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Abstract

Identifying outliers and high-leverage points is a fundamental step in the least-squares regression model building process.
Various influence measures based on different motivational arguments, and designed to measure the influence of observations
on different aspects of various regression results, are elucidated and critiqued here. On the basis of a statistical analysis of the
residuals (classical, normalized, standardized, jackknife, predicted and recursive) and diagonal elements of a projection matrix,
diagnostic plots for influential points indication are formed. Regression diagnostics do not require a knowledge of an alternative
hypothesis for testing, or the fulfillment of the other assumptions of classical statistical tests. In the interactive, PC-assisted
diagnosis of data, models and estimation methods, the examination of data quality involves the detection of influential points,
outliers and high-leverages, which cause many problems in regression analysis. This paper provides a basic survey of the
influence statistics of single cases combining exploratory analysis of all variables. The graphical aids to the identification of
outliers and high-leverage points are combined with graphs for the identification of influence type based on the likelihood
distance. All these graphically oriented techniques are suitable for the rapid estimation of influential points, but are generally
incapable of solving problems with masking and swamping. The powerful procedure for the computation of influential points
characteristics has been written in Matlab 5.3 and is available from authors. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiple linear regression model building is one of
the standard problems solved in chemometrics [1]. The
method of least-squares is generally used; this method,
however, does not ensure that the regression model
proposed is fully acceptable from the statistical and
physical points of view. One of the main problems is
the quality of data used for parameter estimation and
model building. The term regression diagnostics has
been introduced for a collection of methods for the
identification of influential points and multicollinear-
ity [2]; by regression diagnostics are understood meth-
ods of exploratory data analysis, for the analysis of
influential points, and for the identification of vio-
lations of the assumptions of least-squares. In other
words, regression diagnostics represent procedures for
an examination of the regression triplet (data, model,
method), i.e. procedures for the identification of (a)
the data quality for a proposed model; (b) the model
quality for a given set of data; (c) a fulfillment of all
least-squares assumptions.

The detection, assessment, and understanding of
influential points are the major areas of interest in
regression model building. They are rapidly gain-
ing recognition and acceptance by practitioners as
supplements to the traditional analysis of residuals.
Numerous influence measures have been proposed,
and several books on the subject written is avail-
able, including these by Belsey et al. [2], Cook and
Weisberg [3], Atkinson [4], Chatterjee and Hadi [5],
Barnett and Lewis [6], Welsch [7], Welsch and Peters
[8], Weisberg [9], Rousseeuw and Leroy [10], and
Brownlee [11], published in the 1980s or earlier. A
recent approach is given in a book by Atkinson [4].

The most commonly used graphical approaches
in regression diagnostics, seen for example in
Chatterjee and Hadi [5], are useful for distinguish-
ing between “normal” and “extreme”, “outlying” and

“non-outlying” observations. An often used approach
is the single-deletion method. One of the earliest
methods for detecting influential observations was
proposed by Gentleman and Wilk [12]. Cook [13],
and Cook and Weisberg [14], made some algorithmic
suggestions and used an upper bound for the Cook’s
index to identify influential subsets. Hawkins et al.
[15] recommended the use of elemental sets to locate
several outliers in multiple regression.

As single-case diagnostic measures can be written
in terms of two fundamental statistics, the residual ei
and the diagonal elements of the hat matrix (leverage
measure) Hii , being expressed as the product of two
general functions f (n,m) × g(Hii, ei). Thus, a rea-
sonable strategy for diagnosing single-case influence
is to jointly analyze the leverage and residual values
to identify cases that are unusual in one or both, and
then follow up by computing one or more influence
measures for those cases. McCulloh and Meeter [16],
Gray [17–21] and Hadi [22] proposed contour plots
for summarizing influence information for single in-
fluential observations. A review of the standard diag-
nostics for one case and subset diagnostics has been
written by Gray [17]. For evaluating the influence of
cases there are two approaches: one is based on case
deletion and the other on differentiation. In surveying
the methodologies of influence analysis two major
tools are often met with both, based on differentiation,
in influence analysis in statistical modeling. One is
Hampel’s [23] influence function; the other is Cook’s
local influence [24,25].

Numerous influence measures have been proposed
for assessing the influence of individual cases over
the last two decades [12–74], and also represent a
relatively new topic in the chemometrical literature
of the last 10 years. Standardized residuals are also
called studentized residuals in many references (e.g.
[3,25,28,47]). Cook and Weisberg [3] refer to studen-
tized residuals with internal studentization, in contrast
to the external studentization of the cross-validatory
or jackknife residuals according to Atkinson [4], and
RSTUDENT by Belsey et al. [2] and SAS Institute,
Inc. [47]. In any event, jackknife residuals are of-
ten used for the identification of outliers. Recursive
residuals were introduced by Hedayat and Robson
[29], Brown et al. [30], Galpin and Hawkins [31] and
Quesenberry [32]. These residuals are constructed so
that they are independent and identically distributed
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when the model is correct. Rousseeuw and van
Zomeren [42] used the minimum volume ellipsoid
(MVE) for multivariate analysis to identify leverage
points and the least median of squares (LMS) to dis-
tinguish between good and bad leverages. Seaver and
Triantis [44] proposed a fuzzy clustering strategy to
identify influential observations in regression; once
the observations have been identified, the analyst can
then compute regression diagnostics to confirm their
degree of influence in regression. The hat matrix H has
been studied by many authors from different perspec-
tives. Dodge and Hadi [45] proposed a simple proce-
dure for identifying high-leverages based on the upper
and lower bounds for the diagonal and off-diagonal
elements of H. Cook and Critchley [46] used the the-
ory of regression graphics based on central subspaces
to construct a graphical solution to the long-standing
problem of estimating the central subspace to identify
outliers without specifying a model, and this method
is also used in STAT [47]. Tanaka and Zhang [48] dis-
cussed the relationship between the influence analyses
based on influence function (R-mode analysis) and on
Cook’s local influence (Q-mode analysis); generally,
many such measures have certain disadvantages:

1. They highlight observations which influence a par-
ticular regression result but may fail to point out ob-
servations influential on other least-squares results.

2. There is no consensus among specialists as to
which measures are optimal, and therefore several
of the existing measures should be used.

3. Many existing measures are not invariant to
location and scale in the response variable or non-
singular transformation of explanatory variables,
and are unable to identify all of the observa-
tions that are influential on several regression
characteristics.

Kosinski [49] has developed a new method for the
detection of multiple multivariate outliers which is
very resistent to high contamination (35–45%) of the
data with outliers, and improved performance was also
noted for data with smaller contamination fractions
(15–20%) when outliers were situated closer to the
“good” data. An adding-back model and two graphi-
cal methods with contours of constant measure values
have been proposed by Fung [50] for studying multi-
ple outliers and influential observations, using a loga-
rithmic functional form for some influence measures

having a better justification for plotting purposes.
Barrett and Ling [51] have suggested using general
high-leverage and outlier matrices for summarizing
multiple-case influence measures. The concept of
local influence was introduced by Cook [24] and mo-
tivated by other authors [52–70], for example, Gupta
and Huang [53], Kim [54], Barrett and Gray [61],
Muller and Mok [62] and Rancel and Sierra [70] have
derived new criteria for detecting influential data as
an alternative to Cook’s measure. Barrett and Gray
[61] have proposed a set of three simple, yet gen-
eral and comprehensive, subset diagnostics referred
to as leverage, residual, and interaction that have the
desirable characteristics of single-case leverage and
residual diagnostics. The proposed measures are the
basis of several existing subset influence measures,
including Cook’s measure.

In chemometrics, several papers have addressed
the robust analysis of rank deficient data. Liang and
Kvalheim [56] have provided a tutorial on robust
methods. The application of robust regression and
the detection of influential observations is discussed
by Singh [55]. Egan and Morgan [68] have sug-
gested a method for finding outliers in multivariate
chemical data. Regression diagnostics have been con-
structed from the residuals and diagonal elements of
a hat matrix for detecting heteroscedasticity, influen-
tial observations and high-leverages in some papers
[57,58,64,66–69,71–74,78]. Walczak and Massart
[77,83] adapted the robust technique of ellipsoidal
multivariate trimming (MTV) and LMS to make prin-
cipal component regression (PCR) robust. Regression
diagnostics as influence measures have been applied
to the epidemiological study of oesophageal cancer
in a high incidence area in China to identify the in-
fluence estimates of structures [50], to identify the
influential observations in the calibration, to refine
cell parameters from powder diffraction data [59], in
medical chemistry [60], the groundwater flow model
of a fractured-rock aquifer though regression [65], etc.
Cook and Weisberg [87] detected influential points
and argued that useful graphs must have a context in-
duced by associated theory, and that a graph without
a well-understood statistical context is hardly worth
drawing. Singh [88] published the control-chart-type
quantile–quantile (Q–Q) plot of Mahalanobis distance
providing a formal graphical outlier identification.
The procedure works effectively in correctly identify-
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ing multiple univariate and multivariate outliers, and
also in obtaining reliable estimates in multiple linear
regression and principal component analyses; it iden-
tifies all regression outliers, and distinguishes between
bad and good leverage points. Pell [89] has exam-
ined the use of robust principal component regression
and iteratively reweighted partial least-squares (PLS)
for multiple outlier detection in an infrared spectro-
scopic application, as in the case of multiple outliers
the standard methods for outlier detection can fail
to detect true outliers, and even mistakenly identify
good samples as outliers. Walczak [90,91] published
the program aiming to derive a clean subset from the
contaminated calibration data in the presence of the
multivariate outliers.

Statistical tests are needed for real data to decide
how to use such data, in order to satisfy approximately
the assumptions of hypothesis testing. Unfortunately,
a bewilderingly large number of statistical tests, diag-
nostic graphs and residual plots have been proposed
for diagnosing influential points, and it is the time to
select those approaches that are suitable in chemo-
metrics. This paper provides a survey of single point
influence diagnostics, illustrated with data examples
to show how they successfully characterize the in-
fluence of a group of cases even in the well-studied
stackloss data [11].

2. Theoretical

2.1. Terminology

2.1.1. Linear regression model
Consider the standard linear regression model yi =

β0 +β1x1,i+β2x2,i+· · ·+βmxm,i+εi, i = 1, . . . , n,
written in matrix notation y = Xβ+ε, where y, the re-
sponse (dependent) variable or regresand, is an n× 1
vector of observations, X is a fixed n × m design re-
gressors matrix of explanatory (independent) variables
or regressors, predictors, factors (n > m), β is the
m×1 vector of unknown parameters, and ε is the n×1
vector of random errors, which are assumed to be in-
dependent and identically distributed with mean zero
and an unknown variance σ 2. The regressor matrix X
may contain a column vector of ones if there is a con-
stant term β0 to be estimated. Columns xj geometri-
cally define the m-dimensional co-ordinate system or
the hyperplane L in n-dimensional Euclidean space.

The vector y generally does not lie in this hyperplane
L except where ε = 0. Using the least-squares estima-
tion method provides the vector of fitted values ŷP =
Hy, and the vector of residuals ê = (E − H)Y, where
H = X(XTX)−1XT is the so-called hat matrix, and E
is the identity matrix. The quantity s2 = eTe/(n−m)
is an unbiased estimator of σ 2.

For geometric interpretation the residual vector ê,
for which the residual-square sum function U(b) is
minimal, lies in the (n − m)-dimensional hyperplane
L⊥, being perpendicular to the hyperplane L,

U(b)=
n∑
i=1

(yi − ŷP,i )
2 =

n∑
i=1


yi − m∑

j=0

xijbj




2

≈ minimum (1)

The perpendicular projection of y into hyperplane L
can be made using the projection matrix H, and may
be expressed [1] by ŷP = Xb = X(XTX)−1XTy = Hy,
or the projection matrix P for perpendicular projection
into a hyperplane L⊥ that is orthogonal to hyperplane L
and is P = E−H. With the use of these two projection
matrices, H and P, the total decomposition of vector
y into two orthogonal components may be written as
y = Hy + Py = ŷP + ê. The vector y is decomposed
into two mutually perpendicular vectors, the prediction
vector ŷp and the vector of residuals ê.

It is well known that (D(ŷP) = σ 2) H and D(ê) =
σ 2(E − H). The Tukey’s hat matrix H is commonly
referred to as the “hat” matrix (because it puts the
“hat” on y), but is also known as the “projection” ma-
trix (because it gives the orthogonal projection of y
onto the space spanned by the columns of X) or the
“prediction” matrix (because Hy gives the vector of
predicted values). The matrix H is also known as the
“high-leverage” matrix, because the ith fitted value of
the predictor vector ŷP can be written as ŷP = ∑

Hijyi ,
where Hij is the ijth element of H. Thus, Hij is the
high-leverage (weight) of the jth observation yj , in de-
termining the ith fitted prediction value ŷP,i . It can also
be seen that Hii represents the high-leverage of the ith
observation yi in determining its own prediction value
ŷP,i . Thus, observations with large Hij can excerpt
an undue influence on least-squares results, and it is
thus important for the data analysis to be able to iden-
tify such observations. The square of vector ê length
is consistent with criterion U(b) of the least-squares
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method, so that the estimates of model parameters b
minimizes a function U(b).

2.1.2. Conditions of the least-squares
There are some basic conditions necessary for the

least-squares method LS to be valid [1]:

1. The regression parameters β are not bounded. In
chemometric practice, however, there are some re-
strictions on the parameters, based on their physi-
cal meaning.

2. The regression model is linear in the parameters,
and an additive model of the measurement errors
is valid, y = Xβ + ε.

3. The matrix of non-random controllable values
of the regressors X has a column rank equal to
m. This means that the all pairs xj , xk are not
collinear vectors. This is the same as saying that
the matrix XTX is a symmetric regular invertible
matrix with a non-zero determinant, i.e. plane L is
m-dimensional, and vector Xb and the parameter
estimates b are unambiguously determined.

4. The mean value of the random errors εi is zero;
E(εi) = 0. This is automatically valid for all
regression type models containing intercept. For
models without intercept the zero mean of errors
has to be tested.

5. The random errors εi have constant and finite vari-
ance, E(ε2

i ) = σ 2. The conditional variance σ 2 is
also constant and therefore the data are said to be
homoscedastic.

6. The random errors εi are uncorrelated, i.e.
cov(εi, εi) = E(εi, εi) = 0. When the errors
follow the normal distribution they are also inde-
pendent. This corresponds to independence of the
measured quantities y.

7. The random errors εi have a normal distribution
N(0, σ 2). The vector y then has a multivariate nor-
mal distribution with mean Xβ and covariance ma-
trix σ 2E.

When the first six conditions are met, the parameter
estimates b found by minimization of a least-squares
are the best linear unbiased estimate (BLUE) of the
regression parameters β:

1. The term best estimates b means that any linear
combination of these estimates has the smallest
variance of all linear unbiased estimates. That is,

the variance of the individual estimates D(bj ) are
the smallest of all the possible linear unbiased es-
timates (the Gauss–Markov theorem).

2. The term linear estimates means that they can
be written as a linear combination of measure-
ments y with weights Qij which depend only on
the location of variables xj , j = 1, . . . , m, and
Q = (XTX)−1XT for the weight matrix; thus
bj = ∑n

i=1Qijyi . Each estimate bj is the weighted
sum of all measurements. Also, the estimates b
have an asymptotic multivariate normal distribu-
tion with covariance matrix D(b) = σ 2(XTX)−1.
When condition (7) is valid, all estimates b have a
normal distribution, even for finite sample size n.

3. The term unbiased estimates means thatE(β−b) =
0 and the mean value of an estimate vector E(b)
is equal to a vector of regression parameters β. It
should be noted that there exist biased estimates,
the variance of which can be smaller than the vari-
ance of estimates D(bj ).

Various test criteria for testing regression model qual-
ity may be used [1]. One of the most efficient seems
to be the mean quadratic error of prediction (MEP),
being defined by the relationship

MEP =
∑n
i=1(yi − xT

i b(i))2

n

where b(i) is the estimate of regression parameters
when all points except the ith one were used and xi
is the ith row of matrix X. The statistic MEP uses a
prediction ŷP,i from an estimate constructed without
including the ith point. Another mathematical expres-
sion is MEP = ∑n

i=1ê
2
i /(1 −H 2

ii )n. For large sample
sizes n the element Hii tends to zero (Hii ≈ 0) and then
MEP = U(b)/n. The MEP can be used to express the
predicted determination coefficient (known in chemo-
metrics as the CVR square or as the Q square),

R̂2
P = 1 − n× MEP∑n

i=1y
2
i − n× ȳ2

Another statistical characteristic in quite general use is
derived from information and entropy theory [12], and
is known as the Akaike information criterion, AIC =
n ln(U(b)/n)+2m. The most suitable model is the one
which gives the lowest value of the mean quadratic
error of prediction MEP, the Akaike information
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criterion AIC and the highest value of the predicted
determination coefficient, R̂2

P.

2.2. Diagnostics for influential points detection

Data quality has a strong influence on any pro-
posed regression model. Examination of data qual-
ity involves detection of the influential points, which
cause many problems in regression analysis by shift-
ing the parameter estimates or increasing the vari-
ance of the parameters. According to the terminology
proposed by Rousseeuw [10], influential points may
alternatively be classified according to data location
into either: (i) outliers (denoted on graphs by the letter
O) which differ from the other points in y-axis value;
(ii) high-leverage points, also called extremes (denoted
on graphs by the letter E), which differ in the structure
of X variables; or (iii) both O and E (denoted by let-
ters O and E), standing for a combination of outliers
and high-leverages together. Outliers can be identified
by examination of the residuals relatively simply and
this can be done once the regression model is con-
structed. Identification of all high-leverage points is
based on the X space only, and takes into account no
information contained in y, as high-leverages are found
from the diagonal elements Hii of the projection hat
matrix H.

If the data contains a single outlier or high-leverage
point, the problem of identifying such a point is rela-
tively simple. If the data contains more than one outlier
or high-leverage (which is likely to be the case in most
data), the problem of identifying such points becomes
more difficult, due to masking and swamping effects.
Masking occurs, when an outlying subset goes unde-
tected because of the presence of another, usually ad-
jacent, subset. Swamping occurs when “good” points
are incorrectly identified as outliers because of the
presence of another, usually remote, subset of points.

Influence statistics are to be used as diagnostic tools
for identifying the observations having the greatest
impact on regression results. Although some of the
influence measures resemble test statistics, they are not
to be interpreted as tests of significance for influential
observations.

The large number of influence statistics that can
be generated can cause confusion; one should thus
concentrate on that diagnostic tool that measures the
impact on the quantity of primary interest.

There are various diagnostic measures designed to
detect individual cases that differ from the bulk of
data and which may be classified according to [34,77]
into four groups: (i) diagnostics based on the predic-
tion matrix, (ii) diagnostics based on residuals, (iii)
diagnostics based on the volume of confidence elip-
soids, and (iv) diagnostics based on influence func-
tion. Each diagnostic measure is designed to detect a
specific phenomenon in the data. They are closely re-
lated, as they are functions of the same basic build-
ing blocks in model construction, i.e. of various types
of residuals ê and the elements of the hat matrix H.
Since there is a great deal of redundancy in them, the
diagnostics within the same class can vary little, and
the analyst does not have to consider all of them. The
authors wish to show some efficient shortcuts in sta-
tistical diagnostic tools which, according to their ex-
perience, can pinpoint the influential points.

2.2.1. Diagnostics based on residuals analysis
Analysis of various types of regression residuals, or

of some transformation of such residuals, is very use-
ful for detecting inadequacies in the model or influ-
ential points in data. The true errors in the regression
model are assumed to be normally and independently
distributed random variables with zero mean and vari-
ance ε ≈ N(0, Iσ 2).

1. Ordinary residuals êi are defined by êi = yi −
xT
i b, where xi is the ith row of matrix X. Classical

analysis is based on the incorrect assumption that
residuals are good estimates of errors εi ; the reality
is more complex, residuals ê being a projection of
vector y into a subspace of dimension (n−m),

ê = Py = P(Xβ + ε) = Pε = (E − H)ε

and therefore for the ith residual is valid:

êi = (1 −Hii)yi −
n∑
j �=i
Hiiyi

= (1 −Hii)εi −
n∑
j �=i
Hijεj

Each residual êi is a linear combination of all er-
rors εi . The distribution of residuals depends on (i)
the error distribution, (ii) the elements of the pro-
jection matrix H, (iii) the sample size n. Because
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the residual êi represents a sum of random quanti-
ties with bounded variance, the supernormality ef-
fect appears for small sample sizes: “Even when
the errors ε do not have a normal distribution, the
distribution of residuals is close to normal”. In
small samples the elements of the projection ma-
trix H are larger and the contribution of the sum is
prevalent; the distribution of this sum is closer to
a normal one than the distribution of errors ε. For
large sample sizes, where 1/n ≈ 0, we find that
êi ≈ εi and analysis of the residual distribution
gives direct information about the distribution of
errors. Ordinary residuals have non-constant vari-
ance and may not often indicate strongly deviant
points. The common practice of chemometrics pro-
grams for the statistical analysis of residuals is to
use for examination some statistical characteristics
of ordinary residuals, such as the mean, the vari-
ance, the skewness and the kurtosis. As has been
shown above, for small and moderate sample sizes
the ordinary residuals are not good for diagnostics
or the identification of influential points.

2. Normalized residuals or scaled residuals êN,i =
êi/σ̂ are often recommended in chemometrics. It
is falsely assumed that these residuals are normally
distributed quantities with zero mean and vari-
ance equal to one, êN,i ≈ N(0, 1), but in reality
these residuals have non-constant variance. When
normalized residuals are used, the rule of 3σ is
classically recommended: quantities with êN,i of
magnitude greater than ±3σ are classified as out-
liers: this approach is quite misleading, and may
cause wrong decisions to be taken regarding data.

3. Standardized residuals or internally studentized
residuals êS,i = êi/(σ̂

√
1 −Hii) exhibit constant

unit variance, and their statistical properties are
the same as those of ordinary residuals. The stan-
dardized residuals behave much like a Student’s t
random variable except for the fact that the numer-
ator and denominator of êS,i are not independent.

4. Jackknife residuals or externally studentized resid-

uals êJ,i = êS,i

√
(n−m− 1)/(n−m− ê2

S,i ), are

residuals which with an assumption of normality of
errors have a Student distribution with (n−m− 1)
degrees of freedom. Belsey et al. [2] have sug-
gested standardizing each residual with an esti-
mate of its standard deviation that is independent

of the residual. This is accomplished by using, as
the estimate of σ 2 for the ith residual, the residual
mean square from an analysis where that observa-
tion has been omitted. This variance is labeled s2

(i),
where the subscript in parentheses indicates that
the ith observation has been omitted for the esti-
mate of σ 2; the result is a jackknife residual, also
called a fully studentized residual. It is distributed
as Student’s t with (n−m− 1) degrees of freedom
when the normality of errors ε holds. As with êi
and êS,i , the êJ,i are not independent of each other.
Belsey et al. [2] have shown that s(i) and jackknife
residuals can be obtained from ordinary residu-
als without rerunning the regression with the ob-
servation omitted. The standardized residuals êS,i
are called studentized residuals in many references
(e.g. [3,25,28,47]). Cook and Weisberg [3] refer to
êS,i as the studentized residual with internal studen-
tization, in contrast to the external studentization
of êJ,i . The êJ,i are called cross-validatory or jack-
knife residuals by Atkinson [4] and RSTUDENT
by Belsey et al. [2] and SAS Institute, Inc. [47].
In any event jackknife residuals are often used for
the identification of outliers. The jackknife resid-
ual [24] examines the influence of individual points
on the mean quadratic error of prediction. When
the condition ê2

J,i ≤ F1−α/n(1, n − m − 1, 0.5) is
valid, no influential points are present in the data.
Here, F1−α/n(1, n−m−1, 0.5)means the 100(1−
α/n)% quantile of the non-central F-distribution
with non-centrality parameters 0.5 and 1, and (n−
m − 1) degrees of freedom. An approximate rule
may be formulated: strongly influential points have
squared jackknife residuals ê2

J,i greater than 10. In
the case of high-leverage points, however, these
residuals do not give any indication.

5. Predicted residuals or cross-validated residuals
êP,i = (êi/(1 − Hii)) = yi − xib(i) are equal to
shift C in the equation y = Xb + Ci + ε, where
i is the identity vector with the ith element equal
to one, and other elements equal zero. This model
expresses not only the case of an outlier where
C is equal to the value of deviation, but also the
case of a high-leverage point C = dT

i β where di
is the vector of the deviation of the individual x
components of the ith point.

6. Recursive residuals have been described by
Hedayat and Robson [29], Brown et al. [30].
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Galpin and Hawkins [31] and Quesenberry [32].
These residuals are constructed so that they are
independent and identically distributed when the
model is correct. They are computed from a se-
quence of regression starting with a base of m
observations (m being the number of parameters
to be estimated), and adding one observation at
each step. The regression equation computed at
each step is used to compute the residual for the
next observation to be added. This sequence con-
tinues until the last residual has been computed.
There will be (n − m) recursive residuals; the
residual from the first m observations will be zero,
êR,i = 0, i = 1, . . . , m, and then the recursive
residual is defined as

êR,i = yi − xibi−1√
1 + xi(XT

i−1Xi−1)−1xT
i

,

i =m+ 1, . . . , n (5)

where bi−1 are estimates obtained from the first
(i−1) points. The recursive residuals are mutually
independent and have constant variance σ 2. Each
is explicitly associated with a particular observa-
tion and, consequently, recursive residuals seem to
avoid some of the “spreading” of model defects
that occurs with ordinary residuals. They allow the
identification of any instability in a model, such as
in time or autocorrelation, and are often used in
normality tests or in tests of the stability of regres-
sion parameters β.

The various types of residuals differ in their suitabil-
ity for diagnostic purposes: (i) standardized residuals
êS,i serve for the identification of heteroscedasticity
only; (ii) jackknife residuals êJ,i or predicted residuals
êP,i are suitable for the identification of outliers; (iii)
recursive residuals êR,i are used for the identification
of autocorrelation and normality testing.

2.2.2. Diagnostics based on the diagonal elements of
the hat matrix

Since the introductory paper by Hoaglin and
Welsch [79], the hat matrix H has been studied by
many authors from different perspectives. Hoaglin
and Welsch [79] suggested declaring observations
with Hii > 2m/n as high-leverage points. For regres-
sion models containing an intercept and a full rank

of X,
∑n
i=1Hii = m is valid; the mean value of the

diagonal elements is therefore n/m. Obviously, this
cut-off point will fail to nominate any observation
when n ≤ 2m, because 0 ≤ Hii ≤ 1. In some cases it
is useful to compute the extension of matrix X by a
vector y to give matrix Xm = (X|y). It can be shown
that Hm = H + êêT/êTê. The diagonal elements of
Hm contain information about leverage and outliers
because Hm,ii = Hii + ê2

i /[(n−m)σ̂ 2].

2.2.3. Diagnostics based on residuals plots
A variety of plots have been widely used in re-

gression diagnostics for the analysis of residuals
([3–5,80–82] among others). Three types of plots can
indicate inaccuracy in a proposed model, and some
trends, heteroscedasticity or influential points in data:
Plot type I is a plot of some kind of residuals against
the index i; Plot type II is a plot of residuals against
the independent variable xji ; Plot type III is a plot
of residuals against the predicted value ŷP,i . Fig. 1
shows possible graph shapes which can occur in plots
of residuals. If the graph shape is a random pattern
(Fig. 1a), the least-squares assumption is correct. A
systematic pattern indicates that the approach is in-
correct in some way: the sector pattern in graph types
I–III indicates heteroscedasticity in the data (Fig. 1b)
while a band pattern in graph types I and II indicates
some error in calculation or the absence of xj in the
model, (Fig. 1c). A band pattern may be also caused
by outlying points or, in type III, by a missing inter-
cept term in the regression model. In all three graph
types (I–III) a non-linear pattern indicates that the
model proposed is incorrect (Fig. 1d).

Fig. 1. Possible shapes of residual plots: (a) random pattern shape,
(b) sector pattern shape, (c) band shape, (d) non-linear curved
band shape.
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It should be noted that the plot êi against dependent
variable yi is not useful, because the two quantities
are strongly correlated. The smaller the correlation
coefficient, the more linear is this plot.

For the identification of influential points, i.e.
outliers (denoted in plots by the letter O) and
high-leverages (denoted in plots by the letter E), vari-
ous types of residuals are combined with the diagonal
elements Hii of the projection hat matrix H, cf. p. 72
in [1]. Most of the characteristics of influential points
may be expressed in the form K(m, n)×f (Hii, ê

2
N,i ),

where K(m, n) is a constant dependent only on m and n.

1. The graph of predicted residuals [76] has the pre-
dicted residuals êP,i on the x-axis and the ordinary
residuals êi on the y-axis. The high-leverage points
are easily detected by their location, as they lie out-
side the line y = x, and are located quite far from
this line. The outliers are located on the line y = x,
but far from its central pattern, (Fig. 2).

2. The Williams graph [76] has the diagonal elements
Hii on the x-axis and the jackknife residuals êJ,i
on the y-axis. Two boundary lines are drawn, the
first for outliers, y = t0.95(n − m − 1) and the
second for high-leverages, x = 2m/n. Note that
t0.95(n−m− 1) is the 95% quantile of the Student
distribution with (n−m− 1) degrees of freedom,
(Fig. 3).

3. The Pregibon graph [75] has the diagonal elements
Hii on the x-axis and the square of normalized
residuals ê2

N,i on the y-axis. Since the expression

E(Hii + ê2
N,i ) = (m+ 1)/n is valid for this graph,

two different constraining lines can be drawn: y =

Fig. 2. Graph of predicted residuals: E means a high-leverage
point and O an outlier; outliers are far from the central pattern on
the line y = x.

Fig. 3. Williams graph: E means the leverage point and O the
outlier; the first line is for outliers, y = t0.95(n − m − 1), the
second line is for high-leverages, x = 2m/n.

−x + 2(m + 1)/n, and y = −x + 3(m + 1)/n.
To distinguish among influential points the follow-
ing rules are used: (a) a point is strongly influen-
tial if it is located above the upper line; (b) a point
is influential if it is located between the two lines.
The influential point can be either an outlier or a
high-leverage point, (Fig. 4).

4. The McCulloh and Meeter graph [16] has
ln[Hii/(m(1 − Hii))] on the x-axis and the log-
arithm of square of the standardized residuals
ln(ê2

S,i ) on the y-axis. In this plot the solid line
drawn represents the locus of points with identi-
cal influence, with slope −1. The 90% confidence

Fig. 4. Pregibon graph: (E, O) are influential points, and s(E, O)
are strongly influential points; two constraining lines are drawn,
y = −x + 2(m + 1)/n, and y = −x + 3(m + 1)/n, the strongly
influential point is above the upper line; the influential point is
between the two lines.
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Fig. 5. McCulloh and Meeter graph: E means a high-leverage point
and O an outlier, (E, O) an influential point; the 90% confidence
line is for outliers, y = −x−lnF0.95(n−m,m) while the boundary
for high-leverages is x = ln[2/(n−m)× (t20.95(n−m)].

line is defined by y = −x − lnF0.9(n − m,m).
The boundary line for high-leverage points is de-
fined as x = ln[2/(n−m)× (t20.95(n−m)] where
t20.95(n − m) is the 95% quantile of the Student
distribution with (n − m − 1) degrees of freedom
(Fig. 5).

5. The Gray’s L–R graph [18] has the diagonal ele-
ments Hii on the x-axis and the squared normal-
ized residuals ê2

N,i = ê2
i /U(b) on the y-axis. All

the points will lie under the hypotenuse of a tri-
angle with the right angle in the origin of the two
axes and the hypotenuse defined by the limiting
equality Hii + ê2

N,i = 1. Contours of the same crit-
ical influence are plotted in the Gray’s L–R graph,
and the locations of individual points are compared
with them. It may be determined that the con-
tours are hyperbolic as described by the equation
y = (2x − x2 − 1)/(x(1 − K) − 1) where K =
n(n−m−1)/(c2m) and c is a constant. For c = 2,
the constant K corresponds to the limit 2/

√
m/n.

The constant c is usually equal to 2, 4 or 8, (Fig. 6).
6. The index graph has the order index i on the x-axis

and the residuals êS,i , êP,i , êJ,i , êR,i , or the diago-
nal elements Hii , or estimates bi on the y-axis. It
indicates the suspicious points which could be in-
fluential, i.e. outliers or high-leverages.

7. The rankit graph (Q–Q plot) has the quantile of
the standardized normal distribution uPi for Pi =
i/(n + 1) on the x-axis and the ordered residuals
êS,i , êP,i , êJ,i , êR,i , i.e. increasingly ordered values
of various types of residuals on the y-axis.

Fig. 6. L–R graph: E means a high-leverage point and O an outlier,
and digits in the triangle stand for the order index i of the response
(dependent) variable yi ; points towards to the upper part are outliers
while towards the right angle of triangle are high-leverages.

2.2.4. Diagnostics based on influence measures
Influential points can affect regression characteris-

tics differently. Points affecting the prediction, ŷP,i , for
example, may not affect the variance parameter. The
degree of influence of individual points can be classi-
fied according to the characteristics that are affected.
Numerical diagnostics of influential points may be di-
vided by to two principal approaches:

1. Examination of changes which occur when certain
points are omitted.

2. Examination of changes which occur when the
variances of influential points are inflated. Let the
model of inflated variance be assumed; in this
model random errors exhibit normal distribution
with a constant variance σ 2, i.e. N(0, σ 2) except
that the ith influential point has a normal distribu-
tion N(0, �2/wi). The weight, also called the per-
turbance parameter, lies in the interval 0 < wi < 1.

If b(wi) denotes the parameter estimate where the
variance of the ith influential error is equal to σ 2/wi ,
then the following expression is valid,

b(1)− b(wi) = (XTX)−1xi(1 − wi)êi
1 − (1 − wi)Hii

(10)

where xi is the ith row of matrix X which contains x
components of the ith point.
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There are two limiting cases to the perturbance
parameter:

1. For wi = 1 the b(1) are equal to parameter esti-
mates obtained by the LS method.

2. For wi = 0: Eq. (10) leads to the relationship
b(1) − b(0) = b − b(i), where b(i) is the estimate
reached by the least-squares method with the use
of all points except the ith one.

Leaving out the ith point is therefore the same as the
case when this point has unbounded infinite variance.
To express the sensitivity of parameter estimates to
the perturbance parameter wi , the sensitivity function
δb(wi)/δwi can be used,

δb(wi)
δwi

= (XTX)−1xi êi
sA + (1 − wi)Hii

s2
A

(11)

where sA = 1 − (1 − wi)Hii. The following types
of sensitivity function of parameter estimates can be
defined:

1. The Jackknife influence function JCi: the sensitivity
function of parameter estimates at the valuewi = 0
is given by∣∣∣∣δb(wi)δwi

∣∣∣∣
wi=0

= (XTX)−1xi
êi

(1 −Hii)2
= JCi
n− 1

(12)

The term JCi is the jackknife influence function.
It is related to the sensitivity function of parameter
estimates, i.e. lies in the vicinity of b(0) in cases
where the ith point is omitted, because b(0) = b(i).

2. The empirical influence function ECi: the sensi-
tivity function of parameter estimates at the value
wi = 1 is given by∣∣∣∣δb(wi)δwi

∣∣∣∣
wi=1

= (XTX)−1xi êi = ECi
n− 1

(13)

The term ECi is the empirical influence function.
It is related to the sensitivity function of parameter
estimates, i.e. lies in the vicinity of b(1).

3. The sample influence function SCi : the sample
influence function is directly proportional to the
change in the vector of parameter estimates when
the ith point is left out. With the use of Eq. (11)
we can write

SCi = n(b − b(i)) = n(XTX)−1xi
êi

1 −Hii
(14)

All three influence functions differ only in the sin-
gle term (1 −Hii), so they are not identically sen-
sitive to the presence of high-leverage points, for
whichHi → 1. The disadvantage of all these influ-
ence functions is that they are m-dimensional vec-
tors. Their components define the influence of the
ith point on the estimate of the jth parameter.

2.2.5. Diagnostics based on scalar influence
measures

Proper normalization of influence functions [23]
leads to scalar measures. These measures express the
relative influence of the given point on all parameter
estimates.

1. The Cook measure Di directly expresses the rela-
tive influence of the ith point on all parameter es-
timates and has the form

Di = (b − b(i))TXTX(b − b(i))
m× σ̂ 2

= ê2
S,i

m
× Hii

1−Hii

(15)

It is related to the confidence ellipsoid of the esti-
mates but is really a shift of estimates when the ith
point is left out. It is approximately true that when
Di > 1, the shift is greater than the 50% confi-
dence region, so the relevant point is rather influ-
ential. Another interpretation of Di is based on the
Euclidean distance between the prediction vector
ŷP and the prediction vector ŷP,(i) estimated when
the ith point is left out. The Cook measure Di ex-
presses the influence of the ith point on the param-
eter estimate b only; when the ith point does not
affect b significantly, the value of Di is low. Such
a point, however, can strongly affect the residual
variance σ̂ 2.

2. The Atkinson measure Ai enhances the sensitivity
of distance measures to high-leverage points. This
modified version of Cook’s measure Di suggested
by Atkinson [4] is even more closely related to
Belsey’s DFFITSi and has the form

Ai = |êJ,i | ×
√
n−m
m

× Hii

1 −Hii
(16)
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This measure is also convenient for graphical
interpretation; Atkinson recommends that absolute
values of Ai be plotted in any of the ways custom-
ary for residuals. With designed experiments, usu-
ally Hii = m/n, and the Atkinson measure Ai is
numerically equal to the jackknife residual êJ,i .

3. The Belsey DFFITSi measure, also called
Welsch-Kuh’s distance [2], is obtained by the nor-
malization of the sample influence function, and
using the variance estimate σ̂ 2

(i) obtained from
estimates b(i). This measure has the form

DFFITS2
i = ê2

J,i ×
Hii

1 −Hii
(17)

Belsey et al. [2] suggest that the ith point is con-
sidered to be significantly influential on prediction
ŷP when DFFITSi is larger in absolute value than
2
√
m/n.

4. The Anders–Pregibon diagnostic APi [23] ex-
presses the influence of the ith point on the volume
of the confidence ellipsoid

APi = det(X∗T
(i)X

∗
(i))

det(X∗TX∗)
(18)

where X∗ = (x/y) is the matrix having as least
column the vector y. The diagnostic APi is related
to the elements of the extended projection matrix
H∗ by the expression APi = 1 − Hii − ê2

N,i =
1 −Hm,ii. A point is considered to be influential if
Hm,ii = 1 − APi > 2(m+ 1)/n.

5. The Cook–Weisberg likelihood measure LDi [23]
represents a general diagnostic defined by

LDi = 2[LΘ̂ − L(Θ̂(i))] (19)

where L(Θ̂) is the maximum of the logarithm of
the likelihood function when all points are used
and L(Θ̂)(i) is corresponding value when the ith
point is omitted. The parametric vector Θ contains
either the parameter b or the variance estimate σ̂ 2.
For strongly influential points LDi > χ2

1−α(m +
1) where χ2

1−α(m + 1) is the quantile of the χ2

distribution.
With the use of different variants of LDi it is

possible to examine the influence of the ith point on
parameter estimates, or on the variance estimate,
or on both [23]:

5.1. The likelihood measure LDi(b) examines the
influence of individual points on the parameter
estimates b by the relationship

LDi (b) = n× ln

[
di ×Hii

1 −Hii
+ 1

]
(20)

where di = ê2
S,i/(n−m).

5.2. The likelihood measure LDi(σ̂ 2) examines the
influence of individual points on the residual
variance estimates by the relationship

LDi (σ̂
2)= n× ln

[
n

n− 1

]
+ n ln(1 − di)

+di(n− 1)

1 − di − 1 (21)

5.3. The likelihood measure LDi(b, σ̂ 2) examines
the influence of individual points on the pa-
rameters b and variance estimates σ̂ 2 together
by the relationship

LDi (b, σ̂ 2)= n× ln

[
n

n− 1

]
+ n ln(1 − di)

+ di(n− 1)

(1 − di)(1 −Hii)
− 1 (22)

6. Hadi’s influence measure [22] is a new measure and
graphical display for the characterization of overall
potential influence in linear regression models. This
influence measure is based on the simple fact that
potentially influential observations are outliers in
the X- or y-space. This measure is expressed in the
form

K2
i = m

1 −Hii

ê2
N,i

1 − ê2
N,i

+ Hii

1 −Hii
(23)

where êN,i is ith normalized residual. Large K2
i

indicates influential points; the potential residual
plot is then the scatter plot of the first versus sec-
ond components of K2

i . This plot is related but not
equivalent to the L–R plot. The extensions of K2

i

for the identification of influential subsets is very
simple [22].
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3. Procedure

3.1. Procedure for regression model building

The procedure for regression model building includ-
ing the examination of influential points comprises the
following steps:

Step 1. Proposal of a model: the procedure usually
starts from the simplest model, with individual ex-
planatory controllable variables not raised to powers
other than the first, and with no interaction terms of
the type xj xk included.

Step 2. Exploratory data analysis in regression: the
scatter plot of individual variables and all the possible
pair combinations are examined. Also in this step,
the influential points causing multicollinearity are
detected.

Step 3. Parameter estimation: the parameters of
the proposed regression model and the correspond-
ing basic statistical characteristics of this model are
determined by the classic least-squares method (LS).
Individual parameters are tested for significance by
way of Student’s t-test. The mean quadratic error
of prediction MEP and the Akaike information cri-
terion AIC are calculated to examine the quality of
model.

Step 4. Analysis of regression diagnostics: dif-
ferent diagnostic graphs and numerical measures
are used to examine influential points, namely out-
liers and high-leverages. If influential points are
found, it has to be decided whether these points
should be eliminated from the data. If points
are eliminated, the whole data treatment must be
repeated.

Step 5. Construction of a more accurate model: ac-
cording to the test for fulfillment of the conditions
for the least-squares method, and the result of regres-
sion diagnostics, a more accurate regression model is
constructed.

3.2. Software used

For the creation of regression diagnostic graphs and
the computation of all regression characteristics an
algorithm was written in Matlab 5.3 and also a unique
module of the ADSTAT package was used, cf. [86].
The matrix oriented programming leads here to the
very effective computations.

4. Illustrative examples

Regression model building and the discovery of in-
fluential points in three datasets from literature have
been investigated extensively. These data are suitable
for a demonstration of the efficiency of diagnostic
tools for influential points indication. The majority of
multiple outliers and high-leverages has been better
detected by diagnostic plots than by values in tables.

Example 1. Operation of a plant for the oxidation
of ammonia to nitric acid: the stackloss dataset, orig-
inally studied by Brownlee [11], is by far the most
often cited sample data in the regression diagnostic
literature: these are observations from 21 days in the
operation of a plant for the oxidation of ammonia
as a stage in the production of nitric acid. The inde-
pendent variables are: x1 the rate of operation of the
plant measured by air flow, x2 the inlet temperature
of the cooling water circulating through coils in the
countercurrent absorption tower for nitric acid, x3
proportional to the concentration of nitric acid in the
absorbing liquid in the tower expressed as 10 × (acid
concentration − 50), and dependent variable y rep-
resenting the stack loss, i.e. 10 times the percentage
of ingoing ammonia escaping unconverted as unab-
sorbed nitric oxides. This is an inverse measure of the
yield of nitric acid for the plant Table 1.

These data have been much analyzed as a tested for
methods of outlier and leverage detection. A summary
of many analyses is given by Atkinson, p. 266 [4].
While Gray and Ling [19] identified the subset (1, 2,
3) as the most influential triple in the stackloss data,
other authors described the joint influential points (1,
2, 3, 4, 21). Investigation of plant operations indicates
that the following sets of runs can be considered as
replicates: (1, 2), (4, 5, 6), (7, 8), (11, 12) and (18, 19).
While the runs in each set are not exact replicates, the
points are sufficiently close to each other in x-space
for them to be used as such.

As the conditioning number K = λmax/λmin (the
ratio of the maximal and minimal eigenvalue of the re-
gressor matrix X) was 9.99 which was less than 1000,
no multicollinearity was proven. Also, all three val-
ues of the variance inflation factor VIF = 2.87, 2.40
and 1.41 of matrix X were less than 10, so no multi-
collinearity was indicated.
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Table 1
The stackloss dataset written in the order x1, x2, x3, y

80.0 27.0 89.0 42.0 80.0 27.0 88.0 37.0 75.0 25.0 90.0 37.0
62.0 24.0 87.0 28.0 62.0 22.0 87.0 18.0 62.0 23.0 87.0 18.0
62.0 24.0 93.0 19.0 62.0 24.0 93.0 20.0 58.0 23.0 87.0 15.0
58.0 18.0 80.0 14.0 58.0 18.0 89.0 14.0 58.0 17.0 88.0 13.0
58.0 18.0 82.0 11.0 58.0 19.0 93.0 12.0 58.0 18.0 89.0 8.0
50.0 18.0 86.0 7.0 50.0 19.0 72.0 8.0 50.0 19.0 79.0 8.0
50.0 20.0 80.0 9.0 56.0 20.0 82.0 15.0 70.0 20.0 91.0 15.0

The stackloss data have been re-examined to show
the detection power of various regression diagnostics
for influential points detection. This analysis begins
by fitting a model in the three explanatory variables
to the untransformed data. The majority of the par-
tial correlation coefficients between the percentage of
the input ammonia and chemical descriptors were sig-
nificant; therefore, the total OLS regression model is
determined

y = −37.68(12.01,S)+ 0.7336(0.1388,S)x1

+1.3883(0.3565,S)x2 − 0.2167(0.1613,N)x3

where brackets contain the standard deviation of the
parameter estimated. The quantile t1−α/2(21–4) =

Fig. 7. Diagnostics based on residual plots and hat matrix elements for stackloss data: (a) graph of predicted residuals, (b) Williams graph,
(c) Pregibon graph, (d) McCulloh and Meeter graph, (e) Gray L–R graph, (f) rankit Q–Q graph of jackknife residuals.

2.110 of the Student’s t-test (5% significance level)
is used to examine the test statistics (t’s) of the in-
dividual regression parameters: t0 = −3.137, t1 =
5.285, t2 = 3.894, t3 = −1.343. All values except
t3 are equal to or greater than t1−α/2(21–4) = 2.110
and are significant, denoted with the letter S, while
for b3 the letter N stands for non-significant. The
model is described with the mean error of prediction
MEP = 13.61, the predicted coefficient of deter-
mination R̂2

P = 0.9283 and the Akaike information
criterion AIC = 53.09 (Figs. 7 and 8).

Detecting influential points, three blocks of diag-
nostics have been applied: (i) diagnostic plots based
on residuals and hat matrix elements, (ii) index graphs
of diagnostics based on vector and scalar influence
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Fig. 8. Index graphs of various residuals and vector and scalar influence measures for stackloss data: suspicious points (SP) are points which
obviously differ from the others; influential points (IP) are points which are detected and are separated into outliers and high-leverages using
following testing criteria: n = 16, m = 4, F0.95(n−m,m) = 5.915, t0.95(n−m) = 1.782, χ2

1−α(m+ 1) = 11.07, t0.95(n−m− 1) = 1.796,
where ê: detects SP only; êN: when êN,i > |3σ | then the ith point is an outlier; êS: detects SP only; êJ: when ê2

J,i > 10 then the ith point
is an outlier; êP: detects SP only; Hii : when Hii > 2m/n then the ith point is a high-leverage; Hm ,ii : when Hm ,ii > 2m/n then the ith
point is a high-leverage; Di : when Di > 1 then the ith point is an IP; Ai : when A2

i > 10 then the ith point is an outlier; DFFITSi : when
|DFFITSi | > 2

√
m/n then the ith point is an IP; APi : when APi < 1 − 2(m + 1)/n = 0.375 then the ith point is an IP; LDi : when

LDi > χ2
1−α(m+ 1) then the ith point is an IP.
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Table 2
A survey of the influential points which were tested using various diagnostic toolsa

Diagnostic indicating SP and IP Suspicious points (SP) Influential points (IP) Outliers (O) High-leverages (E)

(A) Diagnostical plots based on residuals and hat matrix elements
1. Graph of predicted residuals 1, 3, 4, 11, 12, 21 2, 3, 4, 17, 21 3, 4, 21 1, 2, 17
2. Williams graph 4, 17, 21 4, 17, 21 4, 21 17
3. Pregibon graph 17, 21 17, 21 – –
4. McCulloh–Meeter graph 4, 17, 21 4, 17, 21 4, 21 17
5. Gray’s L–R graph 1, 2, 4, 17, 21 1, 2, 4, 17, 21 4, 21 1, 2, 17
6. Q–Q graph of jackknife residuals 1, 3, 4, 11, 12, 21 – – –

(B) Diagnostics based on scalar and vector influence measures
7. Cook measure D 1, 2, 3, 4, 21 21 – –
8. Atkinson measure A 1, 2, 3, 4, 17, 21 4, 21 – –
9. Belsey measure DFFITS 1, 2, 3, 4, 12, 17, 21 4, 21 – –
10. Anders–Pregibon diagnostic AP 1, 2, 17, 21 1, 2, 17, 21 – –
11. Cook–Weisberg likelihood measure LD(b) 1, 2, 3, 4, 12, 17, 21 21 – –
12. Cook–Weisberg likelihood measure LD(s2) 4, 21 21 – –
13. Cook–Weisberg likelihood measure LD(b, s2) 4, 21 21 – –

(C) Index graphs of residuals and hat matrix elements
14. Ordinary residuals e 1, 3, 4, 21 21 – –
15. Normalized residuals eN 4, 21 4, 21 – –
16. Standardized residuals eS 4, 12, 21 4, 21 – –
17. Jackknife residuals eJ 1, 4, 21 21 – –
18. Predicted residuals eP 1, 3, 4, 21 4, 21 – –
19. Diagonal elements of hat matrix Hii 17 17 – –
20. Diagonal elements of modified hat matrix Hm,ii 1, 2, 17, 21 2, 17, 21 – –

a Suspicious points (SP) are points in diagnostic graphs which obviously differ from the others; influential points (IP) are points
which are detected and are separated into outliers and high-leverages using following testing criteria: n = 16,m = 4, F0.95(n − m,m) =
5.915, t0.95(n−m) = 1.782, χ2

1−α(m+ 1) = 11.07, t0.95(n−m− 1) = 1.796.

measures, and (iii) index graphs of residuals and hat
matrix elements. Table 2 shows that five diagnostic
plots and the Q–Q graph of the jackknife residu-
als indicate suspicious points which obviously differ
from others. The statistical criteria in the diagnos-
tic plots were then used to prove influential points.
These plots also separate influential points into out-
liers and high-leverages. The diagnostic plots found
two outliers, 4 and 21, and one high-leverage point,
17. Index graphs of diagnostics based on vector and
scalar influence measures, as well as index graphs
of residuals and hat matrix elements, tested all the
suspicious points and found statistically significant
influential points. However, these index graphs are
not able to separate these points into outliers and
high-leverages. Most index graphs agreed that there
were three influential points (4, 17, 21). Removing
a non-significant regressor from the equation has a
negligible effect on the fitted values and deletion of
one outlier (21) formed the regression model

y = −53.21(4.55,S)+ 0.824(0.123,S)x1

+0.999(0.336,S)x2

with MEP = 9.35, R̂2
P = 0.9536 and AIC = 43.80,

while when deleting 2 outliers (4, 21) the final re-
gression model achieved was

y = −52.28(3.86,S)+ 0.888(0.106,S)x1

+0.756(0.297,S)x2

with MEP = 6.94, R̂2
P = 0.9656 and AIC = 35.30.

The lowest values of MEP and AIC and the highest
value of R̂2

P proved, to be the final model. On its own,
the leverage 17 is not particularly informative about
the behavior of the units, since it does not depend on
the observed values of y.

Example 2. Aerial biomass and five physicochemical
properties of the substrate (salinity, pH, K, Na and
Zn) [67]: the purpose is to find a regression model
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to detect influential points and to identify important
soil characteristics (salinity, pH, K, Na and Zn) in-
fluencing the aerial biomass production of the marsh
grass Spartina alterniflora. The 45 data values used in-
volve 1 month of sampling are part of a larger study
by Linthurst (cf. p. 161 in [84,85]) and five substrate
measurements: x1 salinity (‰), x2 acidity as measured
in water pH, x3 potassium (ppm), x4 sodium (ppm),
and x5 zinc (ppm); y the dependent variable is aerial
biomass (g/m2), (Table 3).

The purpose of this study was to identify the im-
portant soil characteristics influencing aerial biomass
production of the marsh grass and to identify the sub-
strate variables showing the stronger relationship to
biomass to relate total variability in biomass produc-
tion to total variability in the five substrate variables.

The initial model assumes the biomass, y, can be
adequately characterized by linear relationship with
the five independent variables plus an intercept,

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5

where y is the vector of biomass measurements and X
(45 × 6) consists of the column vector 1, the 45 × 1
column vector of ones, and the five column vectors of
data for substrate variables.

As the conditioning number K = λmax/λmin (the
ratio of the maximal and minimal eigenvalue of the
regressor matrix X) was 17.791 which was less than
1000, no multicollinearity was proven. Also, all five
values of the variance inflation factor VIF = 2.217,
3.331, 2.983, 3.334 and 4.310 of matrix X were less
than 10, and thus no multicollinearity was indicated.
The OLS method found the regression model

y = 1252.3(1234.8,N)− 30.3(24.0,N)x1

+305.5(87.9,S)x2 − 0.285(0.348,N)x3

−0.00867(0.01593,N)x4 − 20.68(15.06,N)x5

where brackets contain the standard deviations of the
parameters estimated. The quantile t1−α/2(45–6) =
2.023 of a Student’s t-test (5% significance level) was
used to examine the test statistics (t’s) of the individual
regression parameters: t0 = 1.014, t1 = −1.260, t2 =
3.477, t3 = −0.818, t4 = −0.544 and t5 = −1.373.
All values except t2 are less than t1−α/2(45–6) =
2.023, are not significant, and are denoted by the let-
ter N. The model was described with a mean error of

Table 3
Aerial biomass and five physicochemical properties of the substrate
[67]a

x1 x2 x3 x4 x5 y

33 5.00 1441.67 35185.50 16.4524 676
35 4.75 1299.19 28170.40 13.9852 516
32 4.20 1154.27 26455.00 15.3276 1052
30 4.40 1045.15 25072.90 17.3128 868
33 5.55 521.62 31664.20 22.3312 1008
33 5.05 1273.02 25491.70 12.2778 436
36 4.25 1346.35 20877.30 17.8225 544
30 4.45 1253.88 25621.30 14.3516 680
38 4.75 1242.65 27587.30 13.6826 640
30 4.60 1281.95 26511.70 11.7566 492
30 4.10 553.69 7886.50 9.8820 984
37 3.45 494.74 14596.00 16.6752 1400
33 3.45 525.97 9826.80 12.3730 1276
36 4.10 571.14 11978.40 9.4058 1736
30 3.50 408.64 10368.60 14.9302 1004
30 3.25 646.65 17307.40 31.2865 396
27 3.35 514.03 12822.00 30.1652 352
29 3.20 350.73 8582.60 28.5901 328
34 3.35 496.29 12369.50 19.8795 392
36 3.30 580.92 14731.90 18.5056 236
30 3.25 535.82 15060.60 22.1344 392
28 3.25 490.34 11056.30 28.6101 268
31 3.20 552.39 8118.90 23.1908 252
31 3.20 661.32 13009.50 24.6917 236
35 3.35 672.15 15003.70 22.6758 340
29 7.10 528.65 10225.00 0.3729 2436
35 7.35 563.13 8024.20 0.2703 2216
35 7.45 497.96 10393.00 0.3205 2096
30 7.45 458.38 8711.60 0.2648 1660
30 7.40 498.25 10239.60 0.2105 2272
26 4.85 936.26 20436.00 18.9875 824
29 4.60 894.79 12519.90 20.9687 1196
25 5.20 941.36 18979.00 23.9841 1960
26 4.75 1038.79 22986.10 19.9727 2080
26 5.20 898.05 11704.50 21.3864 1764
25 4.55 989.87 17721.00 23.7063 412
26 3.95 951.28 16485.20 30.5589 416
26 3.70 939.83 17101.30 26.8415 504
27 3.75 925.42 17849.00 27.7292 492
27 4.15 954.11 16949.60 21.5699 636
24 5.60 720.72 11344.60 19.6531 1756
27 5.35 782.09 14752.40 20.3295 1232
26 5.50 773.30 13649.80 19.5880 1400
28 5.50 829.26 14533.00 20.1328 1520
28 5.40 856.96 16892.20 19.2420 1560

a The 45 data values used involve 1 month of sampling
are part of a larger study by Linthurst (cf. p. 161 in [84,85])
and five substrate measurements: x1 salinity (‰), x2 acidity as
measured in water pH, x3 potassium (ppm), x4 sodium (ppm),
and x5 zinc (ppm); y the dependent variable is aerial biomass
(g/m2).
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Fig. 9. Selected diagnostics plots for the detection of influential points in aerial biomass data: (a) Williams graph, (b) graph of predicted
residuals, (c) Gray L–R graph, (d) index graph of Atkinson measure, (e) index graph of diagonal elements of the hat matrix, (f) rankit
Q–Q graph of jackknife residuals.

prediction MEP = 1.7678 × 105, the predicted coef-
ficient of determination R̂2

P = 0.7649 and the Akaike
information criterion AIC = 544.40.

Fig. 9 shows six reliable diagnostic graphs for the
detection of influential points. While the first three
graphs separate outliers from high-leverages, the other
three graphs indicate influential points only without
their separation: 7 influential points were detected in
45 data values, and separated into five outliers (12,
14, 29, 33, 34) and two high-leverages (5, 7). The
t-test of the partial regression parameters H0: βj = 0
would seem to suggest that four of the five independent
variables are unimportant and could be dropped from
the model. The corrected regression model was then
re-calculated using a data set without five outliers 12,
14, 29, 33 and 34 and without statistically insignificant
parameters in the form

y = −1133.0(198.15,S)+ 447.5(42.1,S)x2

with MEP = 1.0633 × 105, R̂2
P = 0.8527 and AIC =

463.67. The lowest values of MEP and AIC and the
highest value of R̂2

P proved, to be the best final model.

Example 3. The quantitative structure-activity rela-
tionship analysis of positively charged sulfonamide

inhibitors of the zinc enzyme carbonic anhydride [60].
The synthetic routes of a series of tri-, tetra-, and
penta-substituted 1-2(sulfonamido-1,3,4-thiadiazol-
5-yl) pyridinium agents have been published [60].
The 50% inhibitory concentration [�M] of carbonic
anhydrase for 28 compounds was determined, trans-
formed by natural logarithm and signified by the
dependent variable y. A number of physicochemical
descriptors for all 28 compounds were used: x1 the
energy (eV) of the highest occupied molecular orbital
(HOMO), x2 the diagonal component Pxx of polariz-
ability along the smallest principal moment of inertia,
x3 the diagonal component Pyy of polarizability along
the intermediate principal moment of inertia, x4 the
diagonal component Pzz of polarizability along the
intermediate principal moment of inertia, x5 the sum
of charges of 2, 6-carbon atoms on the pyridinium
ring, and x6 the sum of charges of 3, 5-carbon atoms
on the pyridinium ring, Table 4.

As the conditioning number K = λmax/λmin (the
ratio of the maximal and minimal eigenvalue of the
regressor matrix X) was 36.461, which was less than
1000, no multicollinearity was proven. Also, all six
values of the variance inflation factor VIF of matrix X
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Table 4
Original dataset of the quantitative structure–activity relation analysis [60]a

x1 x2 x3 x4 x5 x6 y

−13.690 236.100 131.100 106.800 −0.207 −0.217 1.498
−13.600 248.700 153.300 117.500 −0.198 −0.249 1.373
−13.660 246.700 149.000 119.200 −0.214 −0.226 1.330
−13.610 250.700 159.800 124.100 −0.197 −0.243 1.290
−13.580 257.600 168.100 130.000 −0.212 −0.235 1.262
−13.590 271.900 189.700 141.100 −0.205 −0.284 1.199
−13.610 297.300 180.300 108.700 −0.223 −0.229 0.778
−13.600 290.700 177.600 142.900 −0.206 −0.265 0.785
−13.600 304.900 195.000 150.400 −0.221 −0.261 0.869
−12.790 247.500 232.500 135.600 −0.170 −0.200 −0.301
−12.630 241.800 219.400 162.600 −0.158 −0.209 −0.097
−12.570 234.600 211.500 175.400 −0.161 −0.196 0.462
−12.680 337.900 133.800 133.800 −0.237 −0.191 −0.523
−12.650 350.100 148.700 148.700 −0.250 −0.206 −0.699
−12.640 343.600 182.000 182.000 −0.238 −0.213 −0.155
−12.620 340.500 180.300 180.300 −0.254 −0.217 −0.155
−12.720 322.300 141.200 141.200 −0.221 −0.119 0.176
−12.660 331.200 163.800 163.800 −0.263 −0.128 0.176
−12.610 345.700 186.700 186.700 −0.193 −0.171 1.980
−12.880 265.300 195.000 195.000 −0.112 −0.192 2.071
−12.580 276.800 214.300 214.300 −0.094 −0.199 2.095
−12.520 305.600 271.200 204.300 −0.090 −0.200 2.171
−12.520 342.500 274.400 247.200 −0.135 −0.161 2.121
−11.180 616.700 217.200 124.200 −0.185 −0.277 0.041
−10.970 776.000 255.600 108.700 −0.183 −0.287 0.176
−13.570 246.700 144.100 112.500 −0.234 −0.160 1.487
−13.520 271.700 170.000 130.300 −0.274 −0.091 0.079
−13.630 281.800 195.400 161.600 −0.275 −0.065 0.531

a Physicochemical descriptors for all 28 compounds were used: x1 the energy (eV) of the highest occupied molecular orbital (HOMO),
x2 the diagonal component Pxx of polarizability along the smallest principal moment of inertia, x3 the diagonal component Pyy of
polarizability along the intermediate principal moment of inertia, x4 the diagonal component Pzz of polarizability along the intermediate
principal moment of inertia, x5 the sum of charges of 2, 6-carbon atoms on the pyridinium ring, and x6 the sum of charges of 3, 5-carbon
atoms on the pyridinium ring.

were less than 10, and thus no multicollinearity was
indicated.

The majority of the partial correlation coefficients
between the biological activity y and chemical de-
scriptors X were significant. The total OLS regression
model determined was

y = −20.86(4.06,S)− 1.83(0.28,S)x1

+0.0090(0.0018,S)x2 − 0.0085(0.0036,S)x3

+0.0102(0.0037,S)x4 + 20.44(2.90,S)x5

+3.92(1.98,N)x6

where brackets contain the standard deviations
of the parameter estimated. The critical quantile
t1−α/2(28–7) = 2.080 of a Student’s t-test (5% sig-

nificance level) was used to examine the test statistics
(t’s) of the individual regression parameters: t0 =
−5.14, t1 = −6.56, t2 = 4.92, t3 = −2.33, t4 = 2.79,
t5 = 7.05 and t6 = 1.99. All values except t6 were
higher than t1−α/2(28–7), were significant, and are
denoted by the letter S. The model was described
with a mean error of prediction MEP = 0.2230, the
predicted coefficient of determination R̂2

P = 0.83640
and the Akaike information criterion AIC = −41.57.

After testing the significance of multicollinear-
ity, the presence of influential points (outliers and
high-leverages) should be examined. The discovery
of outliers in data has been investigated extensively
(Fig. 10). Of the three indicated influential points
there were two outliers (compounds 19 and 26) and
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Fig. 10. Selected diagnostics plots for the detection of influential points in structure–activity data: (a) Williams graph, (b) graph of predicted
residuals, (c) Gray L–R graph, (d) index graph of Atkinson measure, (e) index graph of diagonal elements of the hat matrix, (f) rankit
Q–Q graph of jackknife residuals.

one high-leverage point (compound 25). While Mager
[60] found two high-leverage points (compounds
25 and 28), one outlier (compound 19), and two
collinearity-creating points (compounds 24 and 25),
but he found no influential points; despite Mager’s
conclusion [60], with the use of graphical diagnostics
three influential points (compound 19, 25 and 26)
were detected and separated into two outliers (com-
pounds 19 and 26) which should be excluded from the
original dataset, and one high-leverage (compound
25) which can remain in the data.

With the omission of one insignificant regressor x6
and the deletion of two outliers (19, 26) the regression
model was

y = −20.51(3.39,S)− 1.67(0.23,S)x1

+0.0074(0.0014,S)x2 − 0.0058(0.0031,N)x3

+0.0113(0.0030,S)x4 + 17.18(2.07,S)x5

where brackets contain the standard deviation of pa-
rameter estimated. The quantile t1−α/2(26–6) = 2.086
of a Student’s t-test (5% significance level) was used
to examine the test statistics (t’s) of the individual

regression parameters: t0 = −6.06, t1 = −7.43,
t2 = 5.17, t3 = −1.88, t4 = 3.70, and t5 = 8.29.
All values except t3 were higher than t1−�/2(26–6),
were significant, and are denoted by the letter S. The
model was described with a mean error of prediction
MEP = 0.1586, the predicted coefficient of deter-
mination R̂2

P = 0.8831 and the Akaike information
criterion AIC = −48.37.

With the omission of another insignificant regressor
x3 the final regression model was

y = −20.48(3.58,S)− 1.61(0.24,S)x1

+0.0063(0.0014,S)x2 + 0.0085(0.0028,S)x4

+15.00(1.82,S)x5

and the critical quantile t1−α/2(26–5) = 2.080 of
a Student’s t-test (5% significance level) was used
to examine the test statistics (t’s) of the individual
regression parameters: t0 = −5.71, t1 = −6.84,
t2 = 4.56, t4 = 3.01 and t5 = 8.24. All values
were significant, and are denoted by the letter S.
The model was described with a mean error of pre-
diction MEP = 0.1746, the predicted coefficient of
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determination R̂2
P = 0.8703 and the Akaike informa-

tion criterion AIC = −46.142.

5. Conclusions

Regression diagnostics do not require a knowledge
of an alternative hypothesis for the testing or fulfilling
of the other assumptions of classical statistical tests.
In the interactive PC-assisted diagnosis of data, the
examination of data quality involves the detection of
influential points, outliers and high-leverages, which
cause many problems in regression analysis by shift-
ing the parameter estimates or increasing the variance
of the parameters. The main difference between the
use of regression diagnostics and classical statistical
tests is that there is no necessity for an alternative
hypothesis, but all kinds of deviations from the ideal
state are discovered. In statistical graphics, informa-
tion is contained in observable shapes and patterns:
regression diagnostics represent the graphical pro-
cedures and numerical measures for an examination
of the regression triplet, i.e. the identification of (i)
the data quality for a proposed model, (ii) the model
quality for a given dataset, and (iii) a fulfillment of
all least-squares assumptions. The authors’ concept
of exploratory regression analysis is based on the
facts that “the user knows more about the data than
the computer does” and graphs are more informative
than tables. Selected diagnostic plots were chosen as
suitable to give reliable results of influential points
detection and to separate influential points into out-
liers and high-leverages. The graphical aids for the
identification of outliers and high-leverage points are
combined with graphs for the identification of in-
fluence type based on likelihood distance. All these
graphically oriented techniques are suitable for the
rapid estimation of influential points, but are gener-
ally incapable of solving problems with masking and
swamping. The Matlab 5.3 procedure for influential
points characteristics computation is very useful for
practitioners and can be used very simply for routine
calculations. Results are comparable with those ob-
tained with the use of expensive statistical packages.
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