 174
with non-normal data, 194–202

definition, 18
indices, 178–183
long-term potential performance, 178
and non-normal distribution, 200–202
and normal distribution, 19–21,

174–183, 193–194
and PPM, 185–193
using Box-Cox transformation,

196–200
ratio (Cr), 177–178
Taguchi’s indices (CPM and PPM),

183–185
Cash flow, 6
Cause and effect analysis (see Analysis)
Central Limit Theorem, 19, 102–106
Central tendency, measures of, 42–49
Chart Wizard (Excel), 35–37
Chebycheff ’s Theorem, 55
Chi-squared (χ2) distribution,

114–117
Chi-squared (χ2) tests

goodness-of-fit, 336–342
test of independence, 342–346

Cluster sampling (see Sampling)
Coefficients

correlation (r, ρ), 58–62, 250–254
of determination (r2), 62, 254

adjusted, 265–266
hypothesis testing, 263–268
of variation, 55–56

Comparison testing, multiple, 219
Competitors, 5–6

see also Organizations
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370 Index

Concept design, 297
Confidence

interval, 257–258
limits (LCL/UCL), 109

Conformance, 290
Continuous distributions (see

Distributions)
Control charts

attribute
c, 155–157
np, 154–155
p, 151–154
u, 157–158

definition, 146
how to build, 147–150
moving range, 169–170
multivariate, 151
types of, 151–170
univariate, 151
variable

R, 159–162
S, 164–169
X, 159–162, 164–169

see also charts by name
Control factors, 298
Correlation coefficient (r, ρ), 58–62,

250–254
Costs

appraisal, 290
of conformance, 290
of nonconformance, 290–293
preventive, 290
of quality (COQ), 15, 289–293

Covariance, 56–58
Critical-to-quality (CTQ) (see Quality)
Customers, 5

requirements, 171
satisfaction index (CSI), 7
see also Organizations

Data
collection, 41–72
graphical display (Excel), 35–37
graphical representation, 62–68
grouped, 46–47
raw, 42–43
testing for normality, 175–176

Data Analysis (Excel add-in), 37–40
Data menu (Minitab), 26–27
Days’ supply of inventory (DSI), 6
Decision rule, 123–124
Defects

definition, 81
DPMO, 16, 21
per opportunity (DPO), 83
per unit (DPU), 81–82

see also Yield
and variability, 17–18

Defining the organization, 2–6
Degrees of freedom, 206–212

see also ANOVA
Deming, W. Edward, 15
Description (basic tools), 41–72
Descriptive statistics (see Statistics)
Design (experimental), 275–288

concept (see Concept design)
of experiment (DOE), 275
factorial

with more than two factors,
285–288

with two factors, 276–285
parameter (see Parameter design)
randomized

block, 222–226
completely, 204–222

tolerance (see Tolerance design)
Destructive testing, 314
Determination

coefficient of (r2), 62, 254
adjusted, 265–266

of samples, 99–110
Deterministic model, 240
Deviation

mean, 50–52
standard (s, σ ), 54

definition, 18
unknown, 113–114

Dispersion, measures of, 49–56
Distributions

binomial, 74–79
chi-squared (χ2), 114–117
continuous, 88–97
exponential, 88–90
F, 140–141
geometric, 84–85
hyper-geometric, 85–88
log-normal, 97
normal, 90–96

and process capability, 19–21
standardized, 93

Poisson, 79–84
probability, discrete, 74–88
sampling, 106–108
t, 113–114



Index 371

Weibull, 97, 201
see also distributions by name

DMAIC (Define, Measure, Analyze,
Improve, Control), 2, 14

DOE (see Design)
DPMO (defects per million opportunities),

16, 21
see also Defects

DPO/DPU (see Defects)

Edit menu (Minitab), 26
Effects, interaction/main, 276
Error

of estimate, standard, 250
of prediction, 235
sampling, 101–102
sum of square (SSE), 250
Type I/Type II (Alpha/Beta), 123

Estimation
mean

population, 108–114
using confidence interval, 257–258

sample sizes, 117–119
standard error, 250

Evaluation of process performance,
18–19

Excel
Data Analysis (add-in), 37–40
graphical display of data, 35–37
overview, 33–40
statistics, descriptive, 70–71

Experiment, 74
Experimental design (see Design)
Exponential distribution, 88–90
External failure (see Failure)

F distribution, 140–141
Factorial design (see Design)
Factors, 203, 207
Failure, external/internal, 291
File menu (Minitab), 25
Finite correction factor, 106
Fishbone diagram, 350–352
Fitted line plots, 258–261
Forward selection, 273

see also Stepwise regression

Gage, 305
Gage bias (see Bias)
Gage run chart, 318–320
Geometric distribution, 84–85
Geometric mean (see Mean)

Goodness-of-fit (see Chi-squared tests)
Graphical display (Excel), 35–37

Help menu (Minitab), 31–33
Histograms, 62–64
HSD (see Tukey’s honestly significant

difference test)
Hyper-geometric distribution, 85–88
Hypothesis, 121–122
Hypothesis testing

about proportions, 130–131
about the variance, 131–132

two variances, 140–142
alternate hypothesis, 122
and ANOVA, 203–204, 277–285
for the coefficients, 263–268
comparison, multiple, 218–222
conducting, 122–124
gage R&R nested, 314–318
normality, 142–144
null hypothesis, 122

rejecting, 277–285
and regression analysis, 254–257
Tukey’s honestly significant difference

(HSD), 219–222

Improving the organization, 13–14
In-house failure rate (IHFR), 232
Indices (see Capability; Process)
Inference

difference between two means,
133–134

statistical, 132–142
see also Statistics

Internal failure (see Failure)
Interpretation of samples, 99–110
Interquartile range (IQR) (see Quartiles;

Range)
Ishikawa diagram, 350–352

KPIV (see Variables)

LCL (see Confidence)
Least squares method, 241–248

assumptions, 242
see also Regression analysis

Levels, 203, 207
Linearity, 320

gage, 322–327
Location, measures of (see Central

tendency, measures of)
Log-normal distribution, 97
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Loss function (Taguchi’s), 183–184,
293–295

LSL (see Specified limits)

Mann-Whitney U test
for large samples, 333–335
for small samples, 330–333

Master Black Belt, 12–13
see also Six Sigma

Mean deviation (see Deviation)
Mean (X )

arithmetic (µ), 42–47
for grouped data, 46–47
for raw data, 42–43

definition, 17
difference between two, 133–134
geometric, 47–48
grand (µ̄), 157
population

estimating, 108–114
testing for, 124–130

sampling distribution of, 100–101
Means, analysis of (ANOM) (see Analysis

of means)
Measurement

of the organization, 6–11
see also Scorecards

process, 303–327
spread, assessing, 304–318
see also Metrics

Measurement systems analysis (MSA),
303–327

Measures
of association, 56–62
of central tendency, 42–49
of dispersion, 49–56
of location, 42

Median, 49
Metrics, 7–8, 12
Microsoft Excel (see Excel)
Minitab

Calculator, 27–28
menus, 25–33
overview, 23–33
statistics, descriptive, 69–70

Mission statement, 2
Mode, 49
Multicolinearity, 267

Noise factors, 17, 297
Nonconformance, 290–293
Nonparametric statistics, 329–346

Normal distribution, 90–96
and Box-Cox transformation, 195–196
and process capability, 19–21, 193–194
standardized, 93
testing for normality, 142–144, 175–176
see also Transformations

np-charts, 154–155
Null hypothesis (see Hypothesis)

Organizations
analyzing, 11–13
basic tools, 41–72
defining, 2–6
improving, 13–14
measuring, 6–11

see also Scorecards
production, 4–5
questions to ask, 3
see also Competitors; Customers;

Suppliers
Outlier, 67

p-charts, 151–154
P/T ratio (see Precision; Ratios; Tolerance)
p-values, 126–128
P-values, 265
Parameter design, 298–300
Parameters, 329
Parametric procedure, 329
Pareto analysis (see Analysis)
Parts per million (PPM), 188
Performance, 18–19
Plots

box, 66–68
fitted line, 258–261
scatter, 233–240
stem-and-leaf, 64–65
see also plots by name

Poisson distribution, 79–84
Pooled sample variance (see Variance)
Populations

finite, 106
inference, statistical, 132–142
mean (see Mean)

Precision, 304, 304–305
precision-to-tolerance (P/T) ratio,

309
variations due to, 304–318

Prediction, error of, 235
Preventive costs (see Costs)
Probability, 73–74

distributions, 74–88
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Process
capability

analysis, 171–202
assumptions, 174
with non-normal data, 194–202

indices, 178–183
long-term potential performance, 178
and non-normal distribution, 200–202
and normal distribution, 19–21,

174–183
and PPM, 185–193
using Box-Cox transformation,

196–200
capable/incapable, 173–174
measurement, 303–327
performance evaluation, 18–19
production, 172
statistical control, 145–170

Profit, 6
Projected volume of defectives (PVD), 233
Proportions

hypothesis testing, 130–131
sample (X ), 106–108

Quality, 15–16
control

offline, 297
and sampling, 16
and Six Sigma, 14–16

cost of (COQ), 15, 289–293
critical to (CTQ), 15

Quartiles, 66
see also Box plots

R-charts, 159–162
R&R nested method (see Repeatability

and reproducibility)
Random numbers, generating (Minitab),

28
Range, 18, 50

interquartile (IQR), 66–67
mean, 160
moving, 169–170

Ratios
capability (Cr), 177–178
precision-to-tolerance (P/T), 309
signal-to-noise (S/N), 299

Regression analysis, 231–274
and hypothesis testing, 254–257
linear, simple, 232–261
multiple, 261–274
regression equation, 240–241

stepwise, 268–274
standard, 270–273

Relatedness between factors, 56–62
see also Association, measures of

Reliability, 97
Repeatability and reproducibility,

304–305, 308–309
R&R nested method, 314–318
see also Hypothesis testing

Residuals, 250
residual analysis, 248–250

Response factors, 275
Return on assets (ROA), 6
Return on investment (ROI), 2, 6
Risk, level of, 123
Rolled throughput yield (RTY) (see Yield)
Root causes, 347–352

S-charts, 164–169
S/N ratio (see Signal-to-noise ratio)
Samples

analyzing, 99–110
collecting, 100
determining, 99–110
independent with equal variances,

134–140
interpreting, 99–110
Mann-Whitney U test, 330–335
proportion (p), 107
sample space, 74

Sampling
cluster, 100
definition, 100
error, 101–102
from a finite population, 106
means

distribution of, 100–101
estimating, 108–114, 117–118

and quality control, 16
random/nonrandom, 100
sample sizes

estimating, 117–119
population proportion ( p),

118–119
large, 124–126
small, 128–130

stratified, 100
systematic, 100

Scatter plots, 233–240
Scorecards, balanced, 7–11
Shewhart, Walter, 14
Signal-to-noise (S/N) ratio, 299
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Significance, level of, 123
Six Sigma

case study, 232–233, 262–263, 268–270
definition, 2, 16–21
methodology, 2–14
project selection process, 14
statistics and quality control, 14–16

Specified limits (LSL/USL), 173
SSE (see Error)
Stability, 147

process, 18–19, 174
Standard deviation (see Deviation)
Standardized normal distribution

(see Normal distribution)
Standards, deviation from, 15–16
Statistical Process Control (SPC), 14,

145–170
Statistics

descriptive, 41
inference, 41
nonparametric, 329–346
and Six Sigma, 14–16
test, 123

Stem-and-leaf plots, 64–65
Stepwise regression, 268–274

standard, 270–273
see also Regression analysis

Strategic intent (see Mission statement)
Strategy, 1
Stratified sampling (see Sampling)
Suppliers, 5

see also Organizations
Systematic sampling (see Sampling)

t distribution, 113–114
Taguchi, Genichi, 15

Taguchi capability indices (CPM and
PPM), 183–185

Taguchi loss function, 183–184,
293–295

Taguchi method, 289–301
Targets, 145
Testing (see Hypothesis testing)
Theorems

Central Limit, 102–106
Chebycheff ’s, 55

Tolerance design, 300–301
precision-to-tolerance (P/T) ratio, 309

Transformations
Box-Cox, 195–200
z, 92–93

see also Normal distribution

Treatments, 203, 207
confounded, 277

Tukey’s honestly significant difference
(HSD) test, 219–222

u-charts, 157–158
UCL (see Confidence)
USL (see Specified limits)

Variability
comparing, 68
and defects, 17–18
measures of (see Dispersion, measures

of)
reduction, 295–301

Variable control charts
(see Control charts)

Variables
blocking, 222
dependent/independent, 232
key process input (KPIV), 352
response, 275

Variance, 52–54
equal, 134–140
hypothesis testing, 131–132

about two, 140–142
inflation factor (VIF), 267
sample, pooled, 134

Variance, analysis of (ANOVA)
(see Analysis of variance)

Variations
coefficient of, 55–56
common/random/chance, 146, 151
due to accuracy, 320–327
due to precision, 304–318
special/assignable, 146, 151

Weibull distribution, 97, 201
Western Electric (WECO) rules,

150–151

X-charts, 159–162
mean range-based, 160–162
and S-charts, 164–169
standard error-based, 160
see also Control charts

Yield
and DPU, 81–82
rolled throughput (RTY), 82–84

z-transformation (see Transformations)
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